Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Ternary tetra­lanthanum trimagnesium tricontazinc, La4.27Mg2.89Zn30, crystallizes as a new structure type. It belongs to the structural family that may be derived from the hexa­gonal CaCu5 and Th2Ni17 structure types by combination of inter­nal deformation and multiple substitution. The triangular 36 and hexa­gonal 63 nets are alternately stacked with Kagomé 3636 nets. The atoms with the largest radius (La) are enclosed in 18-vertex polyhedra (distorted pseudo-Frank-Kasper polyhedra). The coordination polyhedra of the two Mg atoms are bicapped and monocapped hexa­gonal anti­prisms, with coordination numbers of 14 and 13, respectively. For all the Zn atoms, the typical icosa­hedral coordination is observed. In the direction of the six- and threefold axes, strong positional disorder is observed as a result of partial substitutions of La atoms by pairs of Mg atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111002137/fn3072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111002137/fn3072Isup2.hkl
Contains datablock I

Comment top

Recently, intermetallic compounds containing rare earths, transition metals and magnesium have been of particular interest to researchers because of their useful properties as modern lightweight alloys and hydrogen-storage materials. The crystal structures, physical properties and hydrogenation behaviour of these materials have been reviewed by Rodewald et al. (2007). The most heavily studied of these intermetallic compounds have been those with metals such as nickel and copper. Only two ternary compounds, i.e. La2Mg3Zn3, cubic, a = 7.145 Å (Melnik et al., 1978) and La3(Zn0.874Mg0.126)11 (Pavlyuk et al., 2010), were investigated from the La–Mg–Zn ternary system. The result of our crystallographic studies of a new intermetallic compound, La4.27Mg2.89Zn30, is presented here.

During the systematic study of the ternary alloys of La–Mg–Zn from the concentration region with a high content of zinc a new ternary phase was detected. The powder diffraction pattern of this compound is similar to the powder pattern of the RE2Zn17 (RE, rare earth metals) binary phase, but has some differences. It was decided to investigate this phase further, using single-crystal methods. The single-crystal data showed that the title compound crystallized in the hexagonal crystal class (space group P63/mmc). The projection of the unit cell and coordination polyhedra are shown in Fig. 1. The number of neighbouring atoms correlates well with the dimensions of the central atoms. The largest atoms La are enclosed in 18-vertex polyhedra that can be treated as distorted pseudo-Frank–Kasper polyhedra. The coordination polyhedra of Mg1 and Mg2 atoms are bicapped and monocapped hexagonal antiprisms, with coordination numbers (CN) of 14 and 13 respectively. All the zinc atoms are surrounded by 12 nearest neighbours in the form of icosahedra (CN = 12). The shortest interatomic distances in La4.27Mg2.89Zn30 are in the ranges typical for intermetallic compounds containing La, Mg and Zn, and indicate metallic-type bonding.

A detailed crystal chemical analysis shows that the title structure is an intergrowth of fragments of CaCu5 and Th2Ni17 types. It should be noted that the La–Zn binary system forms LaZn5 (Pavlyuk et al., 1997) and La2Zn17 (Iandelli & Palenzona, 1967) with the CaCu5 and Th2Zn17 structure types, respectively. In the Th2Ni17 structure (Florio et al., 1956), which also crystallizes in P63/mmc, the nickel atoms occupy the 12k, 12j, 6g and 4f positions, and the Th atoms are located in the 2b and 2c sites. In the La4.27Mg2.89Zn30 structure the zinc atoms occupy 12k, 12j and 6g sites but the 4f site is partialy occupied by the Mg2 atom. The Mg1 atom partialy occupies the 4e site, which is not occupied in Th2Ni17. The La1 atom partialy occupies the 2b site and the 2c site is fully occupied by the La3 atom. The La2 atom partialy occupies the 2d site, which also is not occupied in Th2Ni17. In the structure of the title compound so-called split atoms are observable. Atoms are distributed over some sites, which are located close to each other. The split positions of La1—Mg1, Mg1—Mg1 and La2—Mg2 are observed in the direction of the sixfold and threefold axes, respectively (Fig. 2). Thus, in the La4.27Mg2.89Zn30 structure sub-cells with compositions of La6Zn30 and La2Mg2.89Zn30 (Fig. 2) can be selected. The La6Zn30 sub-cell corresponds to the sixfold unit cell of LaZn5 which has the CaCu5 structure type. CaCu5 belongs to the family of structures with large coordination polyhedra (CN = 20 for Ca atom) and in which triangular 36 and hexagonal 63 nets are alternatively stacked with kagomè 3636 nets. The same type of net is observed in the title compound (Fig. 3). It should be noted that La1—Mg1, Mg1—Mg1 and La2—Mg2 split atoms are located in the channels of this nets.

Known derivatives of the CaCu5 type can be formed by partial or complete substitution of larger (R) atoms by various proportions of smaller-sized atoms (M) or by the shift of layers perpendicular to the sixfold axis (Krypyakevich, 1977). In the first case, if one third of the R atoms are replaced by pairs of M atoms, structures of the R2M17 composition (structural types hexagonal Th2Ni17 and rhombohedral Th2Zn17) are obtained. The substitution of half the R atoms by pairs of M atoms results in teragonal [tetragonal?] cells of ThMn12. In the case of shited layers, there is a change in symmetry from hexagonal to orthorhombic and the structures of the BaZn5 and SrZn5 (Baenziger & Conant, 1956) are realized. The title structure is an intergrowth of fragments of both CaCu5 and Th2Ni17 types and belongs to the first group of derivatives. The scheme of the relationship CaCu5–La4.27Mg2.89Zn30–Th2Ni17 is shown in Fig. 4. The title compound is an example of a class whose representative members may be derived from the hexagonal CaCu5 and Th2Ni17 structure types by combination of internal deformation and multiple substitution..

The formation of ternary intermetallic magnesium structures which are related to the structure of binary phases has been previously observed. Typically, these structures are formed by ordered or partial substitution of rare earth metal atoms by magnesium atoms. For example, REMg2Cu9 (Solokha et al., 2006) is an hexagonal ordered superstructure of the CeNi3 type and REMg2Ni9 (Kadir et al., 1997) is a rhombohedral ordered superstructure of the PuNi3 type. Such substitution is possible because obviously in these cases a decisive role belongs to steric factors. The atomic radius of magnesium is only 9–11% smaller than atoms of the rare earth metals. On the other hand, magnesium has a different electronic structure. This apparently is the reason why in the title compound magnesium atoms cannot substitute for lanthanum atoms. Thus they try to `push' lanthanum atoms out of the occupied sites very close to them and form split positions. In general, this mechanism is a multiple substitution, in which a pair of smaller atoms replaces one atom of larger size. In the title structure this substitution is not complete but only partial.

Related literature top

For related literature, see: Baenziger & Conant (1956); Farrugia (1999); Florio et al. (1956); Iandelli & Palenzona (1967); Kadir et al. (1997); Krypyakevich (1977); Melnik et al. (1978); Pavlyuk et al. (1997, 2010); Rodewald et al. (2007); Solokha et al. (2006).

Experimental top

Lanthanum, magnesium and zinc, all with a nominal purity more than 99.9 wt%, were used as starting elements. First, the powders of the pure metals with a stoichiometry La10Mg10Zn80 were pressed into pellets, enclosed in an evacuated silica ampoule (internal pressure 10-5–10 -6 Pa) and placed in a resistance furnace with a thermocouple controller. The heating rate from room temperature to 670 K was 5 K min-1. This temperature was maintained over 3 d and then the temperature was increased from 670 to 1070 K over 4 d. The alloy was annealed at this temperature for 3 h and slowly cooled to room temperature. After the melting and annealing procedures, the total weight loss was less than 2%. The brittle sample was stable in air showing a metallic lustre. Wavelength dispersive spectrometry and electron probe microanalysis (CAMECA SX100 analyser) were used to control the number of phases and their content in the sample. Various point analyses on this phase were in good agreement with the ideal composition determined by the single-crystal X-ray data (an average result for the title compound is 11.6–11.5% at. La, 8.8–7.8% at. Mg and 79.6–80.8% at. Zn). A tabular-shaped single crystal, exhibiting metallic lustre, was isolated by mechanical fragmentation from the reaction.

Refinement top

The systematic absences indicated five possible space groups, P31c (163), P31c (159), P63mc (186), P63/mmc (194), P62c (190). A statistical test of the distribution of the E values using the program E-STATS from the WinGX system (Farrugia, 1999) suggested that the structure is centrosymmetric. The analysis of systematic extinctions yielded the space group P63/mmc (No. 194) which was confirmed by the following structure refinement. The structure was solved by direct methods. The zinc atoms fully occupied the 12k, 12j and 6g sites. The 2c site was fully occupied by the La3 atom. During the refinement of the atomic parameters of other atoms, two features were found: first, the La1 and La2 atoms partialy occupy the 2b and 2c sites, respectively; second, two peaks of different heights on the Fourier map of the residual electron density with a very short distance to the La1 and La2 atoms. Therefore, this structure is positionally disordered. The refinement of the structure model with La1—Mg1, Mg1—Mg1 and La2—Mg2 split atoms leads to a sharp reduction in the residual factor from R = 0.052 to R = 0.013. The final refined chemical composition of the title compound is very well correlated with the data of electron probe microanalysis.

In the final refinement cycles all atoms were successfully refined with anisotropic thermal displacement parameters. The atomic coordinates were standardized using the STRUCTURE TIDY program (Gelato & Parthé, 1987).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A clinographic projection of the La4.27Mg2.89Zn30 unit-cell contents and the coordination polyhedra of atoms.
[Figure 2] Fig. 2. The La4.27Mg2.89Zn30 structure as a combination of La6Zn30 and La2Mg2.89Zn30 sub-cells.
[Figure 3] Fig. 3. The triangular 36 and hexagonal 63 atomic nets in the (a) La4.27Mg2.89Zn30, (b) CaCu5 and (c) Th2Ni17 structure types.
[Figure 4] Fig. 4. A scheme showing the relationship between the CaCu5, La4.27Mg2.89Zn30 and Th2Ni17 structure types.
Ternary tetralanthanum trimagnesium tricontazinc top
Crystal data top
La4.27Mg2.89Zn30Dx = 6.143 Mg m3
Mr = 2625.71Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 262 reflections
Hall symbol: -P 6c 2cθ = 2.5–27.6°
a = 9.4415 (4) ŵ = 31.10 mm1
c = 9.1937 (8) ÅT = 293 K
V = 709.75 (7) Å3Irregularly shaped, metallic dark grey
Z = 10.09 × 0.07 × 0.05 mm
F(000) = 1179.9
Data collection top
Oxford Diffraction Xcalibur
diffractometer
342 independent reflections
Radiation source: fine-focus sealed tube299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1212
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1212
Tmin = 0.089, Tmax = 0.198l = 011
3083 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.013Secondary atom site location: difference Fourier map
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.6192P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
342 reflectionsΔρmax = 0.58 e Å3
31 parametersΔρmin = 0.33 e Å3
Crystal data top
La4.27Mg2.89Zn30Z = 1
Mr = 2625.71Mo Kα radiation
Hexagonal, P63/mmcµ = 31.10 mm1
a = 9.4415 (4) ÅT = 293 K
c = 9.1937 (8) Å0.09 × 0.07 × 0.05 mm
V = 709.75 (7) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
342 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
299 reflections with I > 2σ(I)
Tmin = 0.089, Tmax = 0.198Rint = 0.049
3083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01331 parameters
wR(F2) = 0.0480 restraints
S = 1.12Δρmax = 0.58 e Å3
342 reflectionsΔρmin = 0.33 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.00000.00000.25000.0239 (3)0.719 (2)
La20.33330.66670.75000.0245 (5)0.418 (3)
La30.33330.66670.25000.02234 (17)
Zn10.50000.00000.00000.02805 (19)
Zn20.16613 (2)0.33226 (4)0.01078 (6)0.03623 (19)
Zn30.35491 (6)0.02724 (6)0.25000.02964 (18)
Mg10.00000.00000.0937 (13)0.014 (2)0.1407 (11)
Mg20.33330.66670.5986 (9)0.0688 (18)0.582 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0195 (3)0.0195 (3)0.0325 (5)0.00977 (14)0.0000.000
La20.0206 (5)0.0206 (5)0.0322 (8)0.0103 (3)0.0000.000
La30.0197 (2)0.0197 (2)0.0277 (3)0.00983 (10)0.0000.000
Zn10.0255 (3)0.0261 (3)0.0328 (4)0.01303 (15)0.00008 (14)0.0002 (3)
Zn20.0238 (2)0.0244 (3)0.0607 (4)0.01220 (13)0.00013 (12)0.0003 (2)
Zn30.0281 (2)0.0275 (3)0.0334 (3)0.01400 (19)0.0000.000
Mg10.020 (3)0.020 (3)0.003 (5)0.0099 (16)0.0000.000
Mg20.054 (2)0.054 (2)0.099 (5)0.0269 (10)0.0000.000
Geometric parameters (Å, º) top
La1—Mg1i1.437 (12)Zn1—Mg2xxxiii2.872 (3)
La1—Mg11.437 (12)Zn1—Mg2xxxiv2.872 (3)
La1—Mg1ii3.160 (12)Zn1—La2xii3.5653 (2)
La1—Mg1iii3.160 (12)Zn1—La2xxxv3.5653 (2)
La1—Zn3iv3.2300 (4)Zn2—Zn2xxxvi2.7240 (4)
La1—Zn3v3.2300 (4)Zn2—Zn2xxvii2.7240 (4)
La1—Zn33.2300 (4)Zn2—Zn1xxiii2.7317 (2)
La1—Zn3vi3.2300 (4)Zn2—Zn1viii2.7317 (2)
La1—Zn3vii3.2300 (4)Zn2—Zn3xxxvi2.7918 (5)
La1—Zn3viii3.2300 (4)Zn2—Zn3xxxvii2.7918 (5)
La1—Zn2viii3.4954 (5)Zn2—Mg12.822 (3)
La1—Zn2i3.4954 (5)Zn2—Zn3iv2.8448 (5)
La2—Mg21.392 (8)Zn2—Zn3viii2.8448 (5)
La2—Mg2ix1.392 (8)Zn2—Mg1iii2.882 (4)
La2—Zn3x2.9171 (5)Zn2—Mg2i2.913 (3)
La2—Zn3xi2.9171 (5)Zn3—Zn1xxxviii2.7528 (3)
La2—Zn3xii2.9171 (5)Zn3—Zn2xxxix2.7918 (5)
La2—Zn3xiii2.9171 (5)Zn3—Zn2xxvii2.7918 (5)
La2—Zn3xiv2.9171 (5)Zn3—Zn3iv2.8364 (9)
La2—Zn3xv2.9171 (5)Zn3—Zn2v2.8448 (5)
La2—Zn1xvi3.5653 (2)Zn3—Zn2xl2.8448 (5)
La2—Zn1xvii3.5653 (2)Zn3—La2xii2.9171 (5)
La2—Zn1xviii3.5653 (2)Zn3—Zn3xxxi2.9970 (8)
La2—Zn1xix3.5653 (2)Zn3—Mg2xii3.232 (4)
La3—Mg2i3.205 (8)Zn3—Mg2xxxiv3.232 (4)
La3—Mg23.205 (8)Mg1—Mg1iii1.72 (2)
La3—Zn3xx3.3072 (5)Mg1—Zn2viii2.822 (3)
La3—Zn3xxi3.3072 (5)Mg1—Zn2v2.822 (3)
La3—Zn3xxii3.3072 (5)Mg1—Mg1i2.87 (2)
La3—Zn3viii3.3072 (5)Mg1—Zn2iii2.882 (4)
La3—Zn3iv3.3072 (5)Mg1—Zn2xxvii2.882 (4)
La3—Zn3xxiii3.3072 (5)Mg1—Zn2xxxvi2.882 (4)
La3—Zn2xxiv3.5090 (5)Mg1—La1iii3.160 (12)
La3—Zn2xxv3.5090 (5)Mg2—Mg2ix2.783 (16)
La3—Zn23.5090 (5)Mg2—Zn1xvii2.872 (3)
La3—Zn2xxvi3.5090 (5)Mg2—Zn1xix2.872 (3)
Zn1—Zn2xxvii2.7317 (2)Mg2—Zn1xli2.872 (3)
Zn1—Zn2xxviii2.7317 (2)Mg2—Zn2xxiv2.913 (3)
Zn1—Zn2xxix2.7317 (2)Mg2—Zn2i2.913 (3)
Zn1—Zn2v2.7317 (2)Mg2—Zn2xxvi2.913 (3)
Zn1—Zn3xxx2.7528 (3)Mg2—Zn3x3.232 (4)
Zn1—Zn3xxxi2.7528 (3)Mg2—Zn3xii3.232 (4)
Zn1—Zn3xxxii2.7528 (3)Mg2—Zn3xi3.232 (4)
Zn1—Zn32.7528 (3)
Mg1i—La1—Mg1180.000 (3)Zn2xxviii—Zn1—La2xxxv69.099 (10)
Mg1i—La1—Mg1ii0.000 (2)Zn2xxix—Zn1—La2xxxv110.901 (10)
Mg1—La1—Mg1ii180.000 (2)Zn2v—Zn1—La2xxxv69.099 (10)
Mg1i—La1—Mg1iii180.0Zn3xxx—Zn1—La2xxxv53.121 (11)
Mg1—La1—Mg1iii0.000 (1)Zn3xxxi—Zn1—La2xxxv126.879 (11)
Mg1ii—La1—Mg1iii180.0Zn3xxxii—Zn1—La2xxxv53.121 (11)
Mg1i—La1—Zn3iv90.000 (1)Zn3—Zn1—La2xxxv126.879 (11)
Mg1—La1—Zn3iv90.000 (1)Mg2xxxiii—Zn1—La2xxxv21.74 (15)
Mg1ii—La1—Zn3iv90.0Mg2xxxiv—Zn1—La2xxxv158.26 (15)
Mg1iii—La1—Zn3iv90.0La2xii—Zn1—La2xxxv180.0
Mg1i—La1—Zn3v90.000 (1)Zn2xxxvi—Zn2—Zn2xxvii119.476 (6)
Mg1—La1—Zn3v90.000 (1)Zn2xxxvi—Zn2—Zn1xxiii173.74 (4)
Mg1ii—La1—Zn3v90.0Zn2xxvii—Zn2—Zn1xxiii60.093 (6)
Mg1iii—La1—Zn3v90.0Zn2xxxvi—Zn2—Zn1viii60.093 (6)
Zn3iv—La1—Zn3v172.091 (18)Zn2xxvii—Zn2—Zn1viii173.74 (4)
Mg1i—La1—Zn390.0Zn1xxiii—Zn2—Zn1viii119.552 (13)
Mg1—La1—Zn390.0Zn2xxxvi—Zn2—Zn3xxxvi114.16 (3)
Mg1ii—La1—Zn390.0Zn2xxvii—Zn2—Zn3xxxvi62.08 (2)
Mg1iii—La1—Zn390.0Zn1xxiii—Zn2—Zn3xxxvi59.774 (10)
Zn3iv—La1—Zn352.091 (18)Zn1viii—Zn2—Zn3xxxvi111.99 (2)
Zn3v—La1—Zn3120.0Zn2xxxvi—Zn2—Zn3xxxvii62.08 (2)
Mg1i—La1—Zn3vi90.0Zn2xxvii—Zn2—Zn3xxxvii114.16 (3)
Mg1—La1—Zn3vi90.0Zn1xxiii—Zn2—Zn3xxxvii111.99 (2)
Mg1ii—La1—Zn3vi90.0Zn1viii—Zn2—Zn3xxxvii59.774 (10)
Mg1iii—La1—Zn3vi90.0Zn3xxxvi—Zn2—Zn3xxxvii61.06 (2)
Zn3iv—La1—Zn3vi120.0Zn2xxxvi—Zn2—Mg162.58 (5)
Zn3v—La1—Zn3vi67.909 (18)Zn2xxvii—Zn2—Mg162.58 (5)
Zn3—La1—Zn3vi172.091 (18)Zn1xxiii—Zn2—Mg1119.55 (3)
Mg1i—La1—Zn3vii90.0Zn1viii—Zn2—Mg1119.55 (3)
Mg1—La1—Zn3vii90.0Zn3xxxvi—Zn2—Mg1107.2 (2)
Mg1ii—La1—Zn3vii90.0Zn3xxxvii—Zn2—Mg1107.2 (2)
Mg1iii—La1—Zn3vii90.0Zn2xxxvi—Zn2—Zn3iv126.69 (3)
Zn3iv—La1—Zn3vii120.0Zn2xxvii—Zn2—Zn3iv60.128 (18)
Zn3v—La1—Zn3vii52.091 (18)Zn1xxiii—Zn2—Zn3iv59.119 (9)
Zn3—La1—Zn3vii67.909 (18)Zn1viii—Zn2—Zn3iv125.64 (2)
Zn3vi—La1—Zn3vii120.0Zn3xxxvi—Zn2—Zn3iv110.039 (9)
Mg1i—La1—Zn3viii90.0Zn3xxxvii—Zn2—Zn3iv170.74 (2)
Mg1—La1—Zn3viii90.0Mg1—Zn2—Zn3iv77.20 (18)
Mg1ii—La1—Zn3viii90.0Zn2xxxvi—Zn2—Zn3viii60.128 (18)
Mg1iii—La1—Zn3viii90.0Zn2xxvii—Zn2—Zn3viii126.69 (3)
Zn3iv—La1—Zn3viii67.909 (18)Zn1xxiii—Zn2—Zn3viii125.64 (2)
Zn3v—La1—Zn3viii120.0Zn1viii—Zn2—Zn3viii59.119 (9)
Zn3—La1—Zn3viii120.0Zn3xxxvi—Zn2—Zn3viii170.74 (2)
Zn3vi—La1—Zn3viii52.091 (18)Zn3xxxvii—Zn2—Zn3viii110.039 (9)
Zn3vii—La1—Zn3viii172.091 (18)Mg1—Zn2—Zn3viii77.20 (17)
Mg1i—La1—Zn2viii128.991 (9)Zn3iv—Zn2—Zn3viii78.72 (2)
Mg1—La1—Zn2viii51.009 (9)Zn2xxxvi—Zn2—Mg1iii60.37 (3)
Mg1ii—La1—Zn2viii128.991 (9)Zn2xxvii—Zn2—Mg1iii60.37 (3)
Mg1iii—La1—Zn2viii51.009 (8)Zn1xxiii—Zn2—Mg1iii117.47 (5)
Zn3iv—La1—Zn2viii134.292 (8)Zn1viii—Zn2—Mg1iii117.47 (5)
Zn3v—La1—Zn2viii49.856 (7)Zn3xxxvi—Zn2—Mg1iii77.07 (19)
Zn3—La1—Zn2viii134.292 (8)Zn3xxxvii—Zn2—Mg1iii77.07 (19)
Zn3vi—La1—Zn2viii49.856 (7)Mg1—Zn2—Mg1iii35.1 (5)
Zn3vii—La1—Zn2viii86.927 (7)Zn3iv—Zn2—Mg1iii104.20 (17)
Zn3viii—La1—Zn2viii86.927 (7)Zn3viii—Zn2—Mg1iii104.20 (17)
Mg1i—La1—Zn2i51.009 (9)Zn2xxxvi—Zn2—Mg2i116.29 (4)
Mg1—La1—Zn2i128.991 (9)Zn2xxvii—Zn2—Mg2i116.29 (4)
Mg1ii—La1—Zn2i51.009 (8)Zn1xxiii—Zn2—Mg2i61.07 (2)
Mg1iii—La1—Zn2i128.991 (9)Zn1viii—Zn2—Mg2i61.07 (2)
Zn3iv—La1—Zn2i49.856 (7)Zn3xxxvi—Zn2—Mg2i68.97 (13)
Zn3v—La1—Zn2i134.292 (8)Zn3xxxvii—Zn2—Mg2i68.97 (13)
Zn3—La1—Zn2i86.927 (7)Mg1—Zn2—Mg2i175.5 (2)
Zn3vi—La1—Zn2i86.927 (7)Zn3iv—Zn2—Mg2i106.22 (11)
Zn3vii—La1—Zn2i134.292 (8)Zn3viii—Zn2—Mg2i106.22 (11)
Zn3viii—La1—Zn2i49.856 (7)Mg1iii—Zn2—Mg2i140.3 (3)
Zn2viii—La1—Zn2i134.262 (6)Zn2xxxvi—Zn2—La170.014 (14)
Mg2—La2—Mg2ix180.000 (3)Zn2xxvii—Zn2—La170.014 (14)
Mg2—La2—Zn3x90.000 (1)Zn1xxiii—Zn2—La1114.398 (11)
Mg2ix—La2—Zn3x90.000 (1)Zn1viii—Zn2—La1114.398 (11)
Mg2—La2—Zn3xi90.000 (2)Zn3xxxvi—Zn2—La1126.293 (15)
Mg2ix—La2—Zn3xi90.000 (2)Zn3xxxvii—Zn2—La1126.293 (15)
Zn3x—La2—Zn3xi58.179 (15)Mg1—Zn2—La123.3 (2)
Mg2—La2—Zn3xii90.000 (3)Zn3iv—Zn2—La160.218 (12)
Mg2ix—La2—Zn3xii90.000 (3)Zn3viii—Zn2—La160.218 (12)
Zn3x—La2—Zn3xii61.821 (15)Mg1iii—Zn2—La158.5 (2)
Zn3xi—La2—Zn3xii120.0Mg2i—Zn2—La1161.21 (15)
Mg2—La2—Zn3xiii90.000 (3)Zn1xxxviii—Zn3—Zn1113.220 (14)
Mg2ix—La2—Zn3xiii90.000 (3)Zn1xxxviii—Zn3—Zn2xxxix59.029 (8)
Zn3x—La2—Zn3xiii120.0Zn1—Zn3—Zn2xxxix156.85 (2)
Zn3xi—La2—Zn3xiii61.821 (15)Zn1xxxviii—Zn3—Zn2xxvii156.85 (2)
Zn3xii—La2—Zn3xiii178.179 (15)Zn1—Zn3—Zn2xxvii59.029 (8)
Mg2—La2—Zn3xiv90.000 (2)Zn2xxxix—Zn3—Zn2xxvii118.36 (2)
Mg2ix—La2—Zn3xiv90.000 (2)Zn1xxxviii—Zn3—Zn3iv110.014 (9)
Zn3x—La2—Zn3xiv120.0Zn1—Zn3—Zn3iv110.014 (9)
Zn3xi—La2—Zn3xiv178.179 (15)Zn2xxxix—Zn3—Zn3iv59.469 (11)
Zn3xii—La2—Zn3xiv58.179 (15)Zn2xxvii—Zn3—Zn3iv59.469 (11)
Zn3xiii—La2—Zn3xiv120.0Zn1xxxviii—Zn3—Zn2v140.07 (2)
Mg2—La2—Zn3xv90.000 (1)Zn1—Zn3—Zn2v58.393 (9)
Mg2ix—La2—Zn3xv90.000 (1)Zn2xxxix—Zn3—Zn2v142.64 (2)
Zn3x—La2—Zn3xv178.179 (15)Zn2xxvii—Zn3—Zn2v57.790 (10)
Zn3xi—La2—Zn3xv120.0Zn3iv—Zn3—Zn2v109.179 (11)
Zn3xii—La2—Zn3xv120.0Zn1xxxviii—Zn3—Zn2xl58.393 (9)
Zn3xiii—La2—Zn3xv58.179 (15)Zn1—Zn3—Zn2xl140.07 (2)
Zn3xiv—La2—Zn3xv61.821 (15)Zn2xxxix—Zn3—Zn2xl57.790 (10)
Mg2—La2—Zn1xvi130.141 (3)Zn2xxvii—Zn3—Zn2xl142.64 (2)
Mg2ix—La2—Zn1xvi49.859 (3)Zn3iv—Zn3—Zn2xl109.179 (11)
Zn3x—La2—Zn1xvi49.013 (4)Zn2v—Zn3—Zn2xl101.26 (2)
Zn3xi—La2—Zn1xvi89.304 (6)Zn1xxxviii—Zn3—La2xii77.866 (11)
Zn3xii—La2—Zn1xvi49.013 (4)Zn1—Zn3—La2xii77.866 (11)
Zn3xiii—La2—Zn1xvi131.915 (4)Zn2xxxix—Zn3—La2xii79.105 (14)
Zn3xiv—La2—Zn1xvi89.304 (6)Zn2xxvii—Zn3—La2xii79.105 (14)
Zn3xv—La2—Zn1xvi131.915 (4)Zn3iv—Zn3—La2xii60.910 (8)
Mg2—La2—Zn1xvii49.859 (4)Zn2v—Zn3—La2xii129.336 (12)
Mg2ix—La2—Zn1xvii130.141 (4)Zn2xl—Zn3—La2xii129.336 (12)
Zn3x—La2—Zn1xvii89.304 (6)Zn1xxxviii—Zn3—Zn3xxxi57.020 (7)
Zn3xi—La2—Zn1xvii49.013 (4)Zn1—Zn3—Zn3xxxi57.020 (7)
Zn3xii—La2—Zn1xvii131.915 (4)Zn2xxxix—Zn3—Zn3xxxi108.146 (11)
Zn3xiii—La2—Zn1xvii49.013 (4)Zn2xxvii—Zn3—Zn3xxxi108.146 (11)
Zn3xiv—La2—Zn1xvii131.915 (4)Zn3iv—Zn3—Zn3xxxi120.0
Zn3xv—La2—Zn1xvii89.304 (6)Zn2v—Zn3—Zn3xxxi107.796 (10)
Zn1xvi—La2—Zn1xvii135.056 (2)Zn2xl—Zn3—Zn3xxxi107.796 (10)
Mg2—La2—Zn1xviii130.141 (4)La2xii—Zn3—Zn3xxxi59.090 (8)
Mg2ix—La2—Zn1xviii49.859 (4)Zn1xxxviii—Zn3—La1122.512 (8)
Zn3x—La2—Zn1xviii89.304 (6)Zn1—Zn3—La1122.512 (8)
Zn3xi—La2—Zn1xviii49.013 (4)Zn2xxxix—Zn3—La173.582 (11)
Zn3xii—La2—Zn1xviii131.915 (4)Zn2xxvii—Zn3—La173.582 (11)
Zn3xiii—La2—Zn1xviii49.013 (4)Zn3iv—Zn3—La163.955 (9)
Zn3xiv—La2—Zn1xviii131.915 (4)Zn2v—Zn3—La169.926 (12)
Zn3xv—La2—Zn1xviii89.304 (6)Zn2xl—Zn3—La169.926 (12)
Zn1xvi—La2—Zn1xviii82.912 (4)La2xii—Zn3—La1124.865 (15)
Zn1xvii—La2—Zn1xviii80.282 (5)Zn3xxxi—Zn3—La1176.045 (9)
Mg2—La2—Zn1xix49.859 (3)Zn1xxxviii—Zn3—Mg2xii56.69 (10)
Mg2ix—La2—Zn1xix130.141 (3)Zn1—Zn3—Mg2xii99.77 (11)
Zn3x—La2—Zn1xix49.013 (4)Zn2xxxix—Zn3—Mg2xii57.29 (11)
Zn3xi—La2—Zn1xix89.304 (6)Zn2xxvii—Zn3—Mg2xii101.49 (11)
Zn3xii—La2—Zn1xix49.013 (4)Zn3iv—Zn3—Mg2xii63.97 (3)
Zn3xiii—La2—Zn1xix131.915 (4)Zn2v—Zn3—Mg2xii154.82 (13)
Zn3xiv—La2—Zn1xix89.304 (6)Zn2xl—Zn3—Mg2xii103.84 (13)
Zn3xv—La2—Zn1xix131.915 (4)La2xii—Zn3—Mg2xii25.50 (13)
Zn1xvi—La2—Zn1xix80.282 (5)Zn3xxxi—Zn3—Mg2xii62.38 (3)
Zn1xvii—La2—Zn1xix82.912 (4)La1—Zn3—Mg2xii121.06 (4)
Zn1xviii—La2—Zn1xix135.056 (2)Zn1xxxviii—Zn3—Mg2xxxiv99.77 (11)
Mg2i—La3—Mg2180.000 (1)Zn1—Zn3—Mg2xxxiv56.69 (10)
Mg2i—La3—Zn3xx90.0Zn2xxxix—Zn3—Mg2xxxiv101.49 (11)
Mg2—La3—Zn3xx90.0Zn2xxvii—Zn3—Mg2xxxiv57.29 (11)
Mg2i—La3—Zn3xxi90.000 (1)Zn3iv—Zn3—Mg2xxxiv63.97 (3)
Mg2—La3—Zn3xxi90.000 (1)Zn2v—Zn3—Mg2xxxiv103.84 (13)
Zn3xx—La3—Zn3xxi66.116 (16)Zn2xl—Zn3—Mg2xxxiv154.82 (13)
Mg2i—La3—Zn3xxii90.000 (1)La2xii—Zn3—Mg2xxxiv25.50 (13)
Mg2—La3—Zn3xxii90.000 (1)Zn3xxxi—Zn3—Mg2xxxiv62.38 (3)
Zn3xx—La3—Zn3xxii53.884 (16)La1—Zn3—Mg2xxxiv121.06 (4)
Zn3xxi—La3—Zn3xxii120.0Mg2xii—Zn3—Mg2xxxiv51.0 (3)
Mg2i—La3—Zn3viii90.000 (1)La1—Mg1—Mg1iii180.000 (1)
Mg2—La3—Zn3viii90.000 (1)La1—Mg1—Zn2viii105.7 (2)
Zn3xx—La3—Zn3viii120.0Mg1iii—Mg1—Zn2viii74.3 (2)
Zn3xxi—La3—Zn3viii53.884 (16)La1—Mg1—Zn2105.7 (2)
Zn3xxii—La3—Zn3viii173.884 (16)Mg1iii—Mg1—Zn274.3 (2)
Mg2i—La3—Zn3iv90.0Zn2viii—Mg1—Zn2112.99 (19)
Mg2—La3—Zn3iv90.0La1—Mg1—Zn2v105.7 (2)
Zn3xx—La3—Zn3iv173.884 (16)Mg1iii—Mg1—Zn2v74.3 (2)
Zn3xxi—La3—Zn3iv120.0Zn2viii—Mg1—Zn2v112.99 (19)
Zn3xxii—La3—Zn3iv120.0Zn2—Mg1—Zn2v112.99 (19)
Zn3viii—La3—Zn3iv66.116 (16)La1—Mg1—Mg1i0.0
Mg2i—La3—Zn3xxiii90.0Mg1iii—Mg1—Mg1i180.000 (1)
Mg2—La3—Zn3xxiii90.0Zn2viii—Mg1—Mg1i105.7 (2)
Zn3xx—La3—Zn3xxiii120.0Zn2—Mg1—Mg1i105.7 (2)
Zn3xxi—La3—Zn3xxiii173.884 (16)Zn2v—Mg1—Mg1i105.7 (2)
Zn3xxii—La3—Zn3xxiii66.116 (16)La1—Mg1—Zn2iii109.5 (2)
Zn3viii—La3—Zn3xxiii120.0Mg1iii—Mg1—Zn2iii70.5 (2)
Zn3iv—La3—Zn3xxiii53.884 (16)Zn2viii—Mg1—Zn2iii57.05 (8)
Mg2i—La3—Zn2xxiv128.811 (9)Zn2—Mg1—Zn2iii144.9 (5)
Mg2—La3—Zn2xxiv51.189 (9)Zn2v—Mg1—Zn2iii57.05 (8)
Zn3xx—La3—Zn2xxiv49.226 (7)Mg1i—Mg1—Zn2iii109.5 (2)
Zn3xxi—La3—Zn2xxiv49.226 (7)La1—Mg1—Zn2xxvii109.5 (2)
Zn3xxii—La3—Zn2xxiv87.618 (6)Mg1iii—Mg1—Zn2xxvii70.5 (2)
Zn3viii—La3—Zn2xxiv87.618 (6)Zn2viii—Mg1—Zn2xxvii144.9 (5)
Zn3iv—La3—Zn2xxiv133.999 (8)Zn2—Mg1—Zn2xxvii57.05 (8)
Zn3xxiii—La3—Zn2xxiv133.999 (8)Zn2v—Mg1—Zn2xxvii57.05 (8)
Mg2i—La3—Zn2xxv51.189 (9)Mg1i—Mg1—Zn2xxvii109.5 (2)
Mg2—La3—Zn2xxv128.811 (9)Zn2iii—Mg1—Zn2xxvii109.5 (2)
Zn3xx—La3—Zn2xxv49.226 (7)La1—Mg1—Zn2xxxvi109.5 (2)
Zn3xxi—La3—Zn2xxv49.226 (7)Mg1iii—Mg1—Zn2xxxvi70.5 (2)
Zn3xxii—La3—Zn2xxv87.618 (6)Zn2viii—Mg1—Zn2xxxvi57.05 (8)
Zn3viii—La3—Zn2xxv87.618 (6)Zn2—Mg1—Zn2xxxvi57.05 (8)
Zn3iv—La3—Zn2xxv133.999 (8)Zn2v—Mg1—Zn2xxxvi144.9 (5)
Zn3xxiii—La3—Zn2xxv133.999 (8)Mg1i—Mg1—Zn2xxxvi109.5 (2)
Zn2xxiv—La3—Zn2xxv77.622 (17)Zn2iii—Mg1—Zn2xxxvi109.5 (2)
Mg2i—La3—Zn251.189 (9)Zn2xxvii—Mg1—Zn2xxxvi109.5 (2)
Mg2—La3—Zn2128.811 (9)La1—Mg1—La1iii180.0
Zn3xx—La3—Zn2133.999 (8)Mg1iii—Mg1—La1iii0.0
Zn3xxi—La3—Zn287.618 (6)Zn2viii—Mg1—La1iii74.3 (2)
Zn3xxii—La3—Zn2133.999 (8)Zn2—Mg1—La1iii74.3 (2)
Zn3viii—La3—Zn249.226 (7)Zn2v—Mg1—La1iii74.3 (2)
Zn3iv—La3—Zn249.226 (7)Mg1i—Mg1—La1iii180.000 (1)
Zn3xxiii—La3—Zn287.618 (6)Zn2iii—Mg1—La1iii70.5 (2)
Zn2xxiv—La3—Zn2134.140 (6)Zn2xxvii—Mg1—La1iii70.5 (2)
Zn2xxv—La3—Zn284.880 (13)Zn2xxxvi—Mg1—La1iii70.5 (2)
Mg2i—La3—Zn2xxvi128.811 (9)La2—Mg2—Mg2ix0.000 (1)
Mg2—La3—Zn2xxvi51.189 (9)La2—Mg2—Zn1xvii108.40 (15)
Zn3xx—La3—Zn2xxvi87.618 (6)Mg2ix—Mg2—Zn1xvii108.40 (15)
Zn3xxi—La3—Zn2xxvi133.999 (8)La2—Mg2—Zn1xix108.40 (15)
Zn3xxii—La3—Zn2xxvi49.226 (7)Mg2ix—Mg2—Zn1xix108.40 (15)
Zn3viii—La3—Zn2xxvi133.999 (8)Zn1xvii—Mg2—Zn1xix110.52 (15)
Zn3iv—La3—Zn2xxvi87.618 (6)La2—Mg2—Zn1xli108.40 (15)
Zn3xxiii—La3—Zn2xxvi49.226 (7)Mg2ix—Mg2—Zn1xli108.40 (15)
Zn2xxiv—La3—Zn2xxvi84.880 (13)Zn1xvii—Mg2—Zn1xli110.52 (15)
Zn2xxv—La3—Zn2xxvi134.140 (6)Zn1xix—Mg2—Zn1xli110.52 (15)
Zn2—La3—Zn2xxvi134.140 (6)La2—Mg2—Zn2xxiv110.20 (15)
Zn2xxvii—Zn1—Zn2xxviii180.000 (8)Mg2ix—Mg2—Zn2xxiv110.20 (15)
Zn2xxvii—Zn1—Zn2xxix120.187 (13)Zn1xvii—Mg2—Zn2xxiv56.34 (6)
Zn2xxviii—Zn1—Zn2xxix59.813 (13)Zn1xix—Mg2—Zn2xxiv56.34 (6)
Zn2xxvii—Zn1—Zn2v59.813 (13)Zn1xli—Mg2—Zn2xxiv141.4 (3)
Zn2xxviii—Zn1—Zn2v120.187 (13)La2—Mg2—Zn2i110.20 (15)
Zn2xxix—Zn1—Zn2v180.000 (4)Mg2ix—Mg2—Zn2i110.20 (15)
Zn2xxvii—Zn1—Zn3xxx62.489 (14)Zn1xvii—Mg2—Zn2i56.34 (6)
Zn2xxviii—Zn1—Zn3xxx117.511 (14)Zn1xix—Mg2—Zn2i141.4 (3)
Zn2xxix—Zn1—Zn3xxx118.803 (13)Zn1xli—Mg2—Zn2i56.34 (6)
Zn2v—Zn1—Zn3xxx61.197 (13)Zn2xxiv—Mg2—Zn2i108.73 (15)
Zn2xxvii—Zn1—Zn3xxxi117.511 (14)La2—Mg2—Zn2xxvi110.20 (15)
Zn2xxviii—Zn1—Zn3xxxi62.489 (14)Mg2ix—Mg2—Zn2xxvi110.20 (15)
Zn2xxix—Zn1—Zn3xxxi61.197 (13)Zn1xvii—Mg2—Zn2xxvi141.4 (3)
Zn2v—Zn1—Zn3xxxi118.803 (13)Zn1xix—Mg2—Zn2xxvi56.34 (6)
Zn3xxx—Zn1—Zn3xxxi180.0Zn1xli—Mg2—Zn2xxvi56.34 (6)
Zn2xxvii—Zn1—Zn3xxxii118.803 (13)Zn2xxiv—Mg2—Zn2xxvi108.73 (15)
Zn2xxviii—Zn1—Zn3xxxii61.197 (13)Zn2i—Mg2—Zn2xxvi108.73 (15)
Zn2xxix—Zn1—Zn3xxxii62.489 (14)La2—Mg2—La3180.0
Zn2v—Zn1—Zn3xxxii117.511 (14)Mg2ix—Mg2—La3180.000 (1)
Zn3xxx—Zn1—Zn3xxxii65.961 (15)Zn1xvii—Mg2—La371.60 (15)
Zn3xxxi—Zn1—Zn3xxxii114.039 (15)Zn1xix—Mg2—La371.60 (15)
Zn2xxvii—Zn1—Zn361.197 (13)Zn1xli—Mg2—La371.60 (15)
Zn2xxviii—Zn1—Zn3118.803 (13)Zn2xxiv—Mg2—La369.80 (15)
Zn2xxix—Zn1—Zn3117.511 (14)Zn2i—Mg2—La369.80 (15)
Zn2v—Zn1—Zn362.489 (14)Zn2xxvi—Mg2—La369.80 (15)
Zn3xxx—Zn1—Zn3114.039 (15)La2—Mg2—Zn3x64.50 (13)
Zn3xxxi—Zn1—Zn365.961 (15)Mg2ix—Mg2—Zn3x64.50 (13)
Zn3xxxii—Zn1—Zn3180.000 (19)Zn1xvii—Mg2—Zn3x97.03 (3)
Zn2xxvii—Zn1—Mg2xxxiii117.41 (3)Zn1xix—Mg2—Zn3x53.21 (2)
Zn2xxviii—Zn1—Mg2xxxiii62.59 (3)Zn1xli—Mg2—Zn3x152.17 (7)
Zn2xxix—Zn1—Mg2xxxiii117.41 (3)Zn2xxiv—Mg2—Zn3x53.73 (2)
Zn2v—Zn1—Mg2xxxiii62.59 (3)Zn2i—Mg2—Zn3x151.09 (5)
Zn3xxx—Zn1—Mg2xxxiii70.10 (13)Zn2xxvi—Mg2—Zn3x99.33 (2)
Zn3xxxi—Zn1—Mg2xxxiii109.90 (13)La3—Mg2—Zn3x115.50 (13)
Zn3xxxii—Zn1—Mg2xxxiii70.10 (13)La2—Mg2—Zn3xii64.50 (13)
Zn3—Zn1—Mg2xxxiii109.90 (13)Mg2ix—Mg2—Zn3xii64.50 (13)
Zn2xxvii—Zn1—Mg2xxxiv62.59 (3)Zn1xvii—Mg2—Zn3xii152.17 (7)
Zn2xxviii—Zn1—Mg2xxxiv117.41 (3)Zn1xix—Mg2—Zn3xii53.21 (2)
Zn2xxix—Zn1—Mg2xxxiv62.59 (3)Zn1xli—Mg2—Zn3xii97.03 (3)
Zn2v—Zn1—Mg2xxxiv117.41 (3)Zn2xxiv—Mg2—Zn3xii99.33 (2)
Zn3xxx—Zn1—Mg2xxxiv109.90 (13)Zn2i—Mg2—Zn3xii151.09 (5)
Zn3xxxi—Zn1—Mg2xxxiv70.10 (13)Zn2xxvi—Mg2—Zn3xii53.73 (2)
Zn3xxxii—Zn1—Mg2xxxiv109.90 (13)La3—Mg2—Zn3xii115.50 (13)
Zn3—Zn1—Mg2xxxiv70.10 (13)Zn3x—Mg2—Zn3xii55.24 (7)
Mg2xxxiii—Zn1—Mg2xxxiv180.0 (3)La2—Mg2—Zn3xi64.50 (13)
Zn2xxvii—Zn1—La2xii69.099 (10)Mg2ix—Mg2—Zn3xi64.50 (13)
Zn2xxviii—Zn1—La2xii110.901 (10)Zn1xvii—Mg2—Zn3xi53.21 (2)
Zn2xxix—Zn1—La2xii69.099 (10)Zn1xix—Mg2—Zn3xi97.03 (3)
Zn2v—Zn1—La2xii110.901 (10)Zn1xli—Mg2—Zn3xi152.17 (7)
Zn3xxx—Zn1—La2xii126.879 (11)Zn2xxiv—Mg2—Zn3xi53.73 (2)
Zn3xxxi—Zn1—La2xii53.121 (11)Zn2i—Mg2—Zn3xi99.33 (2)
Zn3xxxii—Zn1—La2xii126.879 (11)Zn2xxvi—Mg2—Zn3xi151.09 (5)
Zn3—Zn1—La2xii53.121 (11)La3—Mg2—Zn3xi115.50 (13)
Mg2xxxiii—Zn1—La2xii158.26 (15)Zn3x—Mg2—Zn3xi52.06 (6)
Mg2xxxiv—Zn1—La2xii21.74 (15)Zn3xii—Mg2—Zn3xi102.82 (15)
Zn2xxvii—Zn1—La2xxxv110.901 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z; (iv) x, xy, z; (v) x+y, x, z; (vi) x+y, y, z; (vii) y, x, z; (viii) y, xy, z; (ix) x, y, z+3/2; (x) xy, y+1, z+1; (xi) y, x+y+1, z+1; (xii) x+1, y+1, z+1; (xiii) y, x, z+1; (xiv) x+1, x+y+1, z+1; (xv) xy, x, z+1; (xvi) x, y+1, z+1; (xvii) y, x+y+1, z+1/2; (xviii) y, xy, z+1; (xix) x+1, y+1, z+1/2; (xx) x, y+1, z; (xxi) y, x+1, z; (xxii) x+y+1, y+1, z; (xxiii) x+y+1, x+1, z; (xxiv) x+y, x+1, z+1/2; (xxv) x+y, x+1, z; (xxvi) y+1, xy+1, z+1/2; (xxvii) y, x+y, z; (xxviii) y+1, xy, z; (xxix) xy+1, x, z; (xxx) xy, y, z; (xxxi) x+y+1, y, z; (xxxii) x+1, y, z; (xxxiii) x, y1, z+1/2; (xxxiv) x+1, y+1, z1/2; (xxxv) x, y1, z1; (xxxvi) xy, x, z; (xxxvii) y, x, z; (xxxviii) x+1, y, z+1/2; (xxxix) y, x+y, z+1/2; (xl) x+y, x, z+1/2; (xli) xy, x, z+1/2.

Experimental details

Crystal data
Chemical formulaLa4.27Mg2.89Zn30
Mr2625.71
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)293
a, c (Å)9.4415 (4), 9.1937 (8)
V3)709.75 (7)
Z1
Radiation typeMo Kα
µ (mm1)31.10
Crystal size (mm)0.09 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.089, 0.198
No. of measured, independent and
observed [I > 2σ(I)] reflections
3083, 342, 299
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.048, 1.12
No. of reflections342
No. of parameters31
Δρmax, Δρmin (e Å3)0.58, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds