Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title mixed-metal compound, [Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3]2(C10H6O6S2)3·4H2O, was obtained during investigations of the porous frameworks constructed by amino-coordinated metal complex cations and large organic anions. All three naphthalene-2,6-di­sulfonate anions and the [Cu(en)2(H2O)2]2+ cation are located on crystallographic inversion centers and assemble into an extended two-dimensional network through intermolecular hydrogen bonds, creating cavities in which the [Ni(en)3]2+ cations and water mol­ecules are included.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013324/fr1340sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013324/fr1340Isup2.hkl
Contains datablock I

CCDC reference: 174808

Comment top

Promising applications of porous crystalline materials include separation, shape-selective catalysis, trapping and storage of toxic materials, off-peak energy storage and heterogeneous catalysis (Thompson, 1994; Endo et al., 1997). The general approach toward the construction of porous coordination network is the use of coordination polymerization to align inorganic complexes (Munakata et al., 1996; Hunter, 1995). Recently, the ability to design and control the assembly of coordination networks through both coordination and hydrogen-bonding interactions, by employing organic ligands with hydrogen–bonding functionality combined with coordination sites for transition metal, has been of great interest for both perspectives of crystal engineering and searching for functional materials (MacDonald et al., 2000). We have been exploring an approach, namely using the amino-coordinated metal complex cation and large naphthalenedisulfonate anion as building blocks, to construct porous crystalline materials and mixed-metal systems. The amino H atoms of the metal complex can form strong ionic hydrogen bonds with the sulfonate O atoms. If the hydrogen bonds are directive, a porous framework can be built which can accommodate guest molecules with diverse nature. Indeed this is what observed in the adduct [Co(trien)(phen)](1,5nds)1.5.2(phen).8(H2O) (trien is triethylenetetraamine, phen is 1, 10-phenanthroline and nds is naphthalenedisulfonate; Cai, Feng & Hu, 2001). We report here the crystal structure of the title mixed-metal compound, [Cu(en)2(H2O)2][Ni(en)3]2(2,6nds)3.4H2O, (I), where en is ethylenediamine.

Fig. 1 shows the structure of (I). The coordination geometries of the elongated octahedral [Cu(en)2(H2O)2]2+ and octahedral [Ni(en)3]2+ are regular and compatible with the reported analogues (Kovbasyuk et al., 1997; Emsley et al., 1988, 1990; Urrutigoity et al., 1996). The Cu atom and all the three independent 2,6-naphthalenedisulfonate anions are located on inversion centers. The OW3 water molecule forms weak coordination with Cu2+ in axial positions [Cu···O 2.448 (2) Å]. The amino H atoms of the [Cu(en)2(H2O)2]2+ fragment are involved in hydrogen-bonding interactions with the sulfonate O atoms, as shown in Fig. 2 [the N···O distances are in the range 3.086 (3)–3.246 (3) Å and the N–H···O angles are in the range 136.2–159.6°], resulting in an extended porous two-dimensional network. The cavities along the c axis, each constructed by four [Cu(en)2(H2O)2]2+ and four 2,6nds anions, are filled by the [Ni(en)3]2+ cations. The amino H atoms of the [Ni(en)3]2+ fragments are also involved in extensive hydrogen bonds with the sulfonate O atoms. The other two water molecules exist as a dimer with strong intermolecular hydrogen bonds [OW2···OW1 2.751 (4) Å and OW2–H···OW1 173.8°], and also reside in the cavities hydrogen bonded to the sulfonate O atoms. During our previous investigation of the coordination behavior of sulfonate anions with transition metal atoms (Cai et al., 2001), we demonstrated that the coordination strength of sulfonate could be tailored chemically. In the structures of Cu(en)2(1,5nds).2H2O and Cu(N-meen)2(2,6nds).2H2O (N–meen is N-methylethylenediamine; Cai, Chen et al., 2001), the Cu atom is weakly coordinated in the axial positions by the sulfonate O atoms instead of water O atoms. In the title compound, there is no direct interaction between the Cu and sulfonate O atoms. This observation further illustrates that metal sulfonates display a wide range of structural chemistry that calls for extensive investigation.

Experimental top

To an aqueous solution of sodium 2,6-naphthalenedisulfonate, equimolar amounts of [Cu(en)2]Cl2 and [Ni(en)3]Cl2 were added with stirring. After heating at 333 K for several hours in a water bath, the solution was maintained at room temperature and crystals suitable for data collection were obtained after several days.

Refinement top

The H atoms of the en ligands and the 2,6nds anions were placed in idealized positions (N—H = 0.90 Å, and C–H = 0.97 and 0.93 Å for CH2 and CH, respectively) and refined as riding atoms. The water H atoms were located from a difference Fourier map and were not refined.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids. Only the unique portions are labeled.
[Figure 2] Fig. 2. The packing arrangement of the [Cu(en)2(H2O)2]2+ cations and 2,6nds anions along the c axis, showing the extended two-dimensional network formed by hydrogen bonds.
Diaquabis(ethylenediamine)copper(II) bis[tris(ethylenediamine)nickel(II)] tris(naphthalene-2,6-disulfonate) tetrahydrate top
Crystal data top
[Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3](C10H6S2O6)3·4H2OZ = 1
Mr = 1628.69F(000) = 855
Triclinic, P1Dx = 1.514 Mg m3
a = 11.8728 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5961 (17) ÅCell parameters from 856 reflections
c = 13.903 (2) Åθ = 3.6–24.3°
α = 91.553 (2)°µ = 1.07 mm1
β = 105.950 (2)°T = 293 K
γ = 115.017 (2)°Plate, brown
V = 1786.9 (4) Å30.24 × 0.20 × 0.08 mm
Data collection top
Bruker CCD area-detector
diffractometer
7625 independent reflections
Radiation source: fine-focus sealed tube6452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1215
Tmin = 0.78, Tmax = 0.92k = 1516
10504 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.1603P]
where P = (Fo2 + 2Fc2)/3
7625 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3](C10H6S2O6)3·4H2Oγ = 115.017 (2)°
Mr = 1628.69V = 1786.9 (4) Å3
Triclinic, P1Z = 1
a = 11.8728 (17) ÅMo Kα radiation
b = 12.5961 (17) ŵ = 1.07 mm1
c = 13.903 (2) ÅT = 293 K
α = 91.553 (2)°0.24 × 0.20 × 0.08 mm
β = 105.950 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
7625 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6452 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.92Rint = 0.034
10504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.07Δρmax = 0.83 e Å3
7625 reflectionsΔρmin = 0.45 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.36628 (3)0.21376 (2)0.07287 (2)0.02656 (9)
Cu0.00000.00000.50000.03281 (11)
N10.5273 (2)0.34898 (18)0.04109 (17)0.0375 (4)
H1A0.49850.37510.01580.045*
H1B0.57030.41070.09250.045*
N20.4427 (2)0.10579 (19)0.02091 (18)0.0428 (5)
H2A0.48450.08220.07370.051*
H2B0.37720.04080.02190.051*
N30.4843 (2)0.2436 (2)0.22753 (17)0.0453 (5)
H3A0.54160.21330.23240.054*
H3B0.52950.32200.25170.054*
N40.2289 (2)0.07636 (19)0.12478 (17)0.0426 (5)
H4A0.16460.09490.12850.051*
H4B0.19260.00780.08130.051*
N50.2933 (2)0.33609 (18)0.09834 (17)0.0392 (5)
H5A0.23610.30710.13320.047*
H5B0.35930.40580.13380.047*
N60.2267 (2)0.17443 (19)0.07312 (16)0.0418 (5)
H6A0.26800.20160.11920.050*
H6B0.17780.09530.09140.050*
N70.1872 (2)0.10808 (19)0.50631 (17)0.0400 (5)
H7A0.23590.14440.57050.048*
H7B0.22300.06550.48490.048*
N80.0402 (2)0.12789 (19)0.43642 (17)0.0411 (5)
H8A0.08040.10390.36920.049*
H8B0.09360.14290.46360.049*
S10.21325 (6)0.80107 (5)0.37848 (5)0.03907 (15)
S20.36588 (6)0.38926 (5)0.24928 (4)0.03547 (14)
S30.06277 (6)0.19233 (5)0.14166 (5)0.03416 (14)
C10.6152 (3)0.3005 (2)0.0279 (3)0.0493 (7)
H1C0.66940.29840.09360.059*
H1D0.67220.35040.00780.059*
C20.5347 (3)0.1775 (3)0.0316 (3)0.0528 (7)
H2C0.48640.18040.09940.063*
H2D0.59130.14190.03730.063*
C30.3949 (3)0.1843 (3)0.2854 (2)0.0562 (7)
H3C0.34930.22980.29510.067*
H3D0.44390.17780.35160.067*
C40.2982 (3)0.0627 (3)0.2265 (2)0.0584 (8)
H4C0.34360.01580.21980.070*
H4D0.23580.02220.26170.070*
C50.2273 (3)0.3521 (2)0.0039 (2)0.0436 (6)
H5C0.29220.40110.03400.052*
H5D0.17390.39130.00170.052*
C60.1426 (3)0.2319 (3)0.0693 (2)0.0472 (6)
H6C0.07500.18400.04100.057*
H6D0.10070.24040.13710.057*
C70.1835 (3)0.1970 (2)0.4401 (2)0.0445 (6)
H7C0.15760.16240.36970.053*
H7D0.26930.26440.45720.053*
C80.0852 (3)0.2363 (2)0.4560 (2)0.0468 (6)
H8C0.11460.27700.52500.056*
H8D0.07450.29010.40980.056*
C90.2037 (3)0.6940 (2)0.5479 (2)0.0430 (6)
H9A0.28230.76050.58060.052*
C100.1404 (2)0.6837 (2)0.44358 (19)0.0357 (5)
C110.0253 (2)0.5882 (2)0.3943 (2)0.0399 (5)
H11A0.01640.58360.32600.048*
C120.0322 (2)0.4940 (2)0.44738 (18)0.0352 (5)
C130.1508 (3)0.3928 (2)0.3990 (2)0.0443 (6)
H13A0.19330.38500.33030.053*
C140.0972 (3)0.5439 (2)0.1376 (2)0.0421 (6)
H14A0.15610.61250.18420.051*
C150.0622 (3)0.4359 (2)0.1686 (2)0.0424 (6)
H15A0.09660.43130.23610.051*
C160.0270 (2)0.3303 (2)0.09771 (18)0.0322 (5)
C170.0788 (2)0.3362 (2)0.00084 (18)0.0333 (5)
H17A0.13730.26650.04630.040*
C180.0450 (2)0.44751 (19)0.03554 (17)0.0305 (5)
C190.5805 (3)0.4116 (2)0.4331 (2)0.0420 (6)
H19A0.64020.38420.43880.050*
C200.5274 (3)0.3859 (2)0.35629 (19)0.0423 (6)
H20A0.55090.34150.30960.051*
C210.4364 (2)0.4271 (2)0.34839 (17)0.0328 (5)
C220.4000 (2)0.4919 (2)0.41517 (18)0.0338 (5)
H22A0.33950.51770.40830.041*
C230.4542 (2)0.5205 (2)0.49595 (17)0.0315 (5)
O10.1108 (2)0.78786 (19)0.28635 (16)0.0584 (5)
O20.2545 (2)0.90896 (17)0.44618 (17)0.0570 (5)
O30.3179 (2)0.78567 (19)0.3591 (2)0.0609 (6)
O40.2938 (2)0.4564 (2)0.24912 (17)0.0647 (6)
O50.2881 (2)0.26169 (17)0.27142 (15)0.0572 (6)
O60.47544 (19)0.42403 (18)0.15732 (13)0.0519 (5)
O70.0621 (2)0.18836 (19)0.17594 (19)0.0585 (6)
O80.1578 (2)0.10152 (16)0.05693 (15)0.0612 (6)
O90.11238 (19)0.19707 (17)0.22495 (15)0.0480 (4)
OW10.5665 (2)0.0394 (3)0.3649 (2)0.0901 (9)
HW10.48370.09510.35380.050*
HW20.60250.00070.43170.050*
OW20.6221 (2)0.0891 (2)0.21314 (19)0.0670 (6)
HW30.70070.11630.21560.050*
HW40.60510.04420.25740.050*
OW30.03042 (19)0.08810 (19)0.33016 (17)0.0581 (5)
HW50.02300.12150.32290.050*
HW60.11190.14950.30490.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.02612 (15)0.02517 (15)0.02772 (15)0.01003 (11)0.00969 (11)0.00644 (11)
Cu0.0296 (2)0.0337 (2)0.0339 (2)0.01425 (17)0.00801 (16)0.00618 (16)
N10.0373 (11)0.0336 (10)0.0430 (12)0.0144 (9)0.0169 (9)0.0086 (9)
N20.0454 (12)0.0377 (11)0.0469 (13)0.0207 (10)0.0137 (10)0.0062 (9)
N30.0449 (12)0.0505 (13)0.0365 (12)0.0198 (10)0.0096 (9)0.0071 (10)
N40.0432 (12)0.0365 (11)0.0471 (13)0.0140 (9)0.0191 (10)0.0106 (9)
N50.0344 (10)0.0346 (10)0.0484 (13)0.0126 (9)0.0175 (9)0.0062 (9)
N60.0426 (12)0.0407 (11)0.0371 (11)0.0150 (10)0.0110 (9)0.0071 (9)
N70.0351 (11)0.0410 (11)0.0397 (12)0.0157 (9)0.0083 (9)0.0022 (9)
N80.0454 (12)0.0469 (12)0.0370 (11)0.0264 (10)0.0123 (9)0.0094 (9)
S10.0414 (3)0.0325 (3)0.0491 (4)0.0175 (3)0.0209 (3)0.0123 (3)
S20.0397 (3)0.0358 (3)0.0252 (3)0.0096 (2)0.0136 (2)0.0056 (2)
S30.0370 (3)0.0299 (3)0.0380 (3)0.0136 (2)0.0173 (2)0.0106 (2)
C10.0377 (14)0.0490 (15)0.073 (2)0.0217 (12)0.0301 (13)0.0193 (14)
C20.0645 (18)0.0517 (16)0.0649 (19)0.0349 (15)0.0389 (16)0.0135 (14)
C30.0601 (18)0.077 (2)0.0322 (14)0.0292 (16)0.0180 (13)0.0171 (14)
C40.0643 (19)0.0620 (19)0.0605 (19)0.0298 (16)0.0320 (16)0.0375 (16)
C50.0438 (14)0.0454 (14)0.0578 (17)0.0282 (12)0.0253 (12)0.0238 (12)
C60.0366 (13)0.0657 (18)0.0396 (14)0.0270 (13)0.0054 (11)0.0109 (13)
C70.0465 (14)0.0412 (14)0.0382 (14)0.0107 (12)0.0168 (11)0.0040 (11)
C80.0588 (17)0.0344 (13)0.0456 (15)0.0209 (12)0.0138 (12)0.0088 (11)
C90.0381 (13)0.0384 (13)0.0486 (15)0.0157 (11)0.0103 (11)0.0090 (11)
C100.0363 (12)0.0338 (12)0.0437 (13)0.0188 (10)0.0173 (10)0.0107 (10)
C110.0404 (13)0.0405 (13)0.0405 (14)0.0199 (11)0.0122 (11)0.0079 (11)
C120.0343 (12)0.0367 (12)0.0364 (13)0.0189 (10)0.0089 (10)0.0055 (10)
C130.0404 (14)0.0439 (14)0.0401 (14)0.0160 (11)0.0048 (11)0.0054 (11)
C140.0451 (14)0.0326 (12)0.0356 (13)0.0120 (11)0.0025 (11)0.0004 (10)
C150.0502 (15)0.0396 (13)0.0329 (13)0.0187 (12)0.0088 (11)0.0064 (10)
C160.0315 (11)0.0318 (11)0.0383 (12)0.0155 (9)0.0159 (9)0.0105 (9)
C170.0292 (11)0.0299 (11)0.0392 (13)0.0119 (9)0.0106 (9)0.0029 (9)
C180.0268 (10)0.0308 (11)0.0323 (11)0.0130 (9)0.0072 (9)0.0010 (9)
C190.0489 (15)0.0524 (15)0.0428 (14)0.0345 (13)0.0209 (11)0.0201 (12)
C200.0532 (15)0.0510 (15)0.0353 (13)0.0307 (13)0.0191 (11)0.0212 (11)
C210.0366 (12)0.0310 (11)0.0268 (11)0.0099 (9)0.0124 (9)0.0056 (9)
C220.0362 (12)0.0360 (12)0.0327 (12)0.0179 (10)0.0131 (9)0.0060 (9)
C230.0347 (11)0.0316 (11)0.0313 (12)0.0164 (9)0.0121 (9)0.0085 (9)
O10.0579 (12)0.0558 (12)0.0517 (12)0.0202 (10)0.0102 (10)0.0213 (10)
O20.0767 (14)0.0335 (10)0.0634 (13)0.0238 (10)0.0271 (11)0.0089 (9)
O30.0574 (12)0.0529 (12)0.0965 (17)0.0304 (10)0.0491 (12)0.0282 (11)
O40.0837 (16)0.0909 (17)0.0564 (13)0.0571 (14)0.0454 (12)0.0313 (12)
O50.0588 (12)0.0400 (10)0.0462 (11)0.0061 (9)0.0239 (10)0.0010 (8)
O60.0509 (11)0.0562 (11)0.0256 (9)0.0060 (9)0.0072 (8)0.0073 (8)
O70.0547 (12)0.0620 (13)0.0869 (16)0.0393 (11)0.0396 (11)0.0412 (12)
O80.0817 (15)0.0317 (10)0.0450 (12)0.0065 (10)0.0135 (11)0.0034 (8)
O90.0506 (11)0.0542 (11)0.0459 (11)0.0220 (9)0.0268 (9)0.0161 (9)
OW10.0604 (15)0.101 (2)0.0660 (17)0.0027 (14)0.0201 (13)0.0177 (15)
OW20.0408 (11)0.0915 (17)0.0729 (15)0.0320 (12)0.0181 (10)0.0380 (13)
OW30.0413 (10)0.0541 (12)0.0645 (14)0.0162 (9)0.0056 (9)0.0082 (10)
Geometric parameters (Å, º) top
Ni—N12.122 (2)C3—C41.504 (5)
Ni—N42.122 (2)C3—H3C0.9700
Ni—N62.124 (2)C3—H3D0.9700
Ni—N52.126 (2)C4—H4C0.9700
Ni—N22.132 (2)C4—H4D0.9700
Ni—N32.141 (2)C5—C61.505 (4)
Cu—N82.025 (2)C5—H5C0.9700
Cu—N8i2.025 (2)C5—H5D0.9700
Cu—N7i2.032 (2)C6—H6C0.9700
Cu—N72.032 (2)C6—H6D0.9700
Cu—OW32.447 (2)C7—C81.510 (4)
N1—C11.461 (3)C7—H7C0.9700
N1—H1A0.9000C7—H7D0.9700
N1—H1B0.9000C8—H8C0.9700
N2—C21.478 (3)C8—H8D0.9700
N2—H2A0.9000C9—C13ii1.361 (4)
N2—H2B0.9000C9—C101.412 (4)
N3—C31.471 (4)C9—H9A0.9300
N3—H3A0.9000C10—C111.355 (3)
N3—H3B0.9000C11—C121.434 (4)
N4—C41.484 (4)C11—H11A0.9300
N4—H4A0.9000C12—C131.405 (3)
N4—H4B0.9000C12—C12ii1.423 (5)
N5—C51.487 (3)C13—C9ii1.361 (4)
N5—H5A0.9000C13—H13A0.9300
N5—H5B0.9000C14—C151.364 (4)
N6—C61.471 (3)C14—C18iii1.411 (3)
N6—H6A0.9000C14—H14A0.9300
N6—H6B0.9000C15—C161.423 (3)
N7—C71.476 (3)C15—H15A0.9300
N7—H7A0.9000C16—C171.357 (3)
N7—H7B0.9000C17—C181.424 (3)
N8—C81.481 (3)C17—H17A0.9300
N8—H8A0.9000C18—C14iii1.411 (3)
N8—H8B0.9000C18—C18iii1.421 (4)
S1—O31.428 (2)C19—C201.363 (4)
S1—O21.445 (2)C19—C23iv1.412 (3)
S1—O11.452 (2)C19—H19A0.9300
S1—C101.781 (2)C20—C211.410 (4)
S2—O41.435 (2)C20—H20A0.9300
S2—O51.4463 (19)C21—C221.353 (3)
S2—O61.4464 (19)C22—C231.424 (3)
S2—C211.777 (2)C22—H22A0.9300
S3—O81.440 (2)C23—C19iv1.412 (3)
S3—O91.4465 (19)C23—C23iv1.415 (4)
S3—O71.451 (2)OW1—HW10.9002
S3—C161.775 (2)OW1—HW20.9353
C1—C21.497 (4)OW2—HW30.8374
C1—H1C0.9700OW2—HW40.8542
C1—H1D0.9700OW3—HW50.9208
C2—H2C0.9700OW3—HW60.9073
C2—H2D0.9700
N1—Ni—N4170.59 (9)C2—C1—H1D109.9
N1—Ni—N697.23 (9)H1C—C1—H1D108.3
N4—Ni—N691.59 (9)N2—C2—C1108.8 (2)
N1—Ni—N591.25 (8)N2—C2—H2C109.9
N4—Ni—N593.20 (8)C1—C2—H2C109.9
N6—Ni—N582.13 (9)N2—C2—H2D109.9
N1—Ni—N281.24 (8)C1—C2—H2D109.9
N4—Ni—N295.49 (9)H2C—C2—H2D108.3
N6—Ni—N290.42 (9)N3—C3—C4108.0 (2)
N5—Ni—N2168.70 (8)N3—C3—H3C110.1
N1—Ni—N389.98 (9)C4—C3—H3C110.1
N4—Ni—N381.40 (9)N3—C3—H3D110.1
N6—Ni—N3172.13 (9)C4—C3—H3D110.1
N5—Ni—N394.62 (9)H3C—C3—H3D108.4
N2—Ni—N393.81 (9)N4—C4—C3108.4 (2)
N8—Cu—N8i180.0N4—C4—H4C110.0
N8—Cu—N7i95.51 (9)C3—C4—H4C110.0
N8i—Cu—N7i84.49 (9)N4—C4—H4D110.0
N8—Cu—N784.49 (9)C3—C4—H4D110.0
N8i—Cu—N795.51 (9)H4C—C4—H4D108.4
N7i—Cu—N7180.0N5—C5—C6108.7 (2)
N8—Cu—OW388.00 (8)N5—C5—H5C109.9
N8i—Cu—OW392.00 (8)C6—C5—H5C109.9
N7i—Cu—OW393.13 (8)N5—C5—H5D109.9
N7—Cu—OW386.87 (8)C6—C5—H5D109.9
C1—N1—Ni108.87 (15)H5C—C5—H5D108.3
C1—N1—H1A109.9N6—C6—C5108.1 (2)
Ni—N1—H1A109.9N6—C6—H6C110.1
C1—N1—H1B109.9C5—C6—H6C110.1
Ni—N1—H1B109.9N6—C6—H6D110.1
H1A—N1—H1B108.3C5—C6—H6D110.1
C2—N2—Ni107.76 (15)H6C—C6—H6D108.4
C2—N2—H2A110.2N7—C7—C8107.7 (2)
Ni—N2—H2A110.2N7—C7—H7C110.2
C2—N2—H2B110.2C8—C7—H7C110.2
Ni—N2—H2B110.2N7—C7—H7D110.2
H2A—N2—H2B108.5C8—C7—H7D110.2
C3—N3—Ni107.12 (17)H7C—C7—H7D108.5
C3—N3—H3A110.3N8—C8—C7107.0 (2)
Ni—N3—H3A110.3N8—C8—H8C110.3
C3—N3—H3B110.3C7—C8—H8C110.3
Ni—N3—H3B110.3N8—C8—H8D110.3
H3A—N3—H3B108.5C7—C8—H8D110.3
C4—N4—Ni108.51 (17)H8C—C8—H8D108.6
C4—N4—H4A110.0C13ii—C9—C10120.6 (2)
Ni—N4—H4A110.0C13ii—C9—H9A119.7
C4—N4—H4B110.0C10—C9—H9A119.7
Ni—N4—H4B110.0C11—C10—C9120.9 (2)
H4A—N4—H4B108.4C11—C10—S1120.5 (2)
C5—N5—Ni105.90 (15)C9—C10—S1118.53 (19)
C5—N5—H5A110.6C10—C11—C12120.0 (2)
Ni—N5—H5A110.6C10—C11—H11A120.0
C5—N5—H5B110.6C12—C11—H11A120.0
Ni—N5—H5B110.6C13—C12—C12ii119.7 (3)
H5A—N5—H5B108.7C13—C12—C11121.9 (2)
C6—N6—Ni108.55 (16)C12ii—C12—C11118.4 (3)
C6—N6—H6A110.0C9ii—C13—C12120.4 (2)
Ni—N6—H6A110.0C9ii—C13—H13A119.8
C6—N6—H6B110.0C12—C13—H13A119.8
Ni—N6—H6B110.0C15—C14—C18iii120.6 (2)
H6A—N6—H6B108.4C15—C14—H14A119.7
C7—N7—Cu107.69 (16)C18iii—C14—H14A119.7
C7—N7—H7A110.2C14—C15—C16120.1 (2)
Cu—N7—H7A110.2C14—C15—H15A119.9
C7—N7—H7B110.2C16—C15—H15A119.9
Cu—N7—H7B110.2C17—C16—C15120.4 (2)
H7A—N7—H7B108.5C17—C16—S3121.67 (18)
C8—N8—Cu108.02 (16)C15—C16—S3117.86 (18)
C8—N8—H8A110.1C16—C17—C18120.9 (2)
Cu—N8—H8A110.1C16—C17—H17A119.6
C8—N8—H8B110.1C18—C17—H17A119.6
Cu—N8—H8B110.1C14iii—C18—C18iii119.6 (3)
H8A—N8—H8B108.4C14iii—C18—C17122.1 (2)
O3—S1—O2114.41 (14)C18iii—C18—C17118.3 (3)
O3—S1—O1112.90 (15)C20—C19—C23iv120.7 (2)
O2—S1—O1111.12 (13)C20—C19—H19A119.7
O3—S1—C10106.09 (12)C23iv—C19—H19A119.7
O2—S1—C10105.12 (12)C19—C20—C21119.4 (2)
O1—S1—C10106.43 (12)C19—C20—H20A120.3
O4—S2—O5115.23 (15)C21—C20—H20A120.3
O4—S2—O6111.94 (14)C22—C21—C20121.7 (2)
O5—S2—O6111.02 (13)C22—C21—S2119.89 (19)
O4—S2—C21106.75 (12)C20—C21—S2118.36 (18)
O5—S2—C21105.70 (11)C21—C22—C23120.2 (2)
O6—S2—C21105.42 (11)C21—C22—H22A119.9
O8—S3—O9113.13 (13)C23—C22—H22A119.9
O8—S3—O7113.79 (15)C19iv—C23—C23iv119.7 (3)
O9—S3—O7111.48 (13)C19iv—C23—C22122.0 (2)
O8—S3—C16106.56 (12)C23iv—C23—C22118.3 (3)
O9—S3—C16106.27 (11)HW1—OW1—HW2110.3
O7—S3—C16104.83 (11)HW3—OW2—HW4112.1
N1—C1—C2108.8 (2)Cu—OW3—HW5118.7
N1—C1—H1C109.9Cu—OW3—HW6109.5
C2—C1—H1C109.9HW5—OW3—HW6103.1
N1—C1—H1D109.9
N6—Ni—N1—C1103.40 (19)N7—C7—C8—N855.4 (3)
N5—Ni—N1—C1174.38 (19)C13ii—C9—C10—C110.6 (4)
N2—Ni—N1—C114.10 (18)C13ii—C9—C10—S1179.1 (2)
N3—Ni—N1—C179.76 (19)O3—S1—C10—C11103.2 (2)
N1—Ni—N2—C215.14 (19)O2—S1—C10—C11135.2 (2)
N4—Ni—N2—C2173.75 (19)O1—S1—C10—C1117.2 (2)
N6—Ni—N2—C282.11 (19)O3—S1—C10—C978.2 (2)
N5—Ni—N2—C233.6 (5)O2—S1—C10—C943.4 (2)
N3—Ni—N2—C2104.54 (19)O1—S1—C10—C9161.3 (2)
N1—Ni—N3—C3165.4 (2)C9—C10—C11—C121.7 (4)
N4—Ni—N3—C318.38 (19)S1—C10—C11—C12179.79 (18)
N5—Ni—N3—C374.2 (2)C10—C11—C12—C13179.4 (2)
N6—Ni—N4—C4171.79 (19)C10—C11—C12—C12ii2.1 (4)
N5—Ni—N4—C4106.01 (19)C12ii—C12—C13—C9ii0.4 (4)
N2—Ni—N4—C481.2 (2)C11—C12—C13—C9ii178.9 (3)
N3—Ni—N4—C411.81 (19)C18iii—C14—C15—C160.5 (4)
N1—Ni—N5—C578.36 (16)C14—C15—C16—C170.7 (4)
N4—Ni—N5—C5109.94 (16)C14—C15—C16—S3177.2 (2)
N6—Ni—N5—C518.77 (15)O8—S3—C16—C174.2 (2)
N2—Ni—N5—C530.3 (5)O9—S3—C16—C17125.1 (2)
N3—Ni—N5—C5168.44 (15)O7—S3—C16—C17116.7 (2)
N1—Ni—N6—C6101.46 (17)O8—S3—C16—C15177.9 (2)
N4—Ni—N6—C681.81 (18)O9—S3—C16—C1557.0 (2)
N5—Ni—N6—C611.20 (17)O7—S3—C16—C1561.1 (2)
N2—Ni—N6—C6177.31 (17)C15—C16—C17—C180.3 (3)
N8—Cu—N7—C714.53 (16)S3—C16—C17—C18177.52 (17)
N8i—Cu—N7—C7165.47 (16)C16—C17—C18—C14iii179.8 (2)
OW3—Cu—N7—C773.76 (16)C16—C17—C18—C18iii0.3 (4)
N7i—Cu—N8—C8164.64 (17)C23iv—C19—C20—C210.4 (4)
N7—Cu—N8—C815.36 (17)C19—C20—C21—C220.0 (4)
OW3—Cu—N8—C8102.41 (17)C19—C20—C21—S2178.6 (2)
Ni—N1—C1—C240.9 (3)O4—S2—C21—C2210.0 (2)
Ni—N2—C2—C141.6 (3)O5—S2—C21—C22113.2 (2)
N1—C1—C2—N255.8 (3)O6—S2—C21—C22129.2 (2)
Ni—N3—C3—C445.3 (3)O4—S2—C21—C20171.4 (2)
Ni—N4—C4—C339.8 (3)O5—S2—C21—C2065.4 (2)
N3—C3—C4—N457.7 (3)O6—S2—C21—C2052.2 (2)
Ni—N5—C5—C645.8 (2)C20—C21—C22—C230.2 (4)
Ni—N6—C6—C539.1 (2)S2—C21—C22—C23178.77 (17)
N5—C5—C6—N657.9 (3)C21—C22—C23—C19iv179.6 (2)
Cu—N7—C7—C841.2 (2)C21—C22—C23—C23iv0.1 (4)
Cu—N8—C8—C741.7 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.902.062.929 (3)162
N1—H1B···O4v0.902.393.274 (3)166
N1—H1B···O6v0.902.563.262 (3)135
N2—H2A···OW20.902.143.001 (3)161
N2—H2B···O8vi0.902.353.130 (3)144
N3—H3A···OW20.902.193.059 (3)161
N4—H4A···O70.902.223.081 (3)161
N4—H4B···O8vi0.902.173.006 (3)155
N5—H5A···O70.902.233.095 (3)161
N5—H5B···O6v0.902.152.992 (3)156
N6—H6A···O50.902.313.151 (3)156
N6—H6B···O8vi0.902.463.246 (3)146
N7—H7A···O5vii0.902.393.226 (3)155
N7—H7B···O2viii0.902.233.094 (3)160
N8—H8A···O90.902.373.086 (3)136
N8—H8B···O2ii0.902.443.268 (3)153
OW1—HW1···O3viii0.901.932.817 (3)168
OW1—HW2···O2ix0.941.932.804 (4)154
OW2—HW3···O9x0.841.982.809 (3)174
OW2—HW4···OW10.851.902.748 (3)173
OW3—HW5···O1viii0.921.982.889 (3)170
OW3—HW6···O5vi0.911.882.771 (3)169
Symmetry codes: (ii) x, y+1, z+1; (v) x+1, y+1, z; (vi) x, y, z; (vii) x, y, z+1; (viii) x, y1, z; (ix) x+1, y+1, z+1; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)2(H2O)2][Ni(C2H8N2)3](C10H6S2O6)3·4H2O
Mr1628.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.8728 (17), 12.5961 (17), 13.903 (2)
α, β, γ (°)91.553 (2), 105.950 (2), 115.017 (2)
V3)1786.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.24 × 0.20 × 0.08
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.78, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
10504, 7625, 6452
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.07
No. of reflections7625
No. of parameters430
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.45

Computer programs: SMART (Bruker, 1998), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O60.902.062.929 (3)162
N1—H1B···O4i0.902.393.274 (3)166
N1—H1B···O6i0.902.563.262 (3)135
N2—H2A···OW20.902.143.001 (3)161
N2—H2B···O8ii0.902.353.130 (3)144
N3—H3A···OW20.902.193.059 (3)161
N4—H4A···O70.902.223.081 (3)161
N4—H4B···O8ii0.902.173.006 (3)155
N5—H5A···O70.902.233.095 (3)161
N5—H5B···O6i0.902.152.992 (3)156
N6—H6A···O50.902.313.151 (3)156
N6—H6B···O8ii0.902.463.246 (3)146
N7—H7A···O5iii0.902.393.226 (3)155
N7—H7B···O2iv0.902.233.094 (3)160
N8—H8A···O90.902.373.086 (3)136
N8—H8B···O2v0.902.443.268 (3)153
OW1—HW1···O3iv0.901.932.817 (3)168
OW1—HW2···O2vi0.941.932.804 (4)154
OW2—HW3···O9vii0.841.982.809 (3)174
OW2—HW4···OW10.851.902.748 (3)173
OW3—HW5···O1iv0.921.982.889 (3)170
OW3—HW6···O5ii0.911.882.771 (3)169
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x, y, z+1; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds