Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of di­chloro­[1-(p-chloro­benzyl)-2-(1-pyrrol­idinyl­methyl-N)-1,3-benz­imidazole-N3]­cobalt(II), [Co­Cl2(C19­H20ClN3)], contains a mol­ecule of clemizole bound in a bidentate manner to cobalt through its imidazole and pyrrolidinyl N atoms, with significantly different Co-N distances of 1.976 (5) and 2.126 (5) Å, respectively. The geometry around cobalt is distorted tetrahedral, with significantly different Co-Cl distances of 2.217 (2) and 2.233 (2) Å, and the pyrrolidinyl ring is disordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005710/fr1273sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005710/fr1273Isup2.hkl
Contains datablock I

CCDC reference: 150304

Comment top

The crystal structures of clemizole hydrochloride (Parvez, 1996), clemizoledichlorozinc(II) (Parvez & Sabir, 1996a), clemizole as a free base (Parvez & Sabir, 1996b), clemizole tetrachlorocuprate(II) and clemizole tetrachlorocobaltate(II) (Parvez & Sabir, 1997) have been reported from our laboratory. This H1 antihistamine has now been incorporated into a cobalt complex to investigate further the effects such complex formation may have on the conformation of the clemizole moiety. In this paper, we report the structure of clemizoledichlorocobalt(II), (I).

In (I) (Fig. 1), the clemizole is coordinated in a bidentate manner to cobalt via pyrrolidinyl and imidazole N atoms with significantly different Co—N distances of 1.976 (5) and 2.125 (5) Å, respectively. The Co atom is also bound to two Cl atoms with Co—Cl distances of 2.233 (2) and 2.217 (2) Å. The geometry around cobalt is distorted tetrahedral. Similar distances and geometry have been reported for a number of closely related cobalt complexes, e.g. dichlorobis(2-methoxypyridine)cobalt(II) (Allan et al., 1981), bis(1,3-benzothiazole)dichlorocobalt(II) (Oughtred et al., 1982), dichlorobis[2-(4-thiazolyl)-1H-benzimidazole-N,N']cobalt(II) monohydrate (Umadevi et al., 1995), dichloro[phenylbis(2-pyridyl)phosphine-N,N']cobalt(II) ethanol solvate (Ehrlich et al., 1984) and bis(N-2-propylsalicylideneamino-N,O)cobalt(II) (Elerman et al., 1996).

The molecular dimensions in the benzimidazole part of the ligand are normal while the pyrrolidinyl ring is disordered. The important bond distances are: Csp2—Cl 1.747 (7) Å and mean Csp3—Csp2 1.51 (2), C—Caromatic 1.383 (11), N—Csp2 1.390 (4) and N—Csp3 1.482 (3) Å, not including the disordered pyrrolidinyl ring. It is interesting to note that the N1—C7 bond [1.340 (7) Å] is much shorter than expected for a single bond and that the N2—C7 bond [1.337 (7) Å] is much longer than a double bond; these bonds must represent a delocalized system with a mean N C distance of 1.339 (2) Å; the corresponding distances in the structure of clemizoledichlorozinc(II) (Parvez & Sabir, 1996a) were 1.357 (5) and 1.321 (5) Å, respectively. The pyrrolidinyl ring in (I) is disordered over two sites with inequivalent site-occupancy factors, therefore, its N—C and C—C distances were constrained at 1.48 (1) and 1.50 (1) Å during refinement. The separation between pairs of C atoms of the pyrrolidinyl ring is in the range 0.47–0.77 Å.

The benzimidazole and phenyl rings are essentially planar, with maximum deviations of atoms from the least-squares planes being 0.013 (6) and 0.021 (4) Å, respectively. The dihedral angle between these planes is 86.2 (2)°; the corresponding angle in the structures of clemizole dichlorozinc, clemizole hydrochloride, clemizole as a free base, clemizole tetrachlorocuperate(II) and clemizole tetrachlorocobaltate(II) are 81.1 (4) (Parvez & Sabir, 1996a), 82.8 (9) (Parvez, 1996), 68.8 (6) (Parvez & Sabir, 1996b), 70.5 (6) and 82.7 (9)° (Parvez & Sabir, 1997), respectively. An examination of the N1—C8—C9—C14 torsion angle in these complex molecules shows that the orientation of the phenyl ring with respect to the imidazole ring in (I) [torsion angle 115.0 (6)°] is somewhat similar to the orientation of these rings in the free base (torsion angle 125°) and clemizole tetrachlorocobaltate(II) (torsion angle 116°); the rest of the structures have torsion angles in the range of 133–153°. The major and minor conformers of the disordered pyrrolidinyl ring have an N3-envelope conformation with N3 0.62 (5) and 0.64 (5) Å out of the planes composed of the C16–C19 and C16'–C19' atoms, respectively; a similar conformation of the five-membered ring has been observed in the crystal structures mentioned above.

The structure of (I) is composed of independent complex molecules separated by normal van der Waals distances and is devoid of any intermolecular interactions. The imidazole moieties of the molecules, which lie about inversion centers, are stacked parallel to each other.

Experimental top

The title compound was synthesized by adding 1.0 mmol of CoCl2·6H20 to 2.0 mmol of clemizole hydrochloride in 20 ml of ethanol. NH4OH was added until the pH was 8–9. The solution was evaporated slowly at room temperature and blue prismatic crystals separated after a few days.

Refinement top

The C atoms of the pyrrolidinyl ring were disordered with inequivalent site-occupancy factors 0.76 and 0.24 which were established in the early refinement cycles. In the final rounds of calculations, the site-occupancy factors of these C atoms were fixed and the atoms of the minor conformer were refined with isotropic displacement parameters; the N—C and C—C distances in the pyrrolidinyl ring were fixed at 1.48 (1) and 1.50 (1) Å, respectively, using the command DFIX in SHELXL97 (Sheldrick, 1997). H atoms were included in the refinement at idealized positions with aromatic C—H and methylene C—H distances of 0.95 and 0.99 Å, respectively. The isotropicdisplacement parameters of the H atoms were set equal to 1.2Ueq of the C atoms to which they were bonded.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids plotted at 50% probability level. The minor fraction of the disordered pyrrolidinyl ring atoms are not shown.
Dichloro[1-(p-chlorophenylmethyl)-2-(1-pyrrolidinylmethyl)benzimidazole- N,N'']Cobalt(II) top
Crystal data top
[CoCl2(C19H20ClN3)]F(000) = 932
Mr = 455.66Dx = 1.516 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 9.647 (6) ÅCell parameters from 25 reflections
b = 12.675 (6) Åθ = 10.0–25.0°
c = 16.359 (5) ŵ = 1.27 mm1
β = 93.77 (4)°T = 170 K
V = 1996 (2) Å3Prismatic, blue
Z = 40.40 × 0.22 × 0.16 mm
Data collection top
Rigaku AFC-6S
diffractometer
1425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.097
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 011
Absorption correction: empirical (using intensity measurements)
ψ scan (3 reflections; North et al., 1968)
k = 015
Tmin = 0.63, Tmax = 0.82l = 1919
3754 measured reflections3 standard reflections every 200 reflections
3533 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0384P)2]
where P = (Fo2 + 2Fc2)/3
3533 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.40 e Å3
34 restraintsΔρmin = 0.44 e Å3
Crystal data top
[CoCl2(C19H20ClN3)]V = 1996 (2) Å3
Mr = 455.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.647 (6) ŵ = 1.27 mm1
b = 12.675 (6) ÅT = 170 K
c = 16.359 (5) Å0.40 × 0.22 × 0.16 mm
β = 93.77 (4)°
Data collection top
Rigaku AFC-6S
diffractometer
1425 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
ψ scan (3 reflections; North et al., 1968)
Rint = 0.097
Tmin = 0.63, Tmax = 0.823 standard reflections every 200 reflections
3754 measured reflections intensity decay: none
3533 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04334 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.98Δρmax = 0.40 e Å3
3533 reflectionsΔρmin = 0.44 e Å3
251 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.84005 (8)0.49515 (8)0.68276 (5)0.0383 (3)
Cl10.1710 (2)1.07964 (15)0.60736 (13)0.0659 (6)
Cl20.91205 (18)0.33425 (15)0.64955 (11)0.0542 (5)
Cl31.00581 (18)0.61391 (15)0.70886 (12)0.0571 (5)
N10.4642 (5)0.6056 (4)0.5979 (3)0.0398 (14)
N20.6872 (5)0.5596 (4)0.6135 (3)0.0341 (13)
N30.6877 (5)0.4875 (4)0.7708 (3)0.0371 (13)
C10.5240 (6)0.6347 (5)0.5259 (4)0.0371 (17)
C20.4696 (7)0.6844 (5)0.4549 (4)0.0408 (17)
H20.37440.70360.44770.049*
C30.5608 (7)0.7042 (6)0.3959 (4)0.0513 (19)
H30.52810.73930.34710.062*
C40.7011 (7)0.6743 (5)0.4054 (4)0.0446 (18)
H40.76020.68750.36230.054*
C50.7544 (7)0.6259 (5)0.4763 (4)0.0405 (17)
H50.84980.60730.48340.049*
C60.6637 (6)0.6055 (5)0.5369 (4)0.0366 (16)
C70.5645 (6)0.5611 (5)0.6470 (4)0.0353 (16)
C80.3168 (6)0.6190 (5)0.6155 (4)0.0415 (17)
H8A0.30150.58760.66950.050*
H8B0.25740.58060.57360.050*
C90.2739 (6)0.7344 (5)0.6157 (4)0.0346 (15)
C100.3348 (6)0.8014 (6)0.6741 (4)0.0413 (17)
H100.40060.77480.71470.050*
C110.3004 (7)0.9063 (6)0.6735 (4)0.0437 (18)
H110.34050.95230.71440.052*
C120.2073 (7)0.9447 (5)0.6132 (4)0.0400 (18)
C130.1423 (7)0.8783 (6)0.5565 (4)0.0485 (19)
H130.07480.90470.51680.058*
C140.1766 (6)0.7724 (6)0.5579 (4)0.0414 (17)
H140.13270.72570.51880.050*
C150.5513 (7)0.5190 (6)0.7311 (4)0.057 (2)
H15A0.50910.57360.76490.069*
H15B0.48850.45720.72820.069*
C160.7306 (12)0.5653 (7)0.8370 (5)0.050 (3)0.76
H16A0.65150.58310.87000.059*0.76
H16B0.76680.63090.81340.059*0.76
C170.8437 (10)0.5083 (8)0.8886 (6)0.056 (3)0.76
H17A0.93630.52440.86900.067*0.76
H17B0.84270.52950.94680.067*0.76
C180.8108 (11)0.3928 (9)0.8785 (7)0.068 (3)0.76
H18A0.78920.36140.93160.081*0.76
H18B0.89050.35460.85740.081*0.76
C190.6855 (10)0.3869 (7)0.8177 (6)0.052 (3)0.76
H19A0.69270.32550.78070.062*0.76
H19B0.59870.38060.84640.062*0.76
C16'0.727 (5)0.534 (3)0.8521 (13)0.051 (6)*0.24
H16C0.64640.54030.88630.061*0.24
H16D0.77070.60460.84720.061*0.24
C17'0.830 (4)0.453 (2)0.885 (3)0.048 (6)*0.24
H17C0.92410.46880.86800.057*0.24
H17D0.83300.45070.94580.057*0.24
C18'0.778 (4)0.350 (2)0.849 (2)0.063 (6)*0.24
H18C0.74470.30430.89290.076*0.24
H18D0.85380.31320.82310.076*0.24
C19'0.661 (4)0.3744 (12)0.787 (2)0.046 (6)*0.24
H19C0.66700.33120.73670.055*0.24
H19D0.56940.36360.80930.055*0.24
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0285 (4)0.0470 (5)0.0400 (5)0.0027 (5)0.0065 (3)0.0030 (5)
Cl10.0694 (14)0.0401 (11)0.0922 (16)0.0049 (10)0.0347 (12)0.0068 (11)
Cl20.0467 (11)0.0645 (13)0.0505 (11)0.0199 (9)0.0042 (9)0.0150 (10)
Cl30.0399 (10)0.0549 (12)0.0766 (14)0.0089 (9)0.0040 (9)0.0162 (11)
N10.031 (3)0.038 (3)0.051 (4)0.002 (3)0.008 (3)0.001 (3)
N20.030 (3)0.039 (3)0.034 (3)0.004 (3)0.005 (2)0.001 (3)
N30.039 (3)0.039 (3)0.034 (3)0.008 (3)0.009 (2)0.003 (3)
C10.038 (4)0.031 (4)0.042 (4)0.010 (3)0.006 (3)0.003 (3)
C20.037 (4)0.030 (4)0.055 (5)0.007 (3)0.002 (3)0.006 (4)
C30.051 (5)0.054 (5)0.048 (5)0.005 (4)0.001 (4)0.014 (4)
C40.053 (5)0.032 (4)0.049 (5)0.004 (4)0.011 (4)0.004 (4)
C50.038 (4)0.030 (4)0.053 (5)0.002 (3)0.004 (3)0.000 (3)
C60.032 (4)0.034 (4)0.044 (4)0.005 (3)0.012 (3)0.004 (3)
C70.033 (4)0.036 (4)0.038 (4)0.006 (3)0.011 (3)0.004 (3)
C80.028 (4)0.040 (4)0.056 (5)0.004 (3)0.008 (3)0.000 (4)
C90.024 (3)0.036 (4)0.045 (4)0.001 (3)0.006 (3)0.001 (3)
C100.028 (3)0.049 (5)0.047 (4)0.000 (4)0.000 (3)0.005 (4)
C110.034 (4)0.050 (5)0.048 (5)0.004 (3)0.010 (3)0.010 (4)
C120.043 (4)0.035 (4)0.045 (4)0.004 (4)0.024 (4)0.001 (4)
C130.039 (4)0.062 (5)0.044 (5)0.013 (4)0.003 (3)0.001 (4)
C140.034 (4)0.053 (5)0.037 (4)0.001 (4)0.000 (3)0.012 (4)
C150.036 (4)0.085 (6)0.053 (4)0.009 (4)0.014 (3)0.007 (5)
C160.043 (5)0.055 (7)0.052 (6)0.003 (5)0.018 (5)0.008 (5)
C170.051 (5)0.082 (7)0.036 (5)0.002 (6)0.008 (4)0.008 (6)
C180.075 (7)0.079 (7)0.050 (6)0.025 (7)0.017 (5)0.017 (6)
C190.050 (6)0.054 (6)0.055 (7)0.000 (5)0.025 (5)0.009 (5)
Geometric parameters (Å, º) top
Co1—N21.976 (5)C10—H100.9500
Co1—N32.126 (5)C11—C121.379 (9)
Co1—Cl32.217 (2)C11—H110.9500
Co1—Cl22.233 (2)C12—C131.373 (9)
Cl1—C121.747 (7)C13—C141.382 (9)
N1—C71.340 (7)C13—H130.9500
N1—C11.394 (7)C14—H140.9500
N1—C81.479 (7)C15—H15A0.9900
N2—C71.337 (7)C15—H15B0.9900
N2—C61.386 (7)C16—C171.517 (8)
N3—C19'1.482 (10)C16—H16A0.9900
N3—C16'1.485 (10)C16—H16B0.9900
N3—C151.484 (8)C17—C181.505 (9)
N3—C191.489 (7)C17—H17A0.9900
N3—C161.503 (7)C17—H17B0.9900
C1—C21.394 (8)C18—C191.516 (8)
C1—C61.399 (8)C18—H18A0.9900
C2—C31.370 (9)C18—H18B0.9900
C2—H20.9500C19—H19A0.9900
C3—C41.404 (9)C19—H19B0.9900
C3—H30.9500C16'—C17'1.508 (10)
C4—C51.382 (8)C16'—H16C0.9900
C4—H40.9500C16'—H16D0.9900
C5—C61.389 (8)C17'—C18'1.501 (10)
C5—H50.9500C17'—H17C0.9900
C7—C151.489 (8)C17'—H17D0.9900
C8—C91.521 (8)C18'—C19'1.503 (10)
C8—H8A0.9900C18'—H18C0.9900
C8—H8B0.9900C18'—H18D0.9900
C9—C141.374 (8)C19'—H19C0.9900
C9—C101.381 (8)C19'—H19D0.9900
C10—C111.370 (9)
N2—Co1—N383.34 (18)C13—C12—C11120.9 (6)
N2—Co1—Cl3109.35 (16)C13—C12—Cl1118.8 (6)
N3—Co1—Cl3115.01 (15)C11—C12—Cl1120.2 (6)
N2—Co1—Cl2118.05 (16)C12—C13—C14119.1 (7)
N3—Co1—Cl2111.27 (15)C12—C13—H13120.5
Cl3—Co1—Cl2115.79 (8)C14—C13—H13120.5
C7—N1—C1107.2 (5)C9—C14—C13120.2 (6)
C7—N1—C8126.7 (5)C9—C14—H14119.9
C1—N1—C8126.2 (5)C13—C14—H14119.9
C7—N2—C6105.6 (5)N3—C15—C7111.9 (5)
C7—N2—Co1114.7 (4)N3—C15—H15A109.2
C6—N2—Co1139.7 (4)C7—C15—H15A109.2
C19'—N3—C16'105 (2)N3—C15—H15B109.2
C19'—N3—C15100.4 (13)C7—C15—H15B109.2
C16'—N3—C15116.9 (16)H15A—C15—H15B107.9
C19'—N3—C1921.9 (14)N3—C16—C17104.1 (7)
C16'—N3—C1983.9 (15)N3—C16—H16A110.9
C15—N3—C19114.5 (6)C17—C16—H16A110.9
C19'—N3—C16123.3 (15)N3—C16—H16B110.9
C16'—N3—C1617.9 (17)C17—C16—H16B110.9
C15—N3—C16109.5 (6)H16A—C16—H16B109.0
C19—N3—C16101.7 (6)C18—C17—C16105.2 (7)
C19'—N3—Co1107.4 (17)C18—C17—H17A110.7
C16'—N3—Co1116.2 (19)C16—C17—H17A110.7
C15—N3—Co1108.9 (3)C18—C17—H17B110.7
C19—N3—Co1115.0 (5)C16—C17—H17B110.7
C16—N3—Co1106.7 (5)H17A—C17—H17B108.8
N1—C1—C2132.1 (6)C17—C18—C19105.9 (7)
N1—C1—C6105.7 (6)C17—C18—H18A110.6
C2—C1—C6122.2 (6)C19—C18—H18A110.6
C3—C2—C1116.5 (6)C17—C18—H18B110.6
C3—C2—H2121.8C19—C18—H18B110.6
C1—C2—H2121.8H18A—C18—H18B108.7
C2—C3—C4122.1 (6)N3—C19—C18104.9 (7)
C2—C3—H3118.9N3—C19—H19A110.8
C4—C3—H3118.9C18—C19—H19A110.8
C5—C4—C3121.0 (6)N3—C19—H19B110.8
C5—C4—H4119.5C18—C19—H19B110.8
C3—C4—H4119.5H19A—C19—H19B108.8
C4—C5—C6117.7 (6)N3—C16'—C17'100 (2)
C4—C5—H5121.1N3—C16'—H16C111.8
C6—C5—H5121.1C17'—C16'—H16C111.8
N2—C6—C5130.6 (6)N3—C16'—H16D111.8
N2—C6—C1109.0 (5)C17'—C16'—H16D111.8
C5—C6—C1120.4 (6)H16C—C16'—H16D109.5
N2—C7—N1112.6 (5)C18'—C17'—C16'105 (3)
N2—C7—C15120.4 (6)C18'—C17'—H17C110.7
N1—C7—C15127.0 (6)C16'—C17'—H17C110.7
N1—C8—C9112.1 (5)C18'—C17'—H17D110.7
N1—C8—H8A109.2C16'—C17'—H17D110.7
C9—C8—H8A109.2H17C—C17'—H17D108.8
N1—C8—H8B109.2C17'—C18'—C19'108 (3)
C9—C8—H8B109.2C17'—C18'—H18C110.2
H8A—C8—H8B107.9C19'—C18'—H18C110.2
C14—C9—C10120.1 (6)C17'—C18'—H18D110.2
C14—C9—C8120.6 (6)C19'—C18'—H18D110.2
C10—C9—C8119.3 (6)H18C—C18'—H18D108.5
C11—C10—C9120.0 (6)N3—C19'—C18'100.8 (19)
C11—C10—H10120.0N3—C19'—H19C111.6
C9—C10—H10120.0C18'—C19'—H19C111.6
C10—C11—C12119.6 (7)N3—C19'—H19D111.6
C10—C11—H11120.2C18'—C19'—H19D111.6
C12—C11—H11120.2H19C—C19'—H19D109.4
N3—Co1—N2—C75.1 (4)C7—N1—C8—C9119.4 (7)
Cl3—Co1—N2—C7119.3 (4)C1—N1—C8—C962.3 (8)
Cl2—Co1—N2—C7105.5 (4)N1—C8—C9—C14115.0 (6)
N3—Co1—N2—C6175.7 (7)N1—C8—C9—C1064.3 (8)
Cl3—Co1—N2—C661.5 (7)C14—C9—C10—C111.3 (9)
Cl2—Co1—N2—C673.7 (7)C8—C9—C10—C11178.0 (5)
N2—Co1—N3—C19'115.3 (12)C9—C10—C11—C121.5 (9)
Cl3—Co1—N3—C19'136.4 (12)C10—C11—C12—C133.8 (9)
Cl2—Co1—N3—C19'2.3 (12)C10—C11—C12—Cl1175.6 (5)
N2—Co1—N3—C16'127.0 (15)C11—C12—C13—C143.2 (10)
Cl3—Co1—N3—C16'18.7 (15)Cl1—C12—C13—C14176.3 (5)
Cl2—Co1—N3—C16'115.4 (15)C10—C9—C14—C131.9 (9)
N2—Co1—N3—C157.4 (5)C8—C9—C14—C13177.4 (6)
Cl3—Co1—N3—C15115.7 (4)C12—C13—C14—C90.3 (10)
Cl2—Co1—N3—C15110.1 (4)C19'—N3—C15—C7120.9 (18)
N2—Co1—N3—C19137.4 (5)C16'—N3—C15—C7126 (2)
Cl3—Co1—N3—C19114.3 (5)C19—N3—C15—C7138.6 (7)
Cl2—Co1—N3—C1919.8 (5)C16—N3—C15—C7108.0 (7)
N2—Co1—N3—C16110.7 (5)Co1—N3—C15—C78.3 (7)
Cl3—Co1—N3—C162.4 (5)N2—C7—C15—N35.0 (9)
Cl2—Co1—N3—C16131.8 (4)N1—C7—C15—N3173.0 (6)
C7—N1—C1—C2179.3 (6)C19'—N3—C16—C1746 (2)
C8—N1—C1—C22.1 (10)C16'—N3—C16—C1746 (6)
C7—N1—C1—C60.6 (7)C15—N3—C16—C17163.2 (7)
C8—N1—C1—C6179.1 (5)C19—N3—C16—C1741.7 (9)
N1—C1—C2—C3178.1 (7)Co1—N3—C16—C1779.1 (7)
C6—C1—C2—C30.5 (9)N3—C16—C17—C1827.9 (10)
C1—C2—C3—C41.3 (10)C16—C17—C18—C193.3 (11)
C2—C3—C4—C52.0 (11)C19'—N3—C19—C18149 (5)
C3—C4—C5—C61.7 (10)C16'—N3—C19—C1840.8 (19)
C7—N2—C6—C5178.9 (6)C15—N3—C19—C18157.6 (7)
Co1—N2—C6—C52.0 (11)C16—N3—C19—C1839.7 (9)
C7—N2—C6—C10.3 (7)Co1—N3—C19—C1875.2 (8)
Co1—N2—C6—C1179.5 (5)C17—C18—C19—N322.7 (10)
C4—C5—C6—N2179.3 (6)C19'—N3—C16'—C17'46 (4)
C4—C5—C6—C10.9 (9)C15—N3—C16'—C17'157 (2)
N1—C1—C6—N20.2 (7)C19—N3—C16'—C17'43 (3)
C2—C1—C6—N2179.1 (5)C16—N3—C16'—C17'134 (9)
N1—C1—C6—C5178.6 (5)Co1—N3—C16'—C17'72 (3)
C2—C1—C6—C50.3 (9)N3—C16'—C17'—C18'33 (4)
C6—N2—C7—N10.7 (7)C16'—C17'—C18'—C19'9 (5)
Co1—N2—C7—N1179.9 (4)C16'—N3—C19'—C18'41 (3)
C6—N2—C7—C15179.0 (6)C15—N3—C19'—C18'163 (2)
Co1—N2—C7—C151.6 (8)C19—N3—C19'—C18'30 (3)
C1—N1—C7—N20.8 (7)C16—N3—C19'—C18'41 (3)
C8—N1—C7—N2179.4 (5)Co1—N3—C19'—C18'83 (3)
C1—N1—C7—C15178.9 (6)C17'—C18'—C19'—N319 (4)
C8—N1—C7—C152.5 (10)

Experimental details

Crystal data
Chemical formula[CoCl2(C19H20ClN3)]
Mr455.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)170
a, b, c (Å)9.647 (6), 12.675 (6), 16.359 (5)
β (°) 93.77 (4)
V3)1996 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.40 × 0.22 × 0.16
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ scan (3 reflections; North et al., 1968)
Tmin, Tmax0.63, 0.82
No. of measured, independent and
observed [I > 2σ(I)] reflections
3754, 3533, 1425
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 0.98
No. of reflections3533
No. of parameters251
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.44

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN.

Selected geometric parameters (Å, º) top
Co1—N21.976 (5)N2—C71.337 (7)
Co1—N32.126 (5)N2—C61.386 (7)
Co1—Cl32.217 (2)N3—C19'1.482 (10)
Co1—Cl22.233 (2)N3—C16'1.485 (10)
Cl1—C121.747 (7)N3—C151.484 (8)
N1—C71.340 (7)N3—C191.489 (7)
N1—C11.394 (7)N3—C161.503 (7)
N1—C81.479 (7)
N2—Co1—N383.34 (18)C7—N2—C6105.6 (5)
N2—Co1—Cl3109.35 (16)C7—N2—Co1114.7 (4)
N3—Co1—Cl3115.01 (15)C6—N2—Co1139.7 (4)
N2—Co1—Cl2118.05 (16)C15—N3—C19114.5 (6)
N3—Co1—Cl2111.27 (15)C15—N3—C16109.5 (6)
Cl3—Co1—Cl2115.79 (8)C19—N3—C16101.7 (6)
C7—N1—C1107.2 (5)C15—N3—Co1108.9 (3)
C7—N1—C8126.7 (5)C19—N3—Co1115.0 (5)
C1—N1—C8126.2 (5)C16—N3—Co1106.7 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds