Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619004327/fn3303sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229619004327/fn3303Isup2.hkl |
CCDC reference: 1906642
Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) and WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) and WinGX (Farrugia, 2012); molecular graphics: DIMOND (Brandenburg, 2006).
NaZnAl(PO4)2 | F(000) = 592 |
Mr = 305.28 | Dx = 2.947 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.5199 (3) Å | Cell parameters from 4763 reflections |
b = 8.6700 (2) Å | θ = 3.4–32.0° |
c = 9.5471 (3) Å | µ = 4.24 mm−1 |
β = 119.158 (5)° | T = 293 K |
V = 688.14 (5) Å3 | Plate, colorless |
Z = 4 | 0.11 × 0.08 × 0.07 mm |
Agilent Xcalibur Sapphire3 diffractometer | 2010 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1805 reflections with I > 2σ(I) |
Detector resolution: 16.0630 pixels mm-1 | Rint = 0.048 |
ω scans | θmax = 30.0°, θmin = 3.4° |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2012) | h = −13→13 |
Tmin = 0.705, Tmax = 0.806 | k = −12→12 |
12993 measured reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.037 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.019P)2 + 1.P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max < 0.001 |
2010 reflections | Δρmax = 0.53 e Å−3 |
121 parameters | Δρmin = −0.57 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.09651 (4) | 0.64275 (4) | 0.76296 (4) | 0.01057 (9) | 0.94 |
Al1 | 0.09651 (4) | 0.64275 (4) | 0.76296 (4) | 0.01057 (9) | 0.06 |
P1 | 0.21870 (9) | 0.32876 (8) | 0.91619 (8) | 0.00857 (14) | |
P2 | 0.28563 (9) | 0.66472 (8) | 0.56712 (8) | 0.00920 (15) | |
Al2 | 0.41408 (9) | 0.35512 (9) | 0.73167 (9) | 0.01034 (16) | 0.94 |
Zn2 | 0.41408 (9) | 0.35512 (9) | 0.73167 (9) | 0.01034 (16) | 0.06 |
Na1 | 0.1986 (2) | 0.51018 (17) | 0.19444 (19) | 0.0216 (3) | 0.92 |
Na2 | 0.274 (2) | 0.494 (2) | 0.259 (2) | 0.0216 (3) | 0.08 |
O1 | 0.1306 (2) | 0.1870 (2) | 0.8206 (3) | 0.0140 (4) | |
O2 | 0.1066 (2) | 0.4643 (2) | 0.8921 (2) | 0.0140 (4) | |
O3 | 0.3807 (2) | 0.8083 (2) | 0.6644 (2) | 0.0124 (4) | |
O4 | 0.4017 (3) | 0.5256 (2) | 0.6298 (2) | 0.0152 (4) | |
O5 | 0.3055 (3) | 0.2937 (2) | 1.0978 (2) | 0.0146 (4) | |
O6 | 0.2351 (3) | 0.6892 (2) | 0.3914 (2) | 0.0151 (4) | |
O7 | 0.3458 (3) | 0.3773 (3) | 0.8696 (3) | 0.0167 (4) | |
O8 | 0.1404 (3) | 0.6420 (3) | 0.5891 (3) | 0.0207 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01090 (17) | 0.01047 (17) | 0.01171 (17) | −0.00007 (13) | 0.00658 (14) | 0.00124 (13) |
Al1 | 0.01090 (17) | 0.01047 (17) | 0.01171 (17) | −0.00007 (13) | 0.00658 (14) | 0.00124 (13) |
P1 | 0.0089 (3) | 0.0085 (3) | 0.0087 (3) | −0.0001 (2) | 0.0045 (3) | −0.0001 (2) |
P2 | 0.0103 (3) | 0.0091 (3) | 0.0089 (3) | −0.0008 (3) | 0.0052 (3) | −0.0004 (3) |
Al2 | 0.0111 (4) | 0.0099 (4) | 0.0110 (4) | −0.0006 (3) | 0.0061 (3) | −0.0003 (3) |
Zn2 | 0.0111 (4) | 0.0099 (4) | 0.0110 (4) | −0.0006 (3) | 0.0061 (3) | −0.0003 (3) |
Na1 | 0.0326 (9) | 0.0162 (7) | 0.0244 (8) | −0.0059 (7) | 0.0204 (7) | −0.0046 (6) |
Na2 | 0.0326 (9) | 0.0162 (7) | 0.0244 (8) | −0.0059 (7) | 0.0204 (7) | −0.0046 (6) |
O1 | 0.0129 (10) | 0.0117 (10) | 0.0167 (10) | −0.0035 (8) | 0.0067 (9) | −0.0058 (8) |
O2 | 0.0153 (10) | 0.0110 (10) | 0.0157 (10) | 0.0032 (8) | 0.0074 (9) | 0.0012 (8) |
O3 | 0.0112 (10) | 0.0107 (9) | 0.0143 (10) | −0.0010 (7) | 0.0054 (8) | −0.0024 (8) |
O4 | 0.0179 (11) | 0.0117 (10) | 0.0161 (10) | 0.0017 (8) | 0.0084 (9) | 0.0019 (8) |
O5 | 0.0177 (11) | 0.0137 (10) | 0.0115 (10) | 0.0019 (8) | 0.0063 (9) | 0.0016 (8) |
O6 | 0.0188 (11) | 0.0157 (10) | 0.0103 (10) | 0.0031 (8) | 0.0067 (9) | 0.0015 (8) |
O7 | 0.0174 (11) | 0.0212 (11) | 0.0171 (10) | −0.0058 (9) | 0.0127 (9) | −0.0048 (9) |
O8 | 0.0153 (11) | 0.0327 (13) | 0.0179 (11) | −0.0063 (10) | 0.0110 (10) | −0.0043 (10) |
Zn1—O8 | 1.899 (2) | P2—Na1ii | 3.3303 (16) |
Zn1—O1i | 1.943 (2) | Al2—O7 | 1.740 (2) |
Zn1—O6ii | 1.947 (2) | Al2—O4 | 1.742 (2) |
Zn1—O2 | 1.951 (2) | Al2—O3vi | 1.754 (2) |
Zn1—Na1iii | 3.3056 (15) | Al2—O5vii | 1.754 (2) |
Zn1—Na1ii | 3.3236 (15) | Al2—Na2viii | 3.210 (19) |
Zn1—Na2ii | 3.580 (19) | Al2—Na2v | 3.372 (19) |
Zn1—Na2iii | 3.625 (19) | Al2—Na1viii | 3.5951 (17) |
P1—O1 | 1.517 (2) | Na1—Na2 | 0.69 (2) |
P1—O2 | 1.528 (2) | Na1—O6 | 2.330 (3) |
P1—O7 | 1.537 (2) | Na1—O1vii | 2.356 (2) |
P1—O5 | 1.545 (2) | Na1—O3ix | 2.459 (2) |
P1—Na1iv | 3.1724 (16) | Na1—O5x | 2.515 (3) |
P1—Na2v | 3.334 (19) | Na1—O2x | 2.606 (3) |
P1—Na2iv | 3.374 (18) | Na1—O2iii | 2.614 (3) |
P2—O8 | 1.509 (2) | Na2—O6 | 2.245 (18) |
P2—O6 | 1.518 (2) | Na2—O1vii | 2.332 (18) |
P2—O4 | 1.546 (2) | Na2—O3ix | 2.386 (18) |
P2—O3 | 1.553 (2) | Na2—O5x | 2.437 (18) |
P2—Na2 | 3.243 (18) | Na2—O4viii | 2.74 (2) |
O8—Zn1—O1i | 108.46 (9) | O2x—Na1—Zn1ix | 112.54 (7) |
O8—Zn1—O6ii | 100.55 (9) | O2iii—Na1—Zn1ix | 66.37 (6) |
O1i—Zn1—O6ii | 112.79 (9) | P1x—Na1—Zn1ix | 139.15 (5) |
O8—Zn1—O2 | 125.84 (10) | Zn1iii—Na1—Zn1ix | 89.51 (4) |
O1i—Zn1—O2 | 96.80 (9) | Na2—Na1—P2ix | 99.5 (16) |
O6ii—Zn1—O2 | 112.69 (9) | O6—Na1—P2ix | 76.41 (6) |
O8—Zn1—Na1iii | 131.93 (7) | O1vii—Na1—P2ix | 168.49 (8) |
O1i—Zn1—Na1iii | 44.58 (7) | O3ix—Na1—P2ix | 25.96 (5) |
O6ii—Zn1—Na1iii | 125.33 (7) | O5x—Na1—P2ix | 106.30 (7) |
O2—Zn1—Na1iii | 52.22 (7) | O2x—Na1—P2ix | 74.57 (6) |
O8—Zn1—Na1ii | 67.74 (8) | O2iii—Na1—P2ix | 104.41 (7) |
O1i—Zn1—Na1ii | 96.53 (7) | P1x—Na1—P2ix | 89.24 (4) |
O6ii—Zn1—Na1ii | 43.37 (7) | Zn1iii—Na1—P2ix | 139.63 (5) |
O2—Zn1—Na1ii | 155.94 (7) | Zn1ix—Na1—P2ix | 56.92 (3) |
Na1iii—Zn1—Na1ii | 137.29 (4) | Na2—Na1—Al2viii | 51.6 (16) |
O8—Zn1—Na2ii | 71.9 (3) | O6—Na1—Al2viii | 83.67 (7) |
O1i—Zn1—Na2ii | 104.9 (3) | O1vii—Na1—Al2viii | 130.27 (8) |
O6ii—Zn1—Na2ii | 33.9 (3) | O3ix—Na1—Al2viii | 25.99 (5) |
O2—Zn1—Na2ii | 145.6 (3) | O5x—Na1—Al2viii | 75.80 (6) |
Na1iii—Zn1—Na2ii | 141.9 (3) | O2x—Na1—Al2viii | 91.49 (6) |
Na1ii—Zn1—Na2ii | 10.7 (3) | O2iii—Na1—Al2viii | 155.55 (7) |
O8—Zn1—Na2iii | 124.7 (3) | P1x—Na1—Al2viii | 81.41 (4) |
O1i—Zn1—Na2iii | 35.5 (3) | Zn1iii—Na1—Al2viii | 163.34 (6) |
O6ii—Zn1—Na2iii | 128.5 (3) | Zn1ix—Na1—Al2viii | 92.15 (4) |
O2—Zn1—Na2iii | 61.6 (3) | P2ix—Na1—Al2viii | 51.89 (3) |
Na1iii—Zn1—Na2iii | 10.2 (3) | Na1—Na2—O6 | 88.3 (16) |
Na1ii—Zn1—Na2iii | 130.8 (3) | Na1—Na2—O1vii | 83.5 (16) |
Na2ii—Zn1—Na2iii | 137.4 (4) | O6—Na2—O1vii | 95.2 (7) |
O1—P1—O2 | 113.05 (12) | Na1—Na2—O3ix | 87.8 (16) |
O1—P1—O7 | 109.27 (12) | O6—Na2—O3ix | 83.6 (6) |
O2—P1—O7 | 109.68 (12) | O1vii—Na2—O3ix | 171.3 (10) |
O1—P1—O5 | 110.65 (12) | Na1—Na2—O5x | 88.4 (16) |
O2—P1—O5 | 105.83 (12) | O6—Na2—O5x | 175.8 (10) |
O7—P1—O5 | 108.22 (12) | O1vii—Na2—O5x | 86.9 (6) |
O1—P1—Na1iv | 131.63 (9) | O3ix—Na2—O5x | 93.7 (6) |
O2—P1—Na1iv | 54.68 (9) | Na1—Na2—O4viii | 146.5 (19) |
O7—P1—Na1iv | 118.93 (9) | O6—Na2—O4viii | 107.0 (7) |
O5—P1—Na1iv | 51.32 (9) | O1vii—Na2—O4viii | 123.2 (8) |
O1—P1—Na2v | 37.9 (4) | O3ix—Na2—O4viii | 65.3 (5) |
O2—P1—Na2v | 146.0 (4) | O5x—Na2—O4viii | 74.7 (5) |
O7—P1—Na2v | 77.4 (3) | Na1—Na2—Al2viii | 118.7 (17) |
O5—P1—Na2v | 103.0 (3) | O6—Na2—Al2viii | 94.6 (6) |
Na1iv—P1—Na2v | 151.6 (3) | O1vii—Na2—Al2viii | 156.0 (8) |
O1—P1—Na2iv | 135.0 (3) | O3ix—Na2—Al2viii | 32.5 (3) |
O2—P1—Na2iv | 65.5 (4) | O5x—Na2—Al2viii | 84.7 (5) |
O7—P1—Na2iv | 113.1 (3) | O4viii—Na2—Al2viii | 32.8 (2) |
O5—P1—Na2iv | 41.3 (3) | Na1—Na2—P2 | 106.4 (17) |
Na1iv—P1—Na2iv | 11.6 (3) | O6—Na2—P2 | 24.5 (2) |
Na2v—P1—Na2iv | 144.0 (5) | O1vii—Na2—P2 | 81.2 (5) |
O8—P2—O6 | 110.69 (13) | O3ix—Na2—P2 | 100.6 (6) |
O8—P2—O4 | 112.01 (13) | O5x—Na2—P2 | 159.7 (8) |
O6—P2—O4 | 108.58 (12) | O4viii—Na2—P2 | 98.2 (6) |
O8—P2—O3 | 109.14 (12) | Al2viii—Na2—P2 | 99.6 (5) |
O6—P2—O3 | 109.13 (12) | Na1—Na2—P1vii | 104.5 (17) |
O4—P2—O3 | 107.19 (12) | O6—Na2—P1vii | 106.0 (6) |
O8—P2—Na2 | 115.9 (4) | O1vii—Na2—P1vii | 23.6 (2) |
O6—P2—Na2 | 37.8 (4) | O3ix—Na2—P1vii | 164.3 (8) |
O4—P2—Na2 | 72.4 (4) | O5x—Na2—P1vii | 77.3 (5) |
O3—P2—Na2 | 131.4 (3) | O4viii—Na2—P1vii | 99.7 (6) |
O8—P2—Na1ii | 69.64 (10) | Al2viii—Na2—P1vii | 132.5 (7) |
O6—P2—Na1ii | 106.49 (9) | P2—Na2—P1vii | 85.4 (4) |
O4—P2—Na1ii | 141.00 (9) | Na1—Na2—Al2vii | 112.7 (17) |
O3—P2—Na1ii | 43.89 (8) | O6—Na2—Al2vii | 154.2 (8) |
Na2—P2—Na1ii | 144.3 (4) | O1vii—Na2—Al2vii | 73.6 (5) |
O7—Al2—O4 | 112.36 (11) | O3ix—Na2—Al2vii | 110.9 (6) |
O7—Al2—O3vi | 108.74 (11) | O5x—Na2—Al2vii | 30.0 (2) |
O4—Al2—O3vi | 105.42 (10) | O4viii—Na2—Al2vii | 63.8 (4) |
O7—Al2—O5vii | 109.12 (11) | Al2viii—Na2—Al2vii | 88.3 (5) |
O4—Al2—O5vii | 111.21 (11) | P2—Na2—Al2vii | 129.8 (6) |
O3vi—Al2—O5vii | 109.90 (10) | P1vii—Na2—Al2vii | 55.7 (3) |
O7—Al2—Na2viii | 128.1 (3) | Na1—Na2—P1x | 67.4 (15) |
O4—Al2—Na2viii | 58.6 (4) | O6—Na2—P1x | 151.1 (8) |
O3vi—Al2—Na2viii | 46.9 (4) | O1vii—Na2—P1x | 97.1 (6) |
O5vii—Al2—Na2viii | 121.9 (3) | O3ix—Na2—P1x | 80.2 (5) |
O7—Al2—Na2v | 74.4 (3) | O5x—Na2—P1x | 24.7 (2) |
O4—Al2—Na2v | 152.2 (4) | O4viii—Na2—P1x | 87.8 (5) |
O3vi—Al2—Na2v | 97.1 (3) | Al2viii—Na2—P1x | 84.4 (4) |
O5vii—Al2—Na2v | 44.0 (3) | P2—Na2—P1x | 173.8 (7) |
Na2viii—Al2—Na2v | 139.5 (5) | P1vii—Na2—P1x | 95.5 (5) |
O7—Al2—Na1viii | 122.77 (8) | Al2vii—Na2—P1x | 54.7 (3) |
O4—Al2—Na1viii | 67.52 (8) | Na1—Na2—Zn1ix | 63.1 (15) |
O3vi—Al2—Na1viii | 37.90 (7) | O6—Na2—Zn1ix | 29.0 (3) |
O5vii—Al2—Na1viii | 124.46 (8) | O1vii—Na2—Zn1ix | 104.7 (6) |
Na2viii—Al2—Na1viii | 9.7 (4) | O3ix—Na2—Zn1ix | 70.3 (5) |
Na2v—Al2—Na1viii | 133.2 (3) | O5x—Na2—Zn1ix | 146.9 (8) |
Na2—Na1—O6 | 74.4 (16) | O4viii—Na2—Zn1ix | 119.9 (6) |
Na2—Na1—O1vii | 79.5 (16) | Al2viii—Na2—Zn1ix | 94.4 (5) |
O6—Na1—O1vii | 92.35 (9) | P2—Na2—Zn1ix | 53.0 (3) |
Na2—Na1—O3ix | 75.8 (16) | P1vii—Na2—Zn1ix | 123.8 (5) |
O6—Na1—O3ix | 80.28 (8) | Al2vii—Na2—Zn1ix | 175.7 (7) |
O1vii—Na1—O3ix | 155.32 (11) | P1x—Na2—Zn1ix | 122.2 (6) |
Na2—Na1—O5x | 75.6 (16) | P1—O1—Zn1xi | 125.84 (12) |
O6—Na1—O5x | 149.91 (11) | P1—O1—Na2v | 118.5 (5) |
O1vii—Na1—O5x | 84.65 (8) | Zn1xi—O1—Na2v | 115.6 (5) |
O3ix—Na1—O5x | 90.04 (8) | P1—O1—Na1v | 133.34 (13) |
Na2—Na1—O2x | 126.9 (16) | Zn1xi—O1—Na1v | 100.05 (9) |
O6—Na1—O2x | 146.40 (10) | Na2v—O1—Na1v | 17.0 (5) |
O1vii—Na1—O2x | 115.31 (9) | P1—O2—Zn1 | 121.37 (12) |
O3ix—Na1—O2x | 81.04 (8) | P1—O2—Na1iv | 96.75 (10) |
O5x—Na1—O2x | 57.16 (7) | Zn1—O2—Na1iv | 117.73 (10) |
Na2—Na1—O2iii | 143.3 (16) | P1—O2—Na1iii | 134.43 (12) |
O6—Na1—O2iii | 84.53 (8) | Zn1—O2—Na1iii | 91.62 (8) |
O1vii—Na1—O2iii | 71.53 (8) | Na1iv—O2—Na1iii | 93.39 (8) |
O3ix—Na1—O2iii | 130.31 (9) | P2—O3—Al2xii | 133.43 (13) |
O5x—Na1—O2iii | 122.23 (9) | P2—O3—Na2ii | 124.8 (5) |
O2x—Na1—O2iii | 86.61 (8) | Al2xii—O3—Na2ii | 100.6 (5) |
Na2—Na1—P1x | 101.0 (15) | P2—O3—Na1ii | 110.14 (11) |
O6—Na1—P1x | 163.73 (8) | Al2xii—O3—Na1ii | 116.11 (10) |
O1vii—Na1—P1x | 102.23 (7) | Na2ii—O3—Na1ii | 16.4 (5) |
O3ix—Na1—P1x | 83.46 (6) | P2—O4—Al2 | 136.01 (14) |
O5x—Na1—P1x | 28.65 (5) | P2—O4—Na2viii | 131.1 (4) |
O2x—Na1—P1x | 28.57 (5) | Al2—O4—Na2viii | 88.5 (4) |
O2iii—Na1—P1x | 106.77 (7) | P1—O5—Al2v | 139.94 (14) |
Na2—Na1—Zn1iii | 112.2 (16) | P1—O5—Na2iv | 113.9 (5) |
O6—Na1—Zn1iii | 88.25 (7) | Al2v—O5—Na2iv | 105.9 (5) |
O1vii—Na1—Zn1iii | 35.37 (5) | P1—O5—Na1iv | 100.02 (11) |
O3ix—Na1—Zn1iii | 163.84 (8) | Al2v—O5—Na1iv | 118.81 (10) |
O5x—Na1—Zn1iii | 105.41 (7) | Na2iv—O5—Na1iv | 16.0 (5) |
O2x—Na1—Zn1iii | 103.17 (7) | P2—O6—Zn1ix | 123.60 (12) |
O2iii—Na1—Zn1iii | 36.16 (5) | P2—O6—Na2 | 117.7 (5) |
P1x—Na1—Zn1iii | 107.81 (5) | Zn1ix—O6—Na2 | 117.1 (5) |
Na2—Na1—Zn1ix | 106.2 (16) | P2—O6—Na1 | 129.88 (13) |
O6—Na1—Zn1ix | 35.02 (6) | Zn1ix—O6—Na1 | 101.61 (10) |
O1vii—Na1—Zn1ix | 112.15 (7) | Na2—O6—Na1 | 17.3 (5) |
O3ix—Na1—Zn1ix | 74.56 (6) | P1—O7—Al2 | 145.65 (15) |
O5x—Na1—Zn1ix | 163.20 (7) | P2—O8—Zn1 | 136.70 (14) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1; (iv) x, y, z+1; (v) x, −y+1/2, z+1/2; (vi) −x+1, y−1/2, −z+3/2; (vii) x, −y+1/2, z−1/2; (viii) −x+1, −y+1, −z+1; (ix) x, −y+3/2, z−1/2; (x) x, y, z−1; (xi) −x, y−1/2, −z+3/2; (xii) −x+1, y+1/2, −z+3/2. |
Atom | Na | Zn | Al | P1 | P2 | Σ |
O1 | 0.224 | 0.524 | 1.310 | 2.06 | ||
O2 | 0.114 0.112 | 0.513 | 1.272 | 2.01 | ||
O3 | 0.179 | 0.757 | 1.189 | 2.12 | ||
O4 | 0.782 | 1.212 | 1.99 | |||
O5 | 0.146 | 0.757 | 1.215 | 2.12 | ||
O6 | 0.241 | 0.519 | 1.307 | 2.07 | ||
O7 | 0.786 | 1.241 | 2.03 | |||
O8 | 0.590 | 1.339 | 1.93 | |||
Σ | 1.01 | 2.15 | 3.08 | 5.04 | 5.05 |
The calculation is made without considering the splitting of the Na position and `dilution' of the positions of Zn and Al. |
Formula | Unit-cell parameters a, b, c (Å) and β (°) | V (Å3), ρ (Mg m-3) and V/Z (Å3) | <M—O> (Å) <M'–O> (Å) | Physical properties | Reference |
1. The KNiFe(PO4)2 structure type, space group P21/c, Z = 4 | |||||
3D framework built by M'3+O5 bipyramids and PO4 tetrahedra sharing oxygen vertices. Channels in the [100] and [001] directions accommodate A+ cations and chains of M2+O6 octahedra sharing edges | |||||
K(Ni,Fe)Fe(PO4)2 | 5.102 (1) | 658.4 | 2.090 (1) (M = Ni2+, Fe2+) | No information available | Strutynska et al. (2014) |
14.464 (3) | 3.46 | 1.937 (1) (M' = Fe3+) | |||
9.226 (2) | 164.6 | ||||
104.74 (3) | |||||
KNiFe(PO4)2 | 5.101 (2) | 657.3 | 2.090 (2) (M = Ni2+) | The thermal study showed a congruent melting of the compound at 941 °C | Badri et al. (2015) |
14.456 (2) | 3.47 | ||||
9.216 (1) | 164.3 | ||||
104.73 (2) | |||||
KMgFe(PO4)2-LT | 5.171 (3) | 665.9 | 2.105 (2) (M = Mg2+) | The DTA analysis demonstrated an irreversible phase transition from the low- to the high-temperature stable phases at 778 °C | Badri et al. (2015) |
14.479 (2) | 3.08 | 1.939 (1) (M' = Fe3+) | |||
9.209 (2) | 166.5 | ||||
105.02 (1) | |||||
KCoFe(PO4)2-LT | 5.148 (1) | 663.3 | 2.122 (2) (M = Co2+) | An irreversible phase transition from the low- to the high-temperature stable phases at 840 °C | Badri et al. (2015) |
14.403 (2) | 3.44 | 1.934 (1) (M' = Fe3+) | |||
9.256 (1) | 165.8 | ||||
104.87 (2) | |||||
RbCuAl(PO4)2 | 5.0723 (8) | 656.4 | 2.136 (2) (M = Cu2+) | The compound orders antiferromagnetically at TN = 10.5 K and exhibits spontaneous magnetization in the magnetically ordered state | Yakubovich et al. (2016) |
14.070 (2) | 3.70 | 1.837 (2) (M' = Al3+) | |||
9.352 (1) | 164.1 | ||||
100.41 (1) | |||||
2. The KFe2+Fe3+(PO4)2 structure type, space group P21/c, Z = 4 | |||||
3D framework built by MO5 bipyramids, M'O6 octahedra and PO4 tetrahedra sharing oxygen edges and vertices. Channels along the [001] direction accommodate A+ cations | |||||
KFe2+Fe3+(PO4)2 | 7.846 (3) | 646.4 | 2.024 (5) (M = Fe2+) | No information available | Yakubovich et al. (1986) |
10.032 (3) | 3.50 | 2.021 (4) (M' = Fe3+) | |||
9.127 (4) | 161.6 | ||||
115.87 (3) | |||||
K(Fe2+,Fe3+)(Fe3+,Fe2+,Mg)(PO4)2 | 7.8444 (3) | 643.5 | 2.006 (3) (M = Fe2+,Fe3+) | No information available | Yatskin et al. (2012) |
10.0033 (3) | 3.49 | 2.014 (3) (M' = Fe3+,Fe2+,Mg) | |||
9.1459 (4) | 160.9 | ||||
116.272 (5) | |||||
KCuFe(PO4)2 | 7.958 (3) | 644.3 | 2.005 (2) (M = Cu2+) | The compound is antiferromagnetic. Electrical measurements revealed the activation energy (1.22 eV) and the conductivity evaluation suggested the potassium cations as the charge carriers | Badri et al. (2011) |
9.931 (2) | 3.59 | 2.015 (2) (M' = Fe3+) | |||
9.105 (2) | 161.1 | ||||
116.44 (3) | |||||
3. The (NH4)Fe2+Fe3+(PO4)2 structure type, space group C2/c, Z = 16 | |||||
Chains of edge-sharing Fe2+O6 octahedra, chains of corner-sharing Fe3+O6 octahedra and PO4 tetrahedra form 3D framework with tunnels in the [221], [221] and [001] directions, in which NH4+ cations are located | |||||
(NH4)Fe2+Fe3+(PO4)2 | 20.007 (1) | 2585.7 | 2.014 (2) (M' = Fe3+) | No information available | Boudin & Lii (1998) |
14.832 (1) | 3.29 | 2.145 (2) (M = Fe2+) | |||
9.990 (1) | 161.6 | ||||
119.28 (1) | |||||
4. The celsian, BaAl2[SiO4]2 structure type, space group C2/c, Z = 8 | |||||
3D framework built by corner-sharing (M/M')O4 and PO4 tetrahedra with the A+ ions in the framework tunnels | |||||
K(Co,Al)2(PO4)2 | 13.318 (2) | 1496.9 | 1.826 (19) (M = 0.5Co2+,0.5Al3+) | No information available | Chen et al. (1997) |
13.152 (1) | 2.80 | 1.829 (13) (M' = 0.5Co2+,0.5Al3+) | |||
8.683 (1) | 187.1 | ||||
100.19 (1) | |||||
K(Zn,Fe)2(PO4)2 | 13.514 (4) | 1543.9 | 1.884 (2) (M = 0.5Zn2+,0.5Fe3+) | The magnetic measuring revealed an antiferromagnetic behaviour with TN = 8.5 K | Badri et al. (2014) |
13.273 (6) | 3.01 | 1.891 (3) (M' = 0.5Zn2+,0.5Fe3+) | |||
8.742 (3) | 193.0 | ||||
100.07 (2) | |||||
(NH4)(Co,Al)2(PO4)2 | 13.474 (1) | 1571.4 | 1.839 (4) (M = 0.5Co2+,0.5Al3+) | The framework density is 20.4 | Bu et al. (1998) |
13.257 (1) | 2.48 | 1.854 (4) (M' = 0.5Co2+,0.5Al3+) | |||
8.960 (1) | 196.4 | ||||
100.92 (1) | |||||
(NH4)(Zn,Ga)2(PO4)2 | 13.370 (3) | 1560.4 | 1.863 (2) (M = 0.5Zn2+,0.5Ga3+) | No information available | Mrak et al. (2002) |
13.190 (3) | 2.92 | 1.870 (2) (M' = 0.5Zn2+,0.5Ga3+) | |||
8.998 (2) | 195.1 | ||||
100.46 (3) | |||||
(NH4)0.83(Zn0.83Al1.17)(PO4)2 | 13.533 (8) | 1617.2 | 1.846 (5) (M = Zn2+,Al3+) | The compound has a potential usage as adsorbent or catalytic material at low temperature | Ma et al. (2006) |
13.392 (8) | 2.39 | 1.862 (5) (M' = Zn2+,Al3+) | |||
9.072 (5) | 202.1 | ||||
100.87 (8) | |||||
5. The paracelsian, BaAl2[SiO4]2 structure type, space group P21/a*, Z = 4 | |||||
3D framework built from alternating corner-sharing MO4 and TO4 tetrahedra with eight-membered ring channels with the A+ions incorporated | |||||
(NH4)(Zn,Ga)2(PO4)2 | 9.406 (1) | 800.4 | 1.872 (2) (M = 0.5Zn2+,0.5Ga3+) | The compound has a potential for high ion-exchange capacity | Logar et al. (2001) |
9.881 (1) | 2.85 | 1.877 (2) (M' = 0.5Zn2+,0.5Ga3+) | |||
8.612 (1) | 200.1 | ||||
90.58 (1) | |||||
6. The KMgFe(PO4)2 structure type, space group C2/c, Z = 4 | |||||
2D layers built by corner-sharing (M/M')O4 and PO4 tetrahedra with the K atoms in the interlayer space | |||||
K(Mg,Fe)2(PO4)2-HT | 18.529 (7) | 807.3 | 1.878 (2) (M = 0.5Mg2+,0.5Fe3+) | This material behaves as a 2D ionic conductor with low activation energy of 0.51 eV | Badri et al. (2009) |
5.402 (3) | 3.49 | ||||
9.374 (9) | 201.8 | ||||
120.64 (5) | |||||
7. The NaZnAl(PO4)2 structure type, space group P21/c, Z = 4 | |||||
3D framework built by M2+O4, M'3+O4 and PO4 tetrahedra sharing oxygen vertices. The Na atoms are statistically distributed in two sites in the structure tunnels | |||||
NaZnAl(PO4)2 | 9.520 (1) | 688.1 | 1.935 (2) (M = Zn2+) | The compound presents a possible candidate for the ionic conductivity | Present work |
8.670 (1) | 2.95 | 1.748 (2) (M' = Al3+) | |||
9.547 (1) | 172.0 | ||||
119.16 (1) |
Note: (*) crystal characteristics are given in nonstandard setting of the space group C2h5 = P21/c for consistency of data. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register