Buy article online - an online subscription or single-article purchase is required to access this article.
5-[4-(1,2,4-Triazol-4-yl)phenyl]-1H-tetrazole, C9H7N7, (I), an asymmetric heterobifunctional organic ligand containing triazole (tr) and tetrazole (tz) termini linked directly through a 1,4-phenylene spacer, crystallizes in the polar space group Pc. The heterocyclic functions, serving as single hydrogen-bond donor (tz) or acceptor (tr) units, afford hydrogen-bonded zigzag chains with no crystallographic centre of inversion. In the structure of catena-poly[[diaquacadmium(II)]bis{μ2-5-[4-(1,2,4-triazol-4-yl)phenyl]tetrazol-1-ido-κ2N1:N1′}], [Cd(C9H6N7)2(H2O)2]n, (II), the CdII dication resides on a centre of inversion in an octahedral {N4O2} environment. In the equatorial plane, the CdII polyhedron is built up from four N atoms of two kinds, namely of trans-coordinating tr and tz fragments [Cd—N = 2.2926 (17) and 2.3603 (18) Å], and the coordinating aqua ligands occupy the two apical sites. The metal centres are separated at a distance of 11.1006 (7) Å by means of the double-bridging tetrazolate anion, L−, forming a chain structure. The water ligands and tz fragments interact with one another, like a double hydrogen-bond donor–acceptor synthon, leading to a hydrogen-bonded three-dimensional array.
Supporting information
CCDC references: 906564; 906565
All materials were of reagent grade and used as received. The organic ligand,
5-[4-(1,2,4-triazol-4-yl)phenyl]-1H-tetrazole (HL), (I), was
prepared according to a previously described procedure (Bondar et al.,
2008). Colourless prismatic monocrystals of HL suitable for
X-ray
analysis were grown by recrystallization from a hot aqueous solution.
For the synthesis of [CdL2(H2O)2], (II), HL (10.6 mg, 49.7
µmol) was placed in a 50 ml test tube and dissolved in hot water (25 ml). To
this solution was added Cd(NO3)2.4H2O (0.0308 mg, 99.8 µmol) in water
(5 ml). The test-tube was closed, placed into a 2 l Dewar flask filled with
hot water and allowed to cool slowly to ambient temperature over period of 48 h. The yellowish [Colourless in CIF tables - please clarify] prisms of
(II) which formed were collected and dried at room temperature (yield 8.1 mg,
56%).
All H atoms were located in difference maps and then refined as riding, with
O—H = 0.85, N—H = 0.88 or C—H = 0.95 Å, and with Uiso(H) =
1.2Ueq(C) or Uiso(H) = 1.5Ueq(N,O).
For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
(I) 5-[4-(1,2,4-Triazol-4-yl)phenyl]-1
H-tetrazole
top
Crystal data top
C9H7N7 | F(000) = 220 |
Mr = 213.22 | Dx = 1.562 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7413 (7) Å | Cell parameters from 2647 reflections |
b = 7.8684 (9) Å | θ = 2.6–26.2° |
c = 15.4092 (13) Å | µ = 0.11 mm−1 |
β = 91.54 (3)° | T = 153 K |
V = 453.39 (11) Å3 | Prism, colourless |
Z = 2 | 0.28 × 0.25 × 0.25 mm |
Data collection top
Bruker APEXII area-detector diffractometer | 1317 independent reflections |
Radiation source: fine-focus sealed tube | 956 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ω scans | θmax = 26.2°, θmin = 2.6° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −4→3 |
Tmin = 0.970, Tmax = 0.974 | k = −9→8 |
2647 measured reflections | l = −19→18 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.104 | w = 1/[σ2(Fo2) + (0.0469P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
1317 reflections | Δρmax = 0.20 e Å−3 |
146 parameters | Δρmin = −0.19 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.029 (7) |
Crystal data top
C9H7N7 | V = 453.39 (11) Å3 |
Mr = 213.22 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 3.7413 (7) Å | µ = 0.11 mm−1 |
b = 7.8684 (9) Å | T = 153 K |
c = 15.4092 (13) Å | 0.28 × 0.25 × 0.25 mm |
β = 91.54 (3)° | |
Data collection top
Bruker APEXII area-detector diffractometer | 1317 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 956 reflections with I > 2σ(I) |
Tmin = 0.970, Tmax = 0.974 | Rint = 0.052 |
2647 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.049 | 2 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.20 e Å−3 |
1317 reflections | Δρmin = −0.19 e Å−3 |
146 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R-factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.2057 (10) | 0.0201 (4) | 0.4166 (2) | 0.0397 (10) | |
H1 | 0.1568 | 0.1172 | 0.4421 | 0.059* | |
N2 | 0.1482 (10) | −0.1347 (5) | 0.4501 (2) | 0.0491 (12) | |
N3 | 0.2613 (11) | −0.2436 (4) | 0.3944 (3) | 0.0491 (10) | |
N4 | 0.3861 (9) | −0.1614 (4) | 0.3234 (2) | 0.0415 (10) | |
N5 | 0.9698 (11) | 0.6829 (5) | 0.0076 (3) | 0.0527 (11) | |
N6 | 1.0454 (11) | 0.7764 (4) | 0.0823 (3) | 0.0536 (11) | |
N7 | 0.8134 (8) | 0.5311 (4) | 0.1196 (2) | 0.0331 (9) | |
C1 | 0.3488 (10) | 0.0032 (5) | 0.3388 (3) | 0.0303 (10) | |
C2 | 0.8341 (13) | 0.5384 (6) | 0.0331 (3) | 0.0464 (12) | |
H2 | 0.7595 | 0.4497 | −0.0050 | 0.056* | |
C3 | 0.9542 (13) | 0.6819 (5) | 0.1474 (3) | 0.0462 (11) | |
H3 | 0.9821 | 0.7139 | 0.2067 | 0.055* | |
C4 | 0.4573 (10) | 0.1405 (4) | 0.2812 (3) | 0.0276 (10) | |
C5 | 0.5620 (11) | 0.1047 (5) | 0.1973 (3) | 0.0361 (11) | |
H5 | 0.5544 | −0.0092 | 0.1768 | 0.043* | |
C6 | 0.6765 (10) | 0.2322 (5) | 0.1436 (3) | 0.0344 (11) | |
H6 | 0.7462 | 0.2072 | 0.0862 | 0.041* | |
C7 | 0.6888 (11) | 0.3960 (5) | 0.1742 (3) | 0.0302 (10) | |
C8 | 0.5793 (11) | 0.4361 (5) | 0.2564 (3) | 0.0399 (12) | |
H8 | 0.5832 | 0.5506 | 0.2760 | 0.048* | |
C9 | 0.4645 (11) | 0.3083 (5) | 0.3097 (3) | 0.0351 (10) | |
H9 | 0.3893 | 0.3348 | 0.3665 | 0.042* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.050 (2) | 0.032 (2) | 0.038 (2) | −0.0069 (18) | 0.0162 (19) | −0.0039 (17) |
N2 | 0.066 (3) | 0.042 (2) | 0.040 (3) | −0.012 (2) | 0.009 (2) | 0.005 (2) |
N3 | 0.067 (3) | 0.037 (2) | 0.043 (2) | −0.003 (2) | 0.015 (2) | 0.0077 (19) |
N4 | 0.061 (3) | 0.029 (2) | 0.035 (2) | 0.0046 (18) | 0.0164 (19) | −0.0033 (16) |
N5 | 0.057 (2) | 0.048 (2) | 0.054 (3) | −0.005 (2) | 0.023 (2) | 0.008 (2) |
N6 | 0.061 (3) | 0.048 (2) | 0.053 (3) | −0.004 (2) | 0.007 (2) | 0.007 (2) |
N7 | 0.040 (2) | 0.0288 (19) | 0.031 (2) | −0.0005 (17) | 0.0030 (17) | −0.0005 (17) |
C1 | 0.030 (2) | 0.031 (2) | 0.030 (3) | −0.0002 (19) | 0.010 (2) | −0.0021 (18) |
C2 | 0.059 (3) | 0.047 (3) | 0.035 (3) | 0.001 (2) | 0.014 (2) | 0.002 (2) |
C3 | 0.056 (3) | 0.043 (3) | 0.040 (3) | −0.015 (2) | −0.001 (2) | 0.002 (2) |
C4 | 0.031 (2) | 0.024 (2) | 0.028 (2) | 0.0046 (17) | 0.0031 (18) | −0.0002 (17) |
C5 | 0.048 (3) | 0.026 (2) | 0.035 (3) | 0.004 (2) | 0.006 (2) | −0.0054 (19) |
C6 | 0.043 (2) | 0.036 (2) | 0.025 (3) | 0.003 (2) | 0.011 (2) | −0.0020 (18) |
C7 | 0.032 (2) | 0.032 (2) | 0.027 (2) | −0.0010 (18) | 0.0045 (19) | 0.0056 (19) |
C8 | 0.051 (3) | 0.034 (3) | 0.035 (3) | −0.005 (2) | 0.013 (2) | −0.004 (2) |
C9 | 0.046 (2) | 0.037 (2) | 0.023 (3) | 0.002 (2) | 0.008 (2) | −0.0026 (19) |
Geometric parameters (Å, º) top
N1—C1 | 1.333 (5) | C2—H2 | 0.9500 |
N1—N2 | 1.342 (4) | C3—H3 | 0.9500 |
N1—H1 | 0.8800 | C4—C5 | 1.390 (5) |
N2—N3 | 1.291 (5) | C4—C9 | 1.391 (5) |
N3—N4 | 1.364 (5) | C5—C6 | 1.376 (5) |
N4—C1 | 1.325 (4) | C5—H5 | 0.9500 |
N5—C2 | 1.310 (5) | C6—C7 | 1.373 (5) |
N5—N6 | 1.389 (6) | C6—H6 | 0.9500 |
N6—C3 | 1.303 (5) | C7—C8 | 1.379 (6) |
N7—C2 | 1.337 (5) | C8—C9 | 1.374 (5) |
N7—C3 | 1.363 (5) | C8—H8 | 0.9500 |
N7—C7 | 1.442 (5) | C9—H9 | 0.9500 |
C1—C4 | 1.463 (5) | | |
| | | |
C1—N1—N2 | 109.1 (4) | N7—C3—H3 | 124.4 |
C1—N1—H1 | 125.4 | C5—C4—C9 | 118.8 (3) |
N2—N1—H1 | 125.4 | C5—C4—C1 | 120.3 (3) |
N3—N2—N1 | 106.7 (4) | C9—C4—C1 | 120.9 (4) |
N2—N3—N4 | 110.1 (3) | C6—C5—C4 | 120.8 (3) |
C1—N4—N3 | 106.2 (3) | C6—C5—H5 | 119.6 |
C2—N5—N6 | 106.4 (4) | C4—C5—H5 | 119.6 |
C3—N6—N5 | 106.5 (4) | C7—C6—C5 | 119.1 (4) |
C2—N7—C3 | 104.2 (3) | C7—C6—H6 | 120.5 |
C2—N7—C7 | 129.9 (4) | C5—C6—H6 | 120.5 |
C3—N7—C7 | 125.9 (4) | C6—C7—C8 | 121.5 (4) |
N4—C1—N1 | 107.8 (4) | C6—C7—N7 | 120.0 (4) |
N4—C1—C4 | 125.5 (4) | C8—C7—N7 | 118.5 (4) |
N1—C1—C4 | 126.7 (4) | C9—C8—C7 | 119.1 (4) |
N5—C2—N7 | 111.7 (4) | C9—C8—H8 | 120.5 |
N5—C2—H2 | 124.1 | C7—C8—H8 | 120.5 |
N7—C2—H2 | 124.1 | C8—C9—C4 | 120.7 (4) |
N6—C3—N7 | 111.2 (4) | C8—C9—H9 | 119.7 |
N6—C3—H3 | 124.4 | C4—C9—H9 | 119.7 |
| | | |
C1—N1—N2—N3 | 1.3 (5) | N4—C1—C4—C9 | −168.7 (4) |
N1—N2—N3—N4 | −1.4 (6) | N1—C1—C4—C9 | 9.2 (6) |
N2—N3—N4—C1 | 0.9 (6) | C9—C4—C5—C6 | 1.1 (6) |
C2—N5—N6—C3 | 0.6 (5) | C1—C4—C5—C6 | −177.7 (4) |
N3—N4—C1—N1 | −0.1 (5) | C4—C5—C6—C7 | 0.5 (6) |
N3—N4—C1—C4 | 178.2 (4) | C5—C6—C7—C8 | −1.9 (6) |
N2—N1—C1—N4 | −0.8 (5) | C5—C6—C7—N7 | 179.0 (4) |
N2—N1—C1—C4 | −179.0 (4) | C2—N7—C7—C6 | 20.9 (7) |
N6—N5—C2—N7 | 0.4 (6) | C3—N7—C7—C6 | −156.1 (4) |
C3—N7—C2—N5 | −1.2 (5) | C2—N7—C7—C8 | −158.2 (5) |
C7—N7—C2—N5 | −178.7 (4) | C3—N7—C7—C8 | 24.8 (6) |
N5—N6—C3—N7 | −1.4 (5) | C6—C7—C8—C9 | 1.8 (7) |
C2—N7—C3—N6 | 1.6 (5) | N7—C7—C8—C9 | −179.1 (4) |
C7—N7—C3—N6 | 179.3 (4) | C7—C8—C9—C4 | −0.2 (7) |
N4—C1—C4—C5 | 10.1 (6) | C5—C4—C9—C8 | −1.2 (6) |
N1—C1—C4—C5 | −172.0 (4) | C1—C4—C9—C8 | 177.6 (4) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N5i | 0.88 | 2.01 | 2.875 (6) | 170 |
C3—H3···N4ii | 0.95 | 2.52 | 3.353 (6) | 147 |
C8—H8···N4iii | 0.95 | 2.50 | 3.414 (5) | 162 |
Symmetry codes: (i) x−1, −y+1, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z. |
(II)
catena-poly[[diaquacadmium(II)]bis{µ
2-5-[4-(1,2,4-triazol-4-
yl)phenyl]tetrazol-1-ato-
κ2N1:
N1'}]
top
Crystal data top
[Cd(C9H6N7)2(H2O)2] | Z = 1 |
Mr = 572.85 | F(000) = 286 |
Triclinic, P1 | Dx = 1.897 Mg m−3 |
a = 7.6554 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.8589 (7) Å | Cell parameters from 5552 reflections |
c = 9.0762 (8) Å | θ = 2.3–26.4° |
α = 98.926 (2)° | µ = 1.14 mm−1 |
β = 98.066 (3)° | T = 296 K |
γ = 108.354 (2)° | Prism, pale yellow |
V = 501.47 (7) Å3 | 0.24 × 0.23 × 0.20 mm |
Data collection top
Bruker APEXII area-detector diffractometer | 2037 independent reflections |
Radiation source: fine-focus sealed tube | 1968 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.771, Tmax = 0.804 | k = −9→9 |
5552 measured reflections | l = −11→11 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0209P)2 + 0.1279P] where P = (Fo2 + 2Fc2)/3 |
2037 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Crystal data top
[Cd(C9H6N7)2(H2O)2] | γ = 108.354 (2)° |
Mr = 572.85 | V = 501.47 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.6554 (5) Å | Mo Kα radiation |
b = 7.8589 (7) Å | µ = 1.14 mm−1 |
c = 9.0762 (8) Å | T = 296 K |
α = 98.926 (2)° | 0.24 × 0.23 × 0.20 mm |
β = 98.066 (3)° | |
Data collection top
Bruker APEXII area-detector diffractometer | 2037 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 1968 reflections with I > 2σ(I) |
Tmin = 0.771, Tmax = 0.804 | Rint = 0.026 |
5552 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.050 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.32 e Å−3 |
2037 reflections | Δρmin = −0.35 e Å−3 |
160 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R-factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.0000 | 0.0000 | 0.0000 | 0.02171 (8) | |
O1 | 0.1967 (2) | 0.2477 (2) | −0.09102 (18) | 0.0302 (4) | |
H1W | 0.2944 | 0.2382 | −0.1206 | 0.045* | |
H2W | 0.2169 | 0.3605 | −0.0564 | 0.045* | |
N1 | 0.2390 (3) | −0.1184 (2) | 0.0725 (2) | 0.0253 (4) | |
N2 | 0.1788 (3) | −0.2991 (2) | 0.0089 (2) | 0.0279 (4) | |
N3 | 0.3029 (3) | −0.3682 (2) | 0.0608 (2) | 0.0279 (4) | |
N4 | 0.4485 (3) | −0.2359 (2) | 0.1607 (2) | 0.0266 (4) | |
N5 | 0.9402 (3) | 0.8268 (2) | 0.7588 (2) | 0.0255 (4) | |
N6 | 0.9261 (3) | 0.9092 (2) | 0.6358 (2) | 0.0302 (5) | |
N7 | 0.8147 (2) | 0.6093 (2) | 0.55559 (19) | 0.0219 (4) | |
C1 | 0.4042 (3) | −0.0840 (3) | 0.1654 (2) | 0.0210 (5) | |
C2 | 0.8748 (3) | 0.6495 (3) | 0.7085 (2) | 0.0248 (5) | |
H2 | 0.8701 | 0.5634 | 0.7688 | 0.030* | |
C3 | 0.8520 (3) | 0.7760 (3) | 0.5173 (3) | 0.0273 (5) | |
H3 | 0.8273 | 0.7924 | 0.4182 | 0.033* | |
C4 | 0.5182 (3) | 0.0953 (3) | 0.2636 (2) | 0.0213 (5) | |
C5 | 0.6397 (3) | 0.1085 (3) | 0.3974 (3) | 0.0256 (5) | |
H5 | 0.6543 | 0.0027 | 0.4222 | 0.031* | |
C6 | 0.7391 (3) | 0.2763 (3) | 0.4940 (3) | 0.0256 (5) | |
H6 | 0.8196 | 0.2834 | 0.5834 | 0.031* | |
C7 | 0.7180 (3) | 0.4335 (3) | 0.4565 (2) | 0.0206 (5) | |
C8 | 0.5989 (3) | 0.4239 (3) | 0.3232 (2) | 0.0255 (5) | |
H8 | 0.5848 | 0.5299 | 0.2984 | 0.031* | |
C9 | 0.5018 (3) | 0.2556 (3) | 0.2279 (2) | 0.0243 (5) | |
H9 | 0.4234 | 0.2493 | 0.1375 | 0.029* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.02407 (13) | 0.01785 (12) | 0.02010 (13) | 0.00692 (9) | 0.00001 (9) | −0.00038 (9) |
O1 | 0.0299 (9) | 0.0188 (8) | 0.0405 (10) | 0.0069 (7) | 0.0087 (7) | 0.0040 (7) |
N1 | 0.0239 (10) | 0.0175 (9) | 0.0301 (11) | 0.0060 (8) | −0.0004 (8) | 0.0000 (8) |
N2 | 0.0294 (11) | 0.0176 (9) | 0.0317 (11) | 0.0055 (8) | 0.0019 (9) | −0.0003 (8) |
N3 | 0.0311 (11) | 0.0196 (9) | 0.0309 (11) | 0.0081 (8) | 0.0051 (9) | 0.0019 (8) |
N4 | 0.0271 (10) | 0.0221 (9) | 0.0283 (10) | 0.0083 (8) | 0.0022 (8) | 0.0021 (8) |
N5 | 0.0301 (11) | 0.0236 (10) | 0.0201 (10) | 0.0079 (8) | 0.0024 (8) | 0.0024 (8) |
N6 | 0.0405 (12) | 0.0220 (10) | 0.0247 (10) | 0.0085 (9) | 0.0013 (9) | 0.0043 (8) |
N7 | 0.0240 (10) | 0.0183 (9) | 0.0194 (9) | 0.0048 (8) | 0.0004 (8) | 0.0015 (7) |
C1 | 0.0225 (11) | 0.0193 (10) | 0.0215 (11) | 0.0075 (9) | 0.0044 (9) | 0.0042 (8) |
C2 | 0.0304 (12) | 0.0213 (11) | 0.0201 (11) | 0.0064 (9) | 0.0021 (10) | 0.0046 (9) |
C3 | 0.0363 (13) | 0.0196 (11) | 0.0235 (12) | 0.0077 (10) | 0.0005 (10) | 0.0060 (9) |
C4 | 0.0193 (11) | 0.0198 (10) | 0.0226 (11) | 0.0049 (9) | 0.0042 (9) | 0.0023 (9) |
C5 | 0.0289 (12) | 0.0190 (11) | 0.0306 (13) | 0.0118 (9) | 0.0034 (10) | 0.0054 (9) |
C6 | 0.0256 (12) | 0.0254 (11) | 0.0237 (12) | 0.0097 (10) | −0.0018 (10) | 0.0031 (9) |
C7 | 0.0196 (11) | 0.0191 (10) | 0.0200 (11) | 0.0045 (8) | 0.0032 (9) | 0.0007 (8) |
C8 | 0.0295 (12) | 0.0205 (11) | 0.0250 (12) | 0.0076 (9) | 0.0018 (10) | 0.0061 (9) |
C9 | 0.0244 (12) | 0.0244 (11) | 0.0200 (11) | 0.0071 (9) | −0.0029 (9) | 0.0028 (9) |
Geometric parameters (Å, º) top
Cd1—N5i | 2.2926 (17) | N7—C2 | 1.353 (3) |
Cd1—N5ii | 2.2926 (17) | N7—C3 | 1.361 (3) |
Cd1—N1 | 2.3603 (18) | N7—C7 | 1.432 (3) |
Cd1—N1iii | 2.3603 (18) | C1—C4 | 1.470 (3) |
Cd1—O1 | 2.3960 (15) | C2—H2 | 0.9300 |
Cd1—O1iii | 2.3960 (15) | C3—H3 | 0.9300 |
O1—H1W | 0.8500 | C4—C9 | 1.387 (3) |
O1—H2W | 0.8500 | C4—C5 | 1.390 (3) |
N1—C1 | 1.341 (3) | C5—C6 | 1.381 (3) |
N1—N2 | 1.349 (2) | C5—H5 | 0.9300 |
N2—N3 | 1.303 (3) | C6—C7 | 1.382 (3) |
N3—N4 | 1.356 (2) | C6—H6 | 0.9300 |
N4—C1 | 1.336 (3) | C7—C8 | 1.385 (3) |
N5—C2 | 1.304 (3) | C8—C9 | 1.377 (3) |
N5—N6 | 1.382 (3) | C8—H8 | 0.9300 |
N5—Cd1iv | 2.2926 (17) | C9—H9 | 0.9300 |
N6—C3 | 1.296 (3) | | |
| | | |
N5i—Cd1—N5ii | 180 | C2—N7—C7 | 128.60 (18) |
N5i—Cd1—N1 | 90.69 (6) | C3—N7—C7 | 126.93 (18) |
N5ii—Cd1—N1 | 89.31 (6) | N4—C1—N1 | 111.01 (18) |
N5i—Cd1—N1iii | 89.31 (6) | N4—C1—C4 | 124.4 (2) |
N5ii—Cd1—N1iii | 90.69 (6) | N1—C1—C4 | 124.56 (19) |
N1—Cd1—N1iii | 180 | N5—C2—N7 | 110.04 (19) |
N5i—Cd1—O1 | 93.04 (6) | N5—C2—H2 | 125.0 |
N5ii—Cd1—O1 | 86.96 (6) | N7—C2—H2 | 125.0 |
N1—Cd1—O1 | 95.31 (6) | N6—C3—N7 | 111.7 (2) |
N1iii—Cd1—O1 | 84.69 (6) | N6—C3—H3 | 124.1 |
N5i—Cd1—O1iii | 86.96 (6) | N7—C3—H3 | 124.1 |
N5ii—Cd1—O1iii | 93.04 (6) | C9—C4—C5 | 118.26 (19) |
N1—Cd1—O1iii | 84.69 (6) | C9—C4—C1 | 120.6 (2) |
N1iii—Cd1—O1iii | 95.31 (6) | C5—C4—C1 | 121.10 (19) |
O1—Cd1—O1iii | 180 | C6—C5—C4 | 121.1 (2) |
Cd1—O1—H1W | 119.3 | C6—C5—H5 | 119.4 |
Cd1—O1—H2W | 124.5 | C4—C5—H5 | 119.4 |
H1W—O1—H2W | 108.3 | C5—C6—C7 | 119.4 (2) |
C1—N1—N2 | 105.42 (17) | C5—C6—H6 | 120.3 |
C1—N1—Cd1 | 145.03 (14) | C7—C6—H6 | 120.3 |
N2—N1—Cd1 | 108.93 (13) | C6—C7—C8 | 120.6 (2) |
N3—N2—N1 | 108.92 (17) | C6—C7—N7 | 121.01 (19) |
N2—N3—N4 | 110.09 (17) | C8—C7—N7 | 118.39 (19) |
C1—N4—N3 | 104.55 (18) | C9—C8—C7 | 119.3 (2) |
C2—N5—N6 | 108.23 (17) | C9—C8—H8 | 120.4 |
C2—N5—Cd1iv | 130.92 (15) | C7—C8—H8 | 120.4 |
N6—N5—Cd1iv | 119.03 (13) | C8—C9—C4 | 121.4 (2) |
C3—N6—N5 | 105.74 (17) | C8—C9—H9 | 119.3 |
C2—N7—C3 | 104.24 (18) | C4—C9—H9 | 119.3 |
| | | |
N5i—Cd1—N1—C1 | −29.8 (3) | C7—N7—C2—N5 | −173.7 (2) |
N5ii—Cd1—N1—C1 | 150.2 (3) | N5—N6—C3—N7 | 0.5 (3) |
O1—Cd1—N1—C1 | 63.3 (3) | C2—N7—C3—N6 | −0.9 (3) |
O1iii—Cd1—N1—C1 | −116.7 (3) | C7—N7—C3—N6 | 173.9 (2) |
N5i—Cd1—N1—N2 | 139.03 (14) | N4—C1—C4—C9 | 157.8 (2) |
N5ii—Cd1—N1—N2 | −40.97 (14) | N1—C1—C4—C9 | −24.6 (3) |
O1—Cd1—N1—N2 | −127.84 (13) | N4—C1—C4—C5 | −24.6 (3) |
O1iii—Cd1—N1—N2 | 52.16 (13) | N1—C1—C4—C5 | 153.0 (2) |
C1—N1—N2—N3 | −0.4 (2) | C9—C4—C5—C6 | 1.2 (3) |
Cd1—N1—N2—N3 | −173.80 (14) | C1—C4—C5—C6 | −176.4 (2) |
N1—N2—N3—N4 | 0.3 (2) | C4—C5—C6—C7 | −0.3 (3) |
N2—N3—N4—C1 | 0.0 (2) | C5—C6—C7—C8 | −0.2 (3) |
C2—N5—N6—C3 | 0.2 (3) | C5—C6—C7—N7 | 178.35 (19) |
Cd1iv—N5—N6—C3 | −166.14 (16) | C2—N7—C7—C6 | −27.1 (3) |
N3—N4—C1—N1 | −0.2 (2) | C3—N7—C7—C6 | 159.4 (2) |
N3—N4—C1—C4 | 177.64 (19) | C2—N7—C7—C8 | 151.6 (2) |
N2—N1—C1—N4 | 0.4 (2) | C3—N7—C7—C8 | −22.0 (3) |
Cd1—N1—C1—N4 | 169.44 (18) | C6—C7—C8—C9 | −0.1 (3) |
N2—N1—C1—C4 | −177.47 (19) | N7—C7—C8—C9 | −178.74 (19) |
Cd1—N1—C1—C4 | −8.4 (4) | C7—C8—C9—C4 | 1.1 (3) |
N6—N5—C2—N7 | −0.8 (3) | C5—C4—C9—C8 | −1.6 (3) |
Cd1iv—N5—C2—N7 | 163.34 (15) | C1—C4—C9—C8 | 176.0 (2) |
C3—N7—C2—N5 | 1.0 (3) | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y−1, z−1; (iii) −x, −y, −z; (iv) x+1, y+1, z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N4v | 0.85 | 2.06 | 2.900 (3) | 172 |
O1—H2W···N3vi | 0.85 | 2.08 | 2.920 (2) | 169 |
C2—H2···N3vii | 0.93 | 2.56 | 3.386 (3) | 149 |
Symmetry codes: (v) −x+1, −y, −z; (vi) x, y+1, z; (vii) −x+1, −y, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C9H7N7 | [Cd(C9H6N7)2(H2O)2] |
Mr | 213.22 | 572.85 |
Crystal system, space group | Monoclinic, Pc | Triclinic, P1 |
Temperature (K) | 153 | 296 |
a, b, c (Å) | 3.7413 (7), 7.8684 (9), 15.4092 (13) | 7.6554 (5), 7.8589 (7), 9.0762 (8) |
α, β, γ (°) | 90, 91.54 (3), 90 | 98.926 (2), 98.066 (3), 108.354 (2) |
V (Å3) | 453.39 (11) | 501.47 (7) |
Z | 2 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.11 | 1.14 |
Crystal size (mm) | 0.28 × 0.25 × 0.25 | 0.24 × 0.23 × 0.20 |
|
Data collection |
Diffractometer | Bruker APEXII area-detector diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.970, 0.974 | 0.771, 0.804 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2647, 1317, 956 | 5552, 2037, 1968 |
Rint | 0.052 | 0.026 |
(sin θ/λ)max (Å−1) | 0.621 | 0.626 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.104, 0.99 | 0.024, 0.050, 1.10 |
No. of reflections | 1317 | 2037 |
No. of parameters | 146 | 160 |
No. of restraints | 2 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.19 | 0.32, −0.35 |
Selected bond lengths (Å) for (I) topN1—C1 | 1.333 (5) | N5—C2 | 1.310 (5) |
N1—N2 | 1.342 (4) | N5—N6 | 1.389 (6) |
N2—N3 | 1.291 (5) | N6—C3 | 1.303 (5) |
N3—N4 | 1.364 (5) | N7—C2 | 1.337 (5) |
N4—C1 | 1.325 (4) | N7—C3 | 1.363 (5) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N5i | 0.88 | 2.01 | 2.875 (6) | 170 |
C3—H3···N4ii | 0.95 | 2.52 | 3.353 (6) | 147 |
C8—H8···N4iii | 0.95 | 2.50 | 3.414 (5) | 162 |
Symmetry codes: (i) x−1, −y+1, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1, z. |
Selected bond lengths (Å) for (II) topCd1—N5i | 2.2926 (17) | N3—N4 | 1.356 (2) |
Cd1—N1 | 2.3603 (18) | N4—C1 | 1.336 (3) |
Cd1—O1 | 2.3960 (15) | N5—C2 | 1.304 (3) |
N1—C1 | 1.341 (3) | N6—C3 | 1.296 (3) |
N1—N2 | 1.349 (2) | N7—C2 | 1.353 (3) |
N2—N3 | 1.303 (3) | N7—C3 | 1.361 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···N4ii | 0.85 | 2.06 | 2.900 (3) | 172 |
O1—H2W···N3iii | 0.85 | 2.08 | 2.920 (2) | 169 |
C2—H2···N3iv | 0.93 | 2.56 | 3.386 (3) | 149 |
Symmetry codes: (ii) −x+1, −y, −z; (iii) x, y+1, z; (iv) −x+1, −y, −z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
The ligand-design approach has proved to be a crucial starting point and attractive design tool for the rapid development of metal–organic frameworks (MOFs), as well as for modulating their properties (Elsevier et al., 2003). An interesting perspective may be focused on the screening of heterobitopic ligands consisting of parent azole heterocycles [e.g. 1,2,4-triazole/tetrazole (Aromí et al., 2011) or their close 1,2,4-triazole/pyrazole analogues etc.], each of which represents a widely known class of organic bridges. The introduction of asymmetry into the bridging-ligand topology may be considered as an interesting supramolecular design tool for engineering acentric and chiral coordination solids (Zhang et al., 2008). On the other hand, the presence of neutral and acidic heterofunctional donors can also provide specificity towards the preferential coordination of metal ions via the formation of M–[N—N]–M linkages. As mentioned earlier by Colombo et al. (2011), the strength of the resulting M—N bonds correlates well with the pKa values for the deprotonation of the N—H bond in the azole heterocycle. This may be one of the reasons why tetrazolide-based MOFs demonstrate relatively low thermal stability and water sensitivity, which significantly limits their application in hydrogen storage (Dinca et al., 2006) and Lewis acid catalysis (Horike et al., 2008). Thus, azolide–MOF stability can be optimized and increased through the introduction of heterobifunctional N-donor groups. Recently, Bondar et al. (2008) described a 1,2,4-triazole/tetrazole ligand linked by a p-phenylene spacer, which shows promise for the production of microporous coordination polymers prepared in aqueous media under hydrothermal conditions. Another interesting example, demonstrating the heterobitopic ligand concept in the construction of porous heterometallic Cd/{Cu6(OH)6} frameworks, was provided by Govor et al. (2011). 4-(3,5-Dimethylpyrazol-4-yl)-1,2,4-triazole was utilized in the self-assembly of halide-incorporating nanocluster {Cu6(OH)6} container molecules for halogenated hydrocarbone sorption applications, and their rational integration into polymeric solids was realised using a `step-by-step' approach. These findings have stimulated our interest in heterobitopic ligands. In this paper, we report the crystal structures of the title heterobifunctional ligand, HL, (I), which contains both 1,2,4-triazole and tetrazole functions, and its cadmium complex, [CdL2(H2O)2], (II).
The organic ligand (I), crystallizing in the polar space group Pc, is a dipolar molecule in which two different functions (tr and tz) are separated by a 1,4-phenylene (ph) spacer. Its asymmetric unit contains a whole molecule of 5-[4-(1,2,4-triazol-4-yl)phenyl]-1H-tetrazole (Fig. 1). Similar to simple 5-phenyl-1H-tetrazole (Krygowski & Cyranski, 1996), in (I) the C1—N4 [1.325 (4) Å] and especially the N2—N3 [1.291 (5) Å] bonds of the tetrazole ring are shorter than the other three, suggesting that the compound exists as the 1H-tautomer. It is known that, in solution and in the gas phase, 5-substituted tetrazoles appear in two tautomeric forms, 1H and 2H, while in the solid state 1H-tetrazole is preferred (Kiselev et al., 2011). This could be the reason for the angular directed intermolecular (tz)NH—N(tr) bonding vectors, leading preferentially to zigzag orientated chains of (I), in which the molecular dipoles interact accurately in the donor–acceptor sequence [N1—H1···N5i; Fig. 2 and Table 2]. Additionally, the packing motifs are supported by weaker C—H···N contacts (C3—H3···N4ii and C8—H8···N4iii, Table 2), affording a three-dimensional hydrogen-bonding net (Desiraju & Steiner, 1999). These interactions cause the tz–benzene pair to be even more coplanar than the opposite side of (I) [the C3—N7—C7—C8 and N4—C1—C4—C5 torsion angles are 24.8 (6) and 10.1 (6)°, respectively]. Also, this packing mode eliminates the presence of a crystallographic centre of inversion and the individual molecular dipoles are not cancelled out in the crystal structure.
In the cadmium complex, (II), the asymmetric unit consists of a deprotonated organic ligand, a water molecule and a CdII cation. This last lies on an inversion centre and adopts a slightly distorted octahedral {N4O2} environment involving four N atoms of singly coordinated tetrazolide [Cd—N(tz) = 2.3603 (18) Å] and triazole [Cd—N(tr) = 2.2926 (17) Å] donor groups in a 1:1 ratio, and two O atoms of the coordinated water molecules [Cd1—O1 = 2.3960 (15) Å] (Fig. 3). These three donors occupy trans dispositions in the coordination environment of the CdII centres. The significant differences observed for the Cd—N distances may indicate a more ionic character of the Cd—N(tz) bond than the Cd—N(tr) bond. The organic ligands, utilizing one N1(tr) [No N1 in triazole] and one N1(tz) atom, act as a bidentate double-bridge between adjacent CdII cations [related by symmetry code (1 + x, 1 + y, 1 + z)], connecting them at a distance of 11.1006 (7) Å into a linear chain running almost perpendicular to the [112] plane.
The partially coordinated tetrazolide can be considered as a scaffold with multiple H-acceptor sites (through peripheral atoms N3 and N4), whereas the bound water molecule is a double H donor. Two water molecules and two tz fragments interact with one another, leading to a ten-membered {H—O—H—[N—N]—}2 synthon in the ab plane [O1···N4ii = 2.900 (3) and O1···N3iii = 2.920 (2) Å, Fig. 4]. In terms of graph-set analysis, these cyclic rings can be identified as R44(10) (Etter et al., 1990). Indeed, the {H—O—H—[N—N]—}2 motifs are very characteristic and essential to controlling the organisation of the extended structures of molecular diaqua-bis[5-(2-pyridyl)tetrazolato]copper(II) (Mukhopadhyay et al., 2009) and the related diaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato-k2O,O']cobalt(II), cadmium(II) and copper(II) analogues (Lukashuk et al., 2007).
Thus, the [Cd(C9H6N7)2(H2O)2] chains of (I) are tightly packed in a three-dimensional hydrogen-bonded network, which is additionally stabilized by means of numerous weak (tr)C—H—N(tz) interactions (Table 4).
In complex (II), it is interesting to note that the Ntr,Ntz coordinating ligand possesses an arc-shaped configuration that may be a consequence of the close interligand disposition in the polymeric chain (Fig. 5). A similar deformation effect for a tetradentate ligand was previously observed in the three-dimensional framework structure of [Cu2(µ4-L)3]Cl.12H2O (Bondar et al., 2008).
Summarizing, we have shown that 5-[4-(1,2,4-triazol-4-yl)phenyl]-1H-tetrazole is a prospective heterobifunctional asymmetric ligand for the controlled construction of acentric solids and coordination polymers utilizing triazole and tetrazolide donor moieties. The singly coordinated tetrazolide group tends to be involved in the formation of a cyclic hydrogen-bonded {H—O—H—[N—N]—}2 synthon, which may be an important component for the organization of the crystal structures of coordination polymers.