Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In this study, the title Shiff base, C22H23N3S, was synthesized and examined by 1H and 13C NMR spectroscopy and X-ray analysis techniques. The crystal structure is stabilized by classical inter­molecular N—H...N hydrogen bonding. The crystal packing is additionally stabilized by C—H...π inter­actions. It has been observed that the compound can exist in two different tautomeric forms, and experimental and theoretical studies were carried out on these tautomeric structures. For this purpose, the gas phase of the compound was optimized by density functional theory (DFT) using the B3LYP/6-311G(d) method, which allowed for the structural parameters (bond angles, bond lengths and dihedral angles), as well as the frontier mol­ecular orbitals (FMO), to be examined. In addition, stable structures of the two tautomers in the solid phase were obtained using Quantum ESPRESSO under periodic boundary conditions (PBC).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013475/fn3273sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013475/fn3273Isup2.hkl
Contains datablock I

CCDC reference: 1830817

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-(3-Methyl-3-phenylcyclobutyl)-2-[2-(3-methylbenzylidene)hydrazinyl]thiazole top
Crystal data top
C22H23N3SF(000) = 1536
Mr = 361.49Dx = 1.225 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.135 (6) ÅCell parameters from 9110 reflections
b = 6.826 (2) Åθ = 2.3–27.5°
c = 29.027 (9) ŵ = 0.18 mm1
β = 100.759 (14)°T = 296 K
V = 3920 (2) Å3Yellow, square
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.030
phi and ω scansθmax = 28.5°, θmin = 2.1°
37086 measured reflectionsh = 2623
4808 independent reflectionsk = 89
3768 reflections with I > 2σ(I)l = 3838
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 3.2259P]
where P = (Fo2 + 2Fc2)/3
4808 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58902 (2)0.56865 (8)0.48351 (2)0.05323 (16)
N10.70748 (7)0.4780 (2)0.46802 (5)0.0422 (3)
N30.60750 (7)0.2186 (2)0.53558 (5)0.0476 (4)
N20.65668 (8)0.2373 (2)0.50859 (6)0.0487 (4)
C120.69121 (8)0.6635 (3)0.44866 (6)0.0424 (4)
C140.65816 (8)0.4144 (3)0.48732 (6)0.0424 (4)
C70.74959 (9)0.9158 (3)0.35970 (6)0.0455 (4)
C100.73941 (9)0.7662 (3)0.42417 (6)0.0438 (4)
H100.7844220.7684430.4440970.053*
C90.72094 (10)0.9717 (3)0.40406 (6)0.0460 (4)
H9A0.7455841.0765400.4223120.055*
H9B0.6727480.9980040.3977670.055*
C10.70844 (9)0.9818 (3)0.31335 (6)0.0506 (5)
C150.59881 (9)0.0498 (3)0.55155 (7)0.0513 (4)
H150.6230280.0558600.5430120.062*
C130.63081 (9)0.7336 (3)0.45386 (6)0.0498 (4)
H130.6136740.8549470.4429500.060*
C110.74476 (10)0.6988 (3)0.37375 (6)0.0512 (4)
H11A0.7851190.6232830.3722900.061*
H11B0.7046280.6327210.3572700.061*
C160.55110 (9)0.0188 (3)0.58330 (7)0.0519 (5)
C170.53565 (9)0.1666 (3)0.61245 (7)0.0561 (5)
H170.5538880.2908050.6105520.067*
C80.82230 (10)0.9849 (4)0.36365 (7)0.0631 (6)
H8A0.8232141.1252940.3618290.095*
H8B0.8411660.9300280.3384920.095*
H8C0.8483840.9430570.3931220.095*
C20.68400 (11)1.1711 (4)0.30784 (8)0.0654 (6)
H2A0.6936761.2587800.3327080.079*
C180.49354 (10)0.1324 (4)0.64436 (7)0.0677 (6)
C60.69462 (12)0.8568 (4)0.27516 (7)0.0684 (6)
H60.7114980.7296650.2777920.082*
C220.52187 (12)0.1646 (4)0.58526 (9)0.0716 (6)
H220.5314900.2650860.5658860.086*
C200.46580 (11)0.0527 (5)0.64543 (9)0.0822 (8)
H200.4377620.0789270.6667630.099*
C50.65620 (15)0.9183 (6)0.23331 (8)0.0923 (9)
H50.6474960.8323940.2080310.111*
C210.47859 (13)0.1969 (5)0.61603 (11)0.0870 (8)
H210.4579490.3184780.6166940.104*
C30.64509 (13)1.2321 (4)0.26558 (10)0.0848 (8)
H30.6286901.3596690.2622850.102*
C40.63096 (14)1.1029 (6)0.22863 (10)0.0963 (10)
H40.6041471.1421750.2005160.116*
C190.47894 (17)0.2921 (6)0.67679 (10)0.1083 (11)
H19A0.5160640.3826440.6822820.162*
H19B0.4729990.2356280.7060340.162*
H19C0.4384430.3599620.6627350.162*
H20.6956 (12)0.156 (3)0.5147 (7)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0409 (2)0.0575 (3)0.0635 (3)0.0010 (2)0.0154 (2)0.0054 (2)
N10.0404 (7)0.0455 (8)0.0417 (7)0.0034 (6)0.0100 (6)0.0008 (6)
N30.0419 (8)0.0524 (9)0.0505 (8)0.0037 (7)0.0143 (6)0.0032 (7)
N20.0448 (8)0.0480 (9)0.0571 (9)0.0021 (7)0.0193 (7)0.0046 (7)
C120.0415 (9)0.0480 (10)0.0361 (8)0.0021 (7)0.0031 (7)0.0003 (7)
C140.0396 (8)0.0483 (10)0.0392 (8)0.0045 (7)0.0071 (7)0.0052 (7)
C70.0447 (9)0.0534 (10)0.0383 (8)0.0092 (8)0.0076 (7)0.0015 (8)
C100.0416 (9)0.0495 (10)0.0394 (8)0.0040 (7)0.0055 (7)0.0006 (7)
C90.0546 (10)0.0447 (10)0.0390 (9)0.0066 (8)0.0089 (7)0.0015 (7)
C10.0434 (9)0.0692 (13)0.0396 (9)0.0152 (9)0.0091 (7)0.0047 (8)
C150.0450 (10)0.0510 (11)0.0594 (11)0.0044 (8)0.0138 (8)0.0019 (9)
C130.0464 (10)0.0518 (11)0.0508 (10)0.0014 (8)0.0077 (8)0.0075 (8)
C110.0565 (11)0.0508 (11)0.0482 (10)0.0031 (8)0.0151 (8)0.0037 (8)
C160.0379 (9)0.0629 (12)0.0550 (11)0.0043 (8)0.0086 (8)0.0107 (9)
C170.0390 (9)0.0749 (14)0.0538 (11)0.0008 (9)0.0072 (8)0.0135 (10)
C80.0488 (11)0.0813 (15)0.0575 (12)0.0114 (10)0.0058 (9)0.0056 (11)
C20.0671 (13)0.0688 (14)0.0587 (12)0.0125 (11)0.0076 (10)0.0155 (11)
C180.0431 (10)0.1099 (19)0.0509 (11)0.0090 (12)0.0105 (9)0.0191 (12)
C60.0653 (13)0.0923 (17)0.0469 (11)0.0110 (12)0.0087 (10)0.0096 (11)
C220.0629 (13)0.0709 (15)0.0829 (16)0.0151 (11)0.0190 (12)0.0136 (12)
C200.0481 (12)0.132 (2)0.0695 (15)0.0040 (14)0.0182 (11)0.0417 (16)
C50.0819 (18)0.145 (3)0.0450 (12)0.0263 (19)0.0007 (12)0.0066 (16)
C210.0658 (15)0.099 (2)0.099 (2)0.0225 (14)0.0208 (14)0.0323 (17)
C30.0689 (15)0.0942 (19)0.0875 (18)0.0076 (14)0.0053 (13)0.0429 (16)
C40.0670 (16)0.153 (3)0.0607 (15)0.0277 (19)0.0087 (12)0.0318 (18)
C190.100 (2)0.156 (3)0.0807 (18)0.020 (2)0.0474 (17)0.006 (2)
Geometric parameters (Å, º) top
S1—C131.728 (2)C16—C171.389 (3)
S1—C141.7325 (19)C16—C221.389 (3)
N1—C141.302 (2)C17—C181.387 (3)
N1—C121.400 (2)C17—H170.9300
N3—C151.266 (2)C8—H8A0.9600
N3—N21.378 (2)C8—H8B0.9600
N2—C141.361 (2)C8—H8C0.9600
N2—H20.95 (2)C2—C31.390 (3)
C12—C131.341 (3)C2—H2A0.9300
C12—C101.482 (2)C18—C201.384 (4)
C7—C11.511 (3)C18—C191.505 (4)
C7—C81.522 (3)C6—C51.378 (4)
C7—C111.544 (3)C6—H60.9300
C7—C91.554 (2)C22—C211.377 (3)
C10—C91.539 (3)C22—H220.9300
C10—C111.557 (2)C20—C211.359 (4)
C10—H100.9800C20—H200.9300
C9—H9A0.9700C5—C41.356 (5)
C9—H9B0.9700C5—H50.9300
C1—C21.381 (3)C21—H210.9300
C1—C61.385 (3)C3—C41.376 (4)
C15—C161.466 (3)C3—H30.9300
C15—H150.9300C4—H40.9300
C13—H130.9300C19—H19A0.9600
C11—H11A0.9700C19—H19B0.9600
C11—H11B0.9700C19—H19C0.9600
C13—S1—C1488.15 (9)C17—C16—C22119.00 (19)
C14—N1—C12109.52 (15)C17—C16—C15121.74 (18)
C15—N3—N2117.07 (16)C22—C16—C15119.2 (2)
C14—N2—N3114.77 (15)C18—C17—C16121.3 (2)
C14—N2—H2121.0 (13)C18—C17—H17119.4
N3—N2—H2119.8 (13)C16—C17—H17119.4
C13—C12—N1115.25 (16)C7—C8—H8A109.5
C13—C12—C10125.06 (17)C7—C8—H8B109.5
N1—C12—C10119.68 (15)H8A—C8—H8B109.5
N1—C14—N2125.06 (16)C7—C8—H8C109.5
N1—C14—S1115.99 (14)H8A—C8—H8C109.5
N2—C14—S1118.93 (13)H8B—C8—H8C109.5
C1—C7—C8109.54 (15)C1—C2—C3120.8 (2)
C1—C7—C11118.03 (15)C1—C2—H2A119.6
C8—C7—C11112.62 (17)C3—C2—H2A119.6
C1—C7—C9115.98 (16)C20—C18—C17117.9 (2)
C8—C7—C9111.24 (15)C20—C18—C19121.4 (2)
C11—C7—C988.01 (13)C17—C18—C19120.7 (3)
C12—C10—C9118.65 (15)C5—C6—C1120.9 (3)
C12—C10—C11118.54 (15)C5—C6—H6119.5
C9—C10—C1188.10 (13)C1—C6—H6119.5
C12—C10—H10109.9C21—C22—C16119.7 (3)
C9—C10—H10109.9C21—C22—H22120.2
C11—C10—H10109.9C16—C22—H22120.2
C10—C9—C789.40 (14)C21—C20—C18121.5 (2)
C10—C9—H9A113.7C21—C20—H20119.2
C7—C9—H9A113.7C18—C20—H20119.2
C10—C9—H9B113.7C4—C5—C6120.6 (3)
C7—C9—H9B113.7C4—C5—H5119.7
H9A—C9—H9B111.0C6—C5—H5119.7
C2—C1—C6118.0 (2)C20—C21—C22120.6 (3)
C2—C1—C7120.40 (18)C20—C21—H21119.7
C6—C1—C7121.6 (2)C22—C21—H21119.7
N3—C15—C16120.89 (18)C4—C3—C2119.7 (3)
N3—C15—H15119.6C4—C3—H3120.1
C16—C15—H15119.6C2—C3—H3120.1
C12—C13—S1111.09 (15)C5—C4—C3119.9 (3)
C12—C13—H13124.5C5—C4—H4120.1
S1—C13—H13124.5C3—C4—H4120.1
C7—C11—C1089.07 (13)C18—C19—H19A109.5
C7—C11—H11A113.8C18—C19—H19B109.5
C10—C11—H11A113.8H19A—C19—H19B109.5
C7—C11—H11B113.8C18—C19—H19C109.5
C10—C11—H11B113.8H19A—C19—H19C109.5
H11A—C11—H11B111.0H19B—C19—H19C109.5
C15—N3—N2—C14171.86 (16)C14—S1—C13—C120.56 (15)
C14—N1—C12—C130.0 (2)C1—C7—C11—C10135.92 (16)
C14—N1—C12—C10179.40 (14)C8—C7—C11—C1094.86 (17)
C12—N1—C14—N2178.65 (16)C9—C7—C11—C1017.36 (13)
C12—N1—C14—S10.47 (18)C12—C10—C11—C7139.41 (16)
N3—N2—C14—N1165.93 (16)C9—C10—C11—C717.54 (14)
N3—N2—C14—S115.9 (2)N3—C15—C16—C1727.8 (3)
C13—S1—C14—N10.61 (14)N3—C15—C16—C22154.0 (2)
C13—S1—C14—N2178.91 (15)C22—C16—C17—C182.1 (3)
C13—C12—C10—C91.9 (3)C15—C16—C17—C18176.13 (18)
N1—C12—C10—C9178.81 (14)C6—C1—C2—C31.8 (3)
C13—C12—C10—C11102.9 (2)C7—C1—C2—C3178.87 (19)
N1—C12—C10—C1176.5 (2)C16—C17—C18—C201.7 (3)
C12—C10—C9—C7139.20 (15)C16—C17—C18—C19178.1 (2)
C11—C10—C9—C717.43 (13)C2—C1—C6—C51.6 (3)
C1—C7—C9—C10137.98 (16)C7—C1—C6—C5179.1 (2)
C8—C7—C9—C1095.97 (17)C17—C16—C22—C210.3 (3)
C11—C7—C9—C1017.58 (13)C15—C16—C22—C21178.0 (2)
C8—C7—C1—C280.5 (2)C17—C18—C20—C210.6 (3)
C11—C7—C1—C2148.82 (18)C19—C18—C20—C21179.7 (3)
C9—C7—C1—C246.4 (2)C1—C6—C5—C40.1 (4)
C8—C7—C1—C698.8 (2)C18—C20—C21—C222.4 (4)
C11—C7—C1—C631.8 (3)C16—C22—C21—C201.9 (4)
C9—C7—C1—C6134.30 (19)C1—C2—C3—C40.3 (4)
N2—N3—C15—C16175.61 (16)C6—C5—C4—C31.6 (4)
N1—C12—C13—S10.4 (2)C2—C3—C4—C51.4 (4)
C10—C12—C13—S1178.91 (13)
Calculated and experimental geometric parameters (Å, °)of the crystal in T1 form top
Experimental (T1 form)Experimental (T2 form)Gaussian-DFT (B3LYP/6-311G(d) (T1 form)Quantum ESPRESSO (T1 form)
Bond lengths
C1—C21.381 (3)1.383 (4)1.3991.391
C1—C61.385 (3)1.384 (4)1.3991.388
C6—C51.378 (4)1.384 (4)1.3931.386
C12—C131.341 (3)1.339 (3)1.3601.361
S1—C141.732 (2)1.734 (2)1.7561.730
S1—C131.728 (2)1.728 (2)1.7521.717
N1—C121.399 (2)1.395 (2)1.3861.379
N1—C141.302 (2)1.298 (3)1.2981.312
N2—C141.360 (2)1.362 (3)1.3721.345
C10—C91.538 (3)1.537 (3)1.5491.527
C10—C111.557 (3)1.558 (3)1.5581.546
C12—C101.482 (3)1.483 (3)1.4951.472
C7—C91.554 (3)1.555 (3)1.5651.543
C7—C111.544 (3)1.542 (3)1.5641.538
N2—N31.379 (2)1.387 (3)1.3441.335
N3—C151.266 (3)1.266 (3)1.2841.285
Bond Angles
C15—N3—N2117.1 (2)116.6 (2)118.4118.11
C14—N2—N3114.8 (1)114.1 (2)121.4115.90
N1—C14—N2125.1 (2)125.1 (2)122.3125.85
N1—C14—S1116.0 (1)115.5 (1)116.0115.33
C13—S1—C1488.14 (9)88.2 (1)87.388.35
C2—C1—C6118.0 (2)118.2 (2)118.1118.82
C11—C7—C988.0 (1)88.0 (2)87.888.33
C10—C9—C789.4 (1)89.4 (2)89.289.0
Torsion angles
N1—C12—C10—C9-178.8 (2)-178.8 (2)174.2179.83
N1—C12—C13—S1-0.4 (2)-0.4 (2)-0.10.79
N3—C15—C16—C17-27.8 (3)-27.9 (3)0.127.17
C12—N1—C14—S10.5 (2)0.4 (2)-0.2-1.59
C14—S1—C13—C120.6 (1)0.5 (2)-0.1-1.35
Hydrogen-bond geometry for the crystal in T1 form (Å, °). Cg3 and Cg4 are the centroids of the ??? and ??? rings, repsectively. top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.95 (2)2.13 (2)3.067 (2)169.6 (18)
C4—H4···Cg4ii0.932.993.797 (3)146
C10—H10···Cg3iii0.982.823.605 (2)137
C13—H13···Cg4iv0.932.913.657 (2)139
Symmetry codes: (i) -x+3/2, -y+1/2, -z+1; (ii) x, -y+1, z-1/2; (iii) -x+3/2, -y+3/2, -z+1; (iv) -x+1, -y+1, -z+1.
Energies of the T1 and T2 forms of the title compound in Hartrees, and energy differences, activation energies in kJ mol-1 top
T1 (a.u.)T2 (a.u.)TS (a.u.)Δ E (kJ mol-1)Ea(f) (kJ mol-1)Ea(r) (kJ mol-1)
-1414.826434-1414.808633-1414.747792-46.28158.19204.47
Comparison of the experimental and optimized unit-cell parameters calculated by QE-VC-Relax method of T1 form of crystal top
ParameterExperimentalQE-VC-Relax/DFT
Space groupC2/cC2/c
a (Å)20.135 (6)19.181
b (Å)6.826 (2)6.874
c (Å)29.027 (9)28.273
α (°)9090
β (°)100.759 (14)103.237
γ (°)9090
Z44
V3)3920 (2)3629
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds