Buy article online - an online subscription or single-article purchase is required to access this article.
Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π–π, C—H
π, or ion–π interactions. The organic salt (TrOH·iBA) formed by a facile proton-transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate, C
4H
12N
+·C
7H
5O
2−, has been investigated by X-ray crystallography, with complementary quantum-chemical and statistical-database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice-packing phenomena. The crystal structure deduced from low-temperature diffraction measurements displays extensive hydrogen-bonding networks, yet shows little evidence of the aryl forces (
viz. π–π, C—H
π, and ion–π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton-donating and proton-accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven-membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen-bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor–acceptor distances of any troponoid-based complex, combined with unambiguous signatures of enhanced proton-delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.
Supporting information
CCDC reference: 1494859
Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CIFTAB (Sheldrick, 2015b).
Isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate
top
Crystal data top
C4H12N+·C7H5O2− | F(000) = 424 |
Mr = 195.25 | Dx = 1.163 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 6.5770 (2) Å | Cell parameters from 26705 reflections |
b = 9.5518 (3) Å | θ = 2.5–68.0° |
c = 17.8425 (13) Å | µ = 0.64 mm−1 |
β = 96.026 (5)° | T = 93 K |
V = 1114.71 (10) Å3 | Needle, colorless |
Z = 4 | 0.40 × 0.04 × 0.04 mm |
Data collection top
Rigaku Saturn 944+ CCD diffractometer | 2027 independent reflections |
Radiation source: Rotating Anode | 1761 reflections with I > 2σ(I) |
Detector resolution: 22.2 pixels mm-1 | Rint = 0.079 |
ω scans | θmax = 68.1°, θmin = 5.0° |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | h = −7→7 |
Tmin = 0.773, Tmax = 0.975 | k = −11→11 |
34893 measured reflections | l = −21→21 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1575P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2027 reflections | Δρmax = 0.14 e Å−3 |
141 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | |
Special details top
Experimental. Rigaku MicroMax-007HF, Rigaku Saturn 944+ CCD |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F2, conventional R-factors R are based
on F, with F set to zero for negative F2. The threshold expression of
F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger. The hydrogen atoms were first found in the difference map, then generated
geometrically and refined as riding atoms with C-H distances = 0.95- 0.99 Å and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H)
= 1.5 times Ueq(C) for CH3 groups. The only exceptions are H1a, H1b, and
H1c, which are freely refining. These hydrogen atoms are also a part of
refined hydrogen bonds which are reported in the RES file appended to this
CIF. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.42316 (13) | 0.39405 (9) | 0.57684 (5) | 0.0346 (2) | |
O2 | 0.08069 (12) | 0.47078 (8) | 0.62236 (4) | 0.0280 (2) | |
N1 | 0.78054 (16) | 0.39758 (10) | 0.51132 (6) | 0.0265 (2) | |
H1A | 0.868 (2) | 0.4389 (15) | 0.5499 (9) | 0.043 (4)* | |
H1B | 0.649 (3) | 0.3858 (16) | 0.5340 (9) | 0.054 (5)* | |
H1C | 0.763 (2) | 0.4608 (17) | 0.4696 (9) | 0.050 (4)* | |
C1 | 0.37445 (17) | 0.33118 (11) | 0.63515 (6) | 0.0262 (3) | |
C2 | 0.51098 (18) | 0.23298 (12) | 0.67252 (7) | 0.0312 (3) | |
H2 | 0.6373 | 0.2246 | 0.6515 | 0.037* | |
C3 | 0.4945 (2) | 0.14685 (12) | 0.73408 (7) | 0.0334 (3) | |
H3 | 0.6116 | 0.0914 | 0.7490 | 0.040* | |
C4 | 0.3332 (2) | 0.12959 (12) | 0.77701 (7) | 0.0342 (3) | |
H4 | 0.3497 | 0.0611 | 0.8158 | 0.041* | |
C5 | 0.1501 (2) | 0.20208 (13) | 0.76920 (7) | 0.0340 (3) | |
H5 | 0.0553 | 0.1750 | 0.8032 | 0.041* | |
C6 | 0.08340 (19) | 0.30809 (12) | 0.71946 (7) | 0.0302 (3) | |
H6 | −0.0473 | 0.3445 | 0.7270 | 0.036* | |
C7 | 0.17364 (17) | 0.37196 (11) | 0.65968 (6) | 0.0245 (3) | |
C8 | 0.87004 (18) | 0.26312 (12) | 0.48895 (7) | 0.0285 (3) | |
H8A | 0.8741 | 0.1968 | 0.5317 | 0.034* | |
H8B | 1.0125 | 0.2797 | 0.4780 | 0.034* | |
C9 | 0.75123 (19) | 0.19696 (12) | 0.42037 (7) | 0.0315 (3) | |
H9 | 0.7539 | 0.2628 | 0.3769 | 0.038* | |
C10 | 0.8596 (2) | 0.06189 (14) | 0.40150 (8) | 0.0430 (4) | |
H10A | 1.0035 | 0.0820 | 0.3962 | 0.065* | |
H10B | 0.7939 | 0.0233 | 0.3541 | 0.065* | |
H10C | 0.8511 | −0.0063 | 0.4421 | 0.065* | |
C11 | 0.5289 (2) | 0.16975 (14) | 0.43255 (8) | 0.0415 (3) | |
H11A | 0.5232 | 0.1124 | 0.4778 | 0.062* | |
H11B | 0.4609 | 0.1202 | 0.3888 | 0.062* | |
H11C | 0.4595 | 0.2591 | 0.4389 | 0.062* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0344 (5) | 0.0353 (5) | 0.0359 (5) | 0.0059 (3) | 0.0120 (4) | 0.0122 (4) |
O2 | 0.0320 (5) | 0.0250 (4) | 0.0268 (4) | 0.0036 (3) | 0.0027 (3) | 0.0004 (3) |
N1 | 0.0293 (5) | 0.0231 (5) | 0.0273 (6) | 0.0017 (4) | 0.0033 (4) | 0.0022 (4) |
C1 | 0.0297 (6) | 0.0233 (5) | 0.0257 (6) | −0.0021 (4) | 0.0028 (5) | 0.0003 (5) |
C2 | 0.0297 (6) | 0.0297 (6) | 0.0342 (7) | 0.0017 (5) | 0.0024 (5) | 0.0018 (5) |
C3 | 0.0391 (7) | 0.0273 (6) | 0.0322 (7) | 0.0030 (5) | −0.0047 (5) | 0.0024 (5) |
C4 | 0.0506 (8) | 0.0261 (6) | 0.0250 (7) | −0.0012 (5) | −0.0001 (6) | 0.0041 (5) |
C5 | 0.0474 (8) | 0.0302 (6) | 0.0256 (6) | −0.0048 (5) | 0.0095 (5) | 0.0011 (5) |
C6 | 0.0334 (6) | 0.0294 (6) | 0.0286 (7) | −0.0002 (5) | 0.0066 (5) | −0.0006 (5) |
C7 | 0.0302 (6) | 0.0204 (5) | 0.0224 (6) | −0.0015 (4) | 0.0006 (4) | −0.0035 (4) |
C8 | 0.0315 (6) | 0.0240 (6) | 0.0296 (6) | 0.0032 (5) | 0.0014 (5) | 0.0002 (5) |
C9 | 0.0384 (7) | 0.0272 (6) | 0.0279 (7) | −0.0015 (5) | −0.0005 (5) | 0.0026 (5) |
C10 | 0.0547 (9) | 0.0335 (7) | 0.0395 (8) | 0.0012 (6) | −0.0010 (6) | −0.0079 (6) |
C11 | 0.0402 (7) | 0.0355 (7) | 0.0471 (8) | −0.0080 (5) | −0.0032 (6) | 0.0050 (6) |
Geometric parameters (Å, º) top
O1—C1 | 1.2710 (14) | C5—H5 | 0.9500 |
O2—C7 | 1.2737 (13) | C6—C7 | 1.4125 (17) |
N1—C8 | 1.4848 (14) | C6—H6 | 0.9500 |
N1—H1A | 0.938 (16) | C8—C9 | 1.5187 (16) |
N1—H1B | 1.001 (17) | C8—H8A | 0.9900 |
N1—H1C | 0.956 (17) | C8—H8B | 0.9900 |
C1—C2 | 1.4161 (16) | C9—C11 | 1.5231 (18) |
C1—C7 | 1.4863 (16) | C9—C10 | 1.5287 (18) |
C2—C3 | 1.3856 (18) | C9—H9 | 1.0000 |
C2—H2 | 0.9500 | C10—H10A | 0.9800 |
C3—C4 | 1.3822 (19) | C10—H10B | 0.9800 |
C3—H3 | 0.9500 | C10—H10C | 0.9800 |
C4—C5 | 1.3835 (18) | C11—H11A | 0.9800 |
C4—H4 | 0.9500 | C11—H11B | 0.9800 |
C5—C6 | 1.3868 (17) | C11—H11C | 0.9800 |
| | | |
C8—N1—H1A | 109.3 (9) | C6—C7—C1 | 124.47 (10) |
C8—N1—H1B | 113.3 (9) | N1—C8—C9 | 113.05 (9) |
H1A—N1—H1B | 104.2 (13) | N1—C8—H8A | 109.0 |
C8—N1—H1C | 110.8 (10) | C9—C8—H8A | 109.0 |
H1A—N1—H1C | 108.7 (13) | N1—C8—H8B | 109.0 |
H1B—N1—H1C | 110.3 (13) | C9—C8—H8B | 109.0 |
O1—C1—C2 | 119.77 (11) | H8A—C8—H8B | 107.8 |
O1—C1—C7 | 115.17 (10) | C8—C9—C11 | 112.12 (11) |
C2—C1—C7 | 125.04 (10) | C8—C9—C10 | 108.44 (10) |
C3—C2—C1 | 131.92 (12) | C11—C9—C10 | 111.37 (11) |
C3—C2—H2 | 114.0 | C8—C9—H9 | 108.3 |
C1—C2—H2 | 114.0 | C11—C9—H9 | 108.3 |
C4—C3—C2 | 129.69 (12) | C10—C9—H9 | 108.3 |
C4—C3—H3 | 115.2 | C9—C10—H10A | 109.5 |
C2—C3—H3 | 115.2 | C9—C10—H10B | 109.5 |
C3—C4—C5 | 126.53 (12) | H10A—C10—H10B | 109.5 |
C3—C4—H4 | 116.7 | C9—C10—H10C | 109.5 |
C5—C4—H4 | 116.7 | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 130.04 (12) | H10B—C10—H10C | 109.5 |
C4—C5—H5 | 115.0 | C9—C11—H11A | 109.5 |
C6—C5—H5 | 115.0 | C9—C11—H11B | 109.5 |
C5—C6—C7 | 131.98 (12) | H11A—C11—H11B | 109.5 |
C5—C6—H6 | 114.0 | C9—C11—H11C | 109.5 |
C7—C6—H6 | 114.0 | H11A—C11—H11C | 109.5 |
O2—C7—C6 | 119.88 (11) | H11B—C11—H11C | 109.5 |
O2—C7—C1 | 115.65 (10) | | |
| | | |
O1—C1—C2—C3 | −177.01 (12) | C5—C6—C7—C1 | 1.8 (2) |
C7—C1—C2—C3 | 4.6 (2) | O1—C1—C7—O2 | −4.22 (14) |
C1—C2—C3—C4 | 1.5 (2) | C2—C1—C7—O2 | 174.21 (10) |
C2—C3—C4—C5 | −3.1 (2) | O1—C1—C7—C6 | 175.13 (10) |
C3—C4—C5—C6 | −1.2 (2) | C2—C1—C7—C6 | −6.45 (18) |
C4—C5—C6—C7 | 3.0 (2) | N1—C8—C9—C11 | −57.99 (13) |
C5—C6—C7—O2 | −178.90 (12) | N1—C8—C9—C10 | 178.63 (10) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.938 (16) | 1.826 (16) | 2.7368 (13) | 163.0 (14) |
N1—H1B···O1 | 1.001 (17) | 1.740 (18) | 2.7330 (13) | 170.7 (14) |
N1—H1C···O1ii | 0.956 (17) | 1.974 (17) | 2.7907 (13) | 142.1 (14) |
N1—H1C···O2ii | 0.956 (17) | 2.128 (17) | 2.9258 (14) | 140.0 (13) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1. |
Hydrogen-bond parameters (°, Å) for TrOH.iBA topThe distances (in Å) and angles (in °) characterizing noncovalent
interactions are tabulated, with results emerging from crystallographic
analyses being contrasted with those predicted from various quantum-chemical
calculations. 12 parameters are compared, representing three distances and
one angle for each N1—H1i···Oj linkage (i = a,
b, or c, and j = 1 or 2), as well as their corresponding
average values, <N1—H1i···Oj>, in the case of fully relaxed
quad complexes (with the two contributing structural parameters also listed).
Primes and double primes affixed to labels (cf. Fig. 2) serve to
distinguish distinct tropolone anions to which the amine H atoms are bound. |
D—H···A linkage | X-ray diffraction experiment | M06-2X/apVDZ | | M06-2X/apVDZ (CP) | | HSEH1PBE/pVDZ (PBC) |
| | Fully relaxed | 1 Constrained | Fully relaxed | 1 Constrained | |
(a) D—H distances (Å) | | | | | | |
N1—H1a···O2i | 0.938 (16) | | | | | 1.0605 |
N1—H1b···O1 | 1.001 (17) | 1.0416, 1.0542 | 1.0461 | 1.0407, 1.0477 | 1.0441 | 1.0503 |
<N1—H1b···O1> | | (1.0479) | | (1.0442) | | |
N1—H1c···O1ii | 0.956 (17) | 1.0684, 1.0820 | 1.0707 | 1.0717, 1.0821 | 1.0728 | 1.0491 |
<N1—H1c···O1ii> | | (1.0752) | | (1.0769) | | |
N1—H1c···O2ii | 0.956 (17) | 1.0684, 1.0820 | 1.0707 | 1.0717, 1.0821 | 1.0728 | 1.0491 |
<N1—H1c···O2ii> | | (1.0752) | | (1.0769) | | |
| | | | | | |
(b) H···A distances (Å) | | | | | | |
N1—H1a···O2i | 1.826 (16) | | | | | 1.9170 |
N1—H1b···O1 | 1.740 (18) | 1.6386, 1.7621 | 1.7052 | 1.6984, 1.7799 | 1.7267 | 1.7210 |
<N1—H1b···O1> | | (1.7004) | | (1.7392) | | |
N1—H1c···O1ii | 1.974 (17) | 1.6063, 2.2695 | 1.6044 | 1.5923, 2.2429 | 1.5992 | 1.8576 |
<N1—H1c···O1ii> | | (1.9379) | | (1.9176) | | |
N1—H1c···O2ii | 2.128 (17) | 1.5525, 2.2130 | 2.2096 | 1.5608, 2.2253 | 2.2312 | 2.1057 |
<N1—H1c···O2ii> | | (1.8828) | | (1.8930) | | |
N1—H1c···O2ii | 2.128 (17) | 1.5525, 2.2130 | 2.2096 | 1.5608, 2.2253 | 2.2312 | 2.1057 |
<N1—H1c···O2ii> | | (1.8828) | | (1.8930) | | |
| | | | | | |
(c) D···A distances (Å) | | | | | | |
N1—H1a···O2i | 2.7368 (13) | | | | | 2.9405 |
N1—H1b···O1 | 2.7330 (13) | 2.6730, 2.7862 | 2.7341 | 2.6926, 2.8024 | 2.7482 | 2.7621 |
<N1—H1b···O1> | | (2.7296) | | (2.7475) | | |
N1—H1c···O1ii | 2.7907 (13) | 2.6474, 2.9194 | 2.6604 | 2.6481, 2.8978 | 2.6628 | 2.7985 |
<N1—H1c···O1ii> | | (2.7834) | | (2.7729) | | |
N1—H1c···O2ii | 2.9258 (14) | 2.5956, 2.7459 | 2.7157 | 2.5967, 2.7209 | 2.7069 | 2.9076 |
<N1—H1c···O2ii> | | (2.6708) | | (2.6588) | | |
| | | | | | |
(d) D—H···A angles (°) | | | | | | |
N1—H1a···O2i | 163.0 (14) | | | | | 161.25 |
N1—H1b···O1 | 170.7 (14) | 165.77, 166.71 | 166.79 | 156.66, 166.49 | 164.88 | 170.40 |
<N1—H1b···O1> | | (166.24) | | (161.58) | | |
N1—H1c···O1ii | 142.1 (14) | 116.63, 163.25 | 167.71 | 116.89, 167.21 | 170.32 | 147.31 |
<N1—H1c···O1ii> | | (139.94) | | (142.05) | | |
N1—H1c···O2ii | 140.0 (13) | 108.51, 159.96 | 106.53 | 105.85, 158.18 | 104.49 | 131.36 |
<N1—H1c···O2ii> | | (134.23) | | (132.02) | | |
Symmetry transformations used to generate equivalent atoms:
(') x+1, y, z;
('') -x+1, -y+1, -z+1. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.