Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the non-ribosomal lipoundecapeptide tensin from Pseudomonas fluorescens has been solved as an ethyl acetate/bis-water solvate (tensin ethyl acetate dihydrate, C67H115N12O20·C4H8O2·2H2O) to a resolution of 0.8 Å. The primary structure of tensin is β-hydroxydecanoyl-D-Leu-D-Asp-D-allo-Thr-D-Leu-D-Leu-D-Ser-L-Leu-D-Gln-L-Leu-L-Ile-L-Glu. The peptide is a lactone linking the Thr3 Oγ atom to the C-terminal C atom. The stereochemistry of the β-hydroxy acid has been shown to be S. The peptide shows structural resemblance to the non-ribosomal cyclic lipopeptide fengycin from Bacillus subtilis. The structure of tensin is essentially helical (310-helix), with the cyclic peptide wrapping around a hydrogen-bonded water molecule. The lipopeptide is amphipathic in good agreement with its function as a biosurfactant.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013414/gd1059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013414/gd1059Isup2.hkl
Contains datablock I

CCDC reference: 140972

Comment top

Several bacterial genera characteristically produce a wide variety of extracellular low molecular weight compounds classified as siderophores, antibiotics and toxins. Some of these are peptides produced non-ribosomally by large multifunctional peptide synthethases (Marahiel, 1992). The component amino acids and lipids are activated in the form of adenylate, acylphosphorylate or coenzyme A derivatives before enzymatic condensation (Stachelhaus et al., 1998). It is now accepted, that this non-ribosomal synthetic route utilizing L–, D– and modified amino acids, is an alternative way of producing specialized peptides.

Bacillus subtilis has been a source of these bioactive peptides, especially the cyclic lipopeptides surfactin (Arima et al., 1968) with many isoforms, fengycin (Vanittanakom et al., 1986), and the members of the iturin family - iturin, mycosubtilin and bacillomycin (Peypoux et al., 1980). The plipstatins, which are very similar to fengycin have been isolates and characterized from Bacillus cereus (Umezawa et al., 1986). All of these compounds represent amphiphilic, membrane active biosurfactants with specific antimicrobial activities, and fengycin and the plipstatins inhibit phospholipase A2 (Umezawa et al., 1986).

Pseudomonas flourescens strains produce a number of cyclic lipopeptides with biosurfactant and antifungal properties, e.g. viscosinamide (Nielsen, Christophersen et al., 1999) and tensin (Nielsen, Thrane et al., 1999). In this paper we present the structure of tensin, (I), which is related to surfactin, a cyclic lipopeptide with seven amino acids in the lactone ring and with the hydroxy-oxygen of the β-hydroxy fatty acid involved in the lactone formation. The three-dimensional structure of surfactin has been established by NMR-spectroscopy (Bonmatin et al., 1994). Tensin is even more closely related to the cyclic lipopeptide fengycin with ten amino acids and to the white-line-inducing principle from Pseudomonas reactans with eight amino acids, and known crystal structure (Han et al., 1992). Many studies have been undertaken addressing the interaction of biosurfactants and membranes or lipid layer model systems. Surfactin has been used for many of these investigations (Sheppard et al., 1991; Grau et al., 1999). The general model of interaction between membranes and surfactin (and anionic biosurfactants in general) is pore formation by clustered peptides. In surfactin two closely situated carboxylic groups on the hydrophilic side also bind metal ions at high pH. The degree of surface penetration is still a subject of debate, but it appears as if the biosurfactants does not penetrate deeply into the membranes. Direct microscopic observations of the antagonistic activity against the plant pathogenic micro fungus Rhizoctonia solani suggested that tensin may affect the fungi differently as compared to viscosinamide studied previously (Nielsen, Thrane et al., 1999), which have Ca2+ channel forming properties (Thrane et al., 1999).

The structure of tensin is shown in figure 1. The absolute configuration fixed by the side-chain stereochemistry of isoleucine and threonine was supported by a Martley analysis (Martley, 1984). The Flack parameter was inconclusive. The peptide shows a disordered lipid and two disordered side-chains. This degree of disorder is comparable to what is seen in high-resolution protein structures. The peptide is essentially helical (310-helix from Leu 1 to Leu 7), with the rest of the cyclic peptide wrapping around a water molecule. The coordination of the water is close to tetrahedral and it is donating two and accepting two peptide hydrogen bonds. Another water molecule and an ethylacetate moiety are also found in the crystal structure. It is obvious that the molecule has two very different sides: a hydrophobic and a hydrophilic, in agreement with its function as a biosurfactant. The two residues that are negatively charged at high pH are situated on the hydrophilic side of the molecule, but are quite distant from each other. The closest distance between atoms of the two residues is 9.364 (7) Å, much longer than the difference observed in surfactin. This makes it unlikely that tensin can form 1:1 complexes with Ca2+ as surfactin (Maget-Dana et al., 1992), at least in the conformation observed in this crystal structure. It is however common that these non-ribosomal lipopeptides can adopt a number of distinct and different conformations. This is for example the case for surfactin, where the NMR studies revealed two very different conformations (Bonmatin et al., 1994). The conformation of surfactin has also been shown to be highly dependent on the nature of the solvent (Itokawa et al., 1994). Inspection of the structure seems to suggest that major degrees of freedom of the tensin molecule are associated with the ϕ and ψ angles of Asp 2 and the ϕ value of Thr 3. The conformation of the rest of the molecule appears to be fixed by the lactone-ring formation. Changes of one of these three angles will make it possible to position the lipid chain orthogonal to the plane of the tensin ring. This in turn would make tensin an analogue of a phospholipid with a very bulky head group. If the rings now associate (e.g. via complexation of metal ions by the carboxylate groups from adjacent tensins) this could be the structural basis of the pore formation in biological membranes.

The packing in the crystal does not suggest multimerization of the tensin molecules, and the hydrophobic tail of the lipid is seen to pack closely to the rest of the peptide. Hence, in order to obtain information on more biologically relevant conformations, structural and functional studies of the molecule when absorbed into living membranes should be undertaken.

Experimental top

Tensin was isolated and purified as desribed elsewhere (Nielsen, Thrane et al., 1999). The crystals were grown from a water-saturated ethyl acetate solution at 278 K. Crystals suitable for single-crystal X-ray diffraction appeared after one month.

Refinement top

All ordered and major conformation (~70% occupancy) non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were located in difference fourier maps and treated as riding to the appropiate heavy atoms. A number of the residues were found to have more than one conformation. The last seven carbon atoms of the lipid group were found to occupy two positions. Also all atoms after Cα of L5 and all atoms after Cα of E12 showed two different conformations. This relatively high degree of disorder is probably the reason for the R-factor and internal R-factor being somewhat high compared to average small molecule data.

Computing details top

Data collection: CAD-4 Express (Enraf-Nonius, 1994); cell refinement: CAD-4 Express; data reduction: XCAD4 (Harms, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: VMD (Humphrey et al., 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Stereo VMD (Humphrey et al., 1996) drawing of the title compound. Only the most occupied sites of the lipid, Leu 5 and Glu 11 are drawn. The lipid is in the N/terminal end, while the C-terminal end forms a lactone with Thr 3. The molecule is viewed from its polar side with the hydrogen-bonded water molecule included.
S-β-hydroxydecanoyl-D-Leu-D-Asp-D-allo-Thr-D-Leu-D-Leu-D-Ser-L-Leu- D-Gln-L-Leu-L-Ile-L-Glu:ethylacetate:dihydrate top
Crystal data top
C67H115N12O20·C4H8O2·2H2ODx = 1.138 Mg m3
Mr = 1532.84Cu Kα radiation, λ = 1.54180 Å
Orthorhombic, P212121Cell parameters from 20 reflections
a = 13.245 (10) Åθ = 40.3–43.6°
b = 21.984 (10) ŵ = 0.71 mm1
c = 30.732 (10) ÅT = 122 K
V = 8948 (8) Å3Prism, colourless
Z = 40.32 × 0.23 × 0.15 mm
F(000) = 3316
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.087
Radiation source: fine-focus sealed tubeθmax = 75.0°, θmin = 2.5°
Graphite monochromatorh = 1616
ω–2θ scansk = 027
21476 measured reflectionsl = 3738
11858 independent reflections5 standard reflections every 166.7 min
8739 reflections with I > 2σ(I) intensity decay: 5.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.1131P)2 + 1.4802P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.025
11858 reflectionsΔρmax = 0.41 e Å3
1031 parametersΔρmin = 0.40 e Å3
34 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (3)
Crystal data top
C67H115N12O20·C4H8O2·2H2OV = 8948 (8) Å3
Mr = 1532.84Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 13.245 (10) ŵ = 0.71 mm1
b = 21.984 (10) ÅT = 122 K
c = 30.732 (10) Å0.32 × 0.23 × 0.15 mm
Data collection top
Enraf Nonius CAD4
diffractometer
Rint = 0.087
21476 measured reflections5 standard reflections every 166.7 min
11858 independent reflections intensity decay: 5.6%
8739 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.070H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205Δρmax = 0.41 e Å3
S = 1.04Δρmin = 0.40 e Å3
11858 reflectionsAbsolute structure: Flack (1983)
1031 parametersAbsolute structure parameter: 0.3 (3)
34 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct methods and refined with the full-matrix least-squares technique.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.1179 (7)0.8020 (4)0.1832 (3)0.045 (2)0.723 (7)
H3A0.06360.77920.16970.054*0.723 (7)
H3B0.09140.84150.19150.054*0.723 (7)
C40.1530 (8)0.7686 (5)0.2238 (3)0.059 (2)*0.723 (7)
H4A0.17330.72770.21580.071*0.723 (7)
H4B0.21180.78920.23550.071*0.723 (7)
C50.0747 (7)0.7649 (4)0.2583 (3)0.052 (2)*0.723 (7)
H5A0.01870.74060.24770.063*0.723 (7)
H5B0.04940.80540.26430.063*0.723 (7)
C60.1146 (11)0.7370 (6)0.3003 (4)0.068 (3)*0.723 (7)
H6A0.17180.76090.31010.081*0.723 (7)
H6B0.13910.69640.29390.081*0.723 (7)
C70.0387 (7)0.7327 (4)0.3376 (3)0.055 (2)0.723 (7)
H7A0.00900.77260.34180.066*0.723 (7)
H7B0.01510.70540.32880.066*0.723 (7)
C80.0793 (9)0.7112 (6)0.3803 (4)0.086 (4)0.723 (7)
H8A0.10280.66970.37680.103*0.723 (7)
H8B0.13740.73590.38770.103*0.723 (7)
C90.0078 (10)0.7129 (5)0.4171 (4)0.079 (3)0.723 (7)
H9A0.04040.69760.44280.118*0.723 (7)
H9B0.04990.68810.41050.118*0.723 (7)
H9C0.01360.75400.42200.118*0.723 (7)
C3'0.0918 (16)0.7944 (9)0.1681 (6)0.028 (5)*0.277 (7)
H3C0.05750.83190.17580.033*0.277 (7)
H3D0.05400.77570.14460.033*0.277 (7)
C4'0.0891 (17)0.7514 (9)0.2078 (6)0.044 (5)*0.277 (7)
H4C0.12120.71330.20010.053*0.277 (7)
H4D0.01940.74290.21530.053*0.277 (7)
C5'0.147 (2)0.7809 (11)0.2506 (8)0.056 (6)*0.277 (7)
H5C0.21700.78970.24370.067*0.277 (7)
H5D0.11430.81830.25940.067*0.277 (7)
C6'0.141 (3)0.7322 (17)0.2882 (12)0.077 (10)*0.277 (7)
H6C0.13900.75430.31550.092*0.277 (7)
H6D0.07600.71180.28540.092*0.277 (7)
C7'0.214 (2)0.6876 (12)0.2921 (8)0.062 (6)*0.277 (7)
H7C0.27890.70690.28850.074*0.277 (7)
H7D0.20510.65960.26790.074*0.277 (7)
C8'0.218 (3)0.6485 (15)0.3356 (11)0.088 (9)*0.277 (7)
H8C0.23780.67470.35940.105*0.277 (7)
H8D0.15030.63350.34190.105*0.277 (7)
C9'0.289 (4)0.595 (2)0.3333 (14)0.122 (15)*0.277 (7)
H9D0.28700.57280.36020.184*0.277 (7)
H9E0.35680.60950.32850.184*0.277 (7)
H9F0.26990.56870.30980.184*0.277 (7)
O0.1788 (3)0.93968 (14)0.15981 (10)0.0327 (7)
C0.1578 (4)0.9172 (2)0.12374 (15)0.0338 (10)
C10.1807 (6)0.8513 (2)0.11253 (18)0.0468 (14)
H1A0.12410.83490.09630.056*
H1B0.23930.85030.09360.056*
C20.2004 (4)0.8107 (2)0.15093 (17)0.0373 (11)
H20.25620.82960.16690.045*
O10.2386 (3)0.75343 (16)0.13533 (14)0.0488 (10)
N_10.1186 (3)0.95061 (18)0.09162 (12)0.0319 (8)
H0_10.10680.93410.06670.038*
CA_10.0954 (4)1.0154 (2)0.09842 (15)0.0324 (10)
HA_10.04241.01860.12060.039*
C_10.1866 (4)1.0499 (2)0.11389 (14)0.0311 (10)
O_10.1771 (3)1.09158 (15)0.14098 (10)0.0370 (8)
CB_10.0561 (4)1.0436 (3)0.05569 (17)0.0414 (12)
HB1_10.05101.08730.05970.050*
HB2_10.10581.03640.03310.050*
CG_10.0464 (6)1.0200 (3)0.0396 (2)0.0575 (17)
HG_10.03910.97650.03330.069*
CD1_10.0734 (7)1.0522 (3)0.0032 (3)0.078 (3)
HD1A_10.01911.04730.02360.118*
HD1B_10.08401.09470.00220.118*
HD1C_10.13391.03470.01500.118*
CD2_10.1320 (5)1.0272 (4)0.0726 (3)0.076 (2)
HD2A_10.11361.00740.09930.113*
HD2B_10.19241.00900.06130.113*
HD2C_10.14361.06960.07800.113*
N_20.2760 (3)1.03586 (16)0.09652 (11)0.0290 (8)
H0_20.27961.00710.07760.035*
CA_20.3669 (4)1.0681 (2)0.10879 (15)0.0323 (10)
HA_20.35171.11160.10630.039*
C_20.3972 (4)1.0567 (2)0.15619 (14)0.0357 (11)
O_20.4504 (4)1.0938 (2)0.17522 (12)0.0612 (13)
CB_20.4538 (4)1.0554 (2)0.07804 (15)0.0336 (10)
HB1_20.43591.07070.04940.040*
HB2_20.51221.07820.08790.040*
CG_20.4834 (4)0.9894 (2)0.07372 (15)0.0334 (10)
OD1_20.5623 (3)0.9842 (2)0.04751 (14)0.0460 (10)
OD2_20.4412 (3)0.94763 (15)0.09161 (11)0.0380 (8)
HD1_20.569 (7)0.948 (4)0.042 (3)0.04 (3)*
N_30.3634 (3)1.00631 (16)0.17544 (11)0.0278 (8)
H0_30.33110.97960.16050.033*
CA_30.3809 (4)0.99638 (19)0.22142 (14)0.0285 (9)
HA_30.44981.00980.22810.034*
C_30.3078 (4)1.03506 (19)0.24844 (14)0.0281 (9)
O_30.3387 (3)1.06449 (14)0.28036 (10)0.0307 (7)
CB_30.3740 (5)0.9281 (2)0.23162 (15)0.0370 (11)
HB_30.30560.91300.22620.044*
OG1_30.3994 (3)0.92265 (15)0.27750 (10)0.0378 (8)
CG2_30.4497 (6)0.8920 (3)0.20660 (18)0.0604 (19)
HG2A_30.44260.84970.21370.091*
HG2B_30.51650.90540.21400.091*
HG2C_30.43860.89760.17600.091*
N_40.2122 (3)1.03785 (17)0.23571 (12)0.0298 (8)
H0_40.19101.01570.21450.036*
CA_40.1433 (4)1.0795 (2)0.25843 (15)0.0312 (10)
HA_40.13881.06650.28890.037*
C_40.1842 (4)1.1445 (2)0.25742 (14)0.0305 (10)
O_40.1803 (3)1.17747 (15)0.29038 (10)0.0387 (8)
CB_40.0377 (4)1.0770 (3)0.23882 (19)0.0437 (12)
HB1_40.00371.10750.25300.052*
HB2_40.04231.08790.20830.052*
CG_40.0147 (7)1.0165 (4)0.2424 (3)0.081 (2)
HG_40.01950.99100.22090.097*
CD1_40.1234 (7)1.0245 (6)0.2236 (4)0.120 (4)
HD1A_40.12041.04860.19760.181*
HD1B_40.16521.04460.24470.181*
HD1C_40.15150.98540.21700.181*
CD2_40.0072 (10)0.9840 (6)0.2801 (5)0.168 (7)
HD2A_40.04380.94650.27720.252*
HD2B_40.03521.00720.30370.252*
HD2C_40.06250.97540.28600.252*
CB_50.2534 (12)1.2436 (5)0.1641 (4)0.028 (3)0.681 (9)
HB1_50.30201.21840.14880.033*0.681 (9)
HB2_50.18691.23390.15280.033*0.681 (9)
CG_50.2769 (7)1.3120 (3)0.1544 (2)0.0337 (18)0.681 (9)
HG_50.34751.31980.16210.040*0.681 (9)
CD1_50.2654 (8)1.3206 (4)0.1049 (2)0.045 (2)0.681 (9)
HD1A_50.30841.29230.09000.067*0.681 (9)
HD1B_50.28421.36140.09720.067*0.681 (9)
HD1C_50.19651.31350.09670.067*0.681 (9)
CD2_50.2116 (8)1.3562 (3)0.1793 (3)0.052 (2)0.681 (9)
HD2A_50.22251.35100.20990.078*0.681 (9)
HD2B_50.14191.34870.17260.078*0.681 (9)
HD2C_50.22881.39700.17110.078*0.681 (9)
CB_5'0.244 (4)1.244 (2)0.1717 (13)0.063 (17)*0.319 (9)
HB3_50.28041.21450.15390.076*0.319 (9)
HB4_50.27711.28280.16760.076*0.319 (9)
CG_5'0.134 (3)1.2492 (15)0.1529 (10)0.090 (9)*0.319 (9)
HG1_50.09621.21290.16130.108*0.319 (9)
CD1_5'0.087 (3)1.3098 (19)0.1799 (13)0.134 (14)*0.319 (9)
HD1D_50.08551.30120.21050.201*0.319 (9)
HD1E_50.01951.31780.16990.201*0.319 (9)
HD1F_50.12861.34470.17470.201*0.319 (9)
CD2_5'0.120 (5)1.260 (3)0.1094 (17)0.20 (2)*0.319 (9)
HD2D_50.15451.22900.09280.298*0.319 (9)
HD2E_50.14631.29900.10190.298*0.319 (9)
HD2F_50.04911.25830.10290.298*0.319 (9)
N_50.2203 (3)1.16454 (17)0.21948 (12)0.0324 (9)
H0_50.22241.14010.19760.039*
CA_50.2567 (4)1.2273 (2)0.21401 (14)0.0339 (11)
HA_50.20921.25430.22900.041*
C_50.3608 (5)1.2387 (2)0.23284 (15)0.0396 (12)
O_50.3965 (4)1.29016 (18)0.23369 (14)0.0591 (13)
N_60.4093 (3)1.19088 (18)0.25092 (12)0.0341 (9)
H0_60.38221.15540.25010.041*
CA_60.5071 (4)1.1990 (2)0.27177 (15)0.0376 (11)
HA_60.55161.22080.25170.045*
C_60.4983 (4)1.2358 (2)0.31367 (15)0.0315 (10)
O_60.5748 (3)1.25535 (17)0.33150 (12)0.0416 (9)
CB_60.5551 (5)1.1393 (3)0.28285 (19)0.0461 (13)
HB1_60.55241.11290.25750.055*
HB2_60.62561.14600.28990.055*
OG_60.5077 (3)1.10927 (16)0.31849 (11)0.0405 (8)
HG_60.44831.10280.31260.061*
N_70.4066 (3)1.24178 (17)0.33158 (11)0.0285 (8)
H0_70.35571.22520.31900.034*
CA_70.3907 (4)1.27548 (19)0.37170 (14)0.0277 (9)
HA_70.43411.31150.37080.033*
C_70.4194 (3)1.2389 (2)0.41228 (14)0.0266 (9)
O_70.4144 (3)1.26287 (15)0.44844 (10)0.0337 (7)
CB_70.2809 (4)1.2976 (2)0.37321 (17)0.0342 (10)
HB1_70.23651.26360.36710.041*
HB2_70.26591.31190.40240.041*
CG_70.2592 (5)1.3485 (3)0.3409 (2)0.0494 (14)
HG_70.29121.33870.31310.059*
CD1_70.1435 (6)1.3528 (4)0.3342 (4)0.100 (3)
HD1A_70.11841.31440.32400.150*
HD1B_70.12871.38380.31320.150*
HD1C_70.11161.36270.36140.150*
CD2_70.3004 (6)1.4082 (3)0.3571 (2)0.0593 (17)
HD2A_70.28641.43950.33620.089*
HD2B_70.37201.40480.36120.089*
HD2C_70.26891.41830.38430.089*
N_80.4500 (3)1.18165 (16)0.40652 (11)0.0257 (7)
H0_80.44881.16600.38090.031*
CA_80.4855 (3)1.1452 (2)0.44301 (14)0.0270 (9)
HA_80.53381.16970.45960.032*
C_80.4009 (4)1.12603 (19)0.47374 (13)0.0254 (9)
O_80.4215 (3)1.11024 (16)0.51113 (10)0.0355 (8)
CB_80.5411 (4)1.0893 (2)0.42575 (15)0.0314 (10)
HB1_80.49871.06890.40450.038*
HB2_80.55301.06130.44960.038*
CG_80.6423 (4)1.1056 (2)0.40452 (16)0.0350 (10)
HG1_80.66311.07240.38570.042*
HG2_80.63341.14140.38650.042*
CD_80.7249 (4)1.1178 (2)0.43772 (15)0.0327 (10)
OE1_80.7224 (3)1.09298 (16)0.47376 (12)0.0415 (8)
NE2_80.8010 (3)1.1529 (2)0.42516 (15)0.0426 (10)
HE2A_80.85111.15910.44240.051*
HE2B_80.80021.16940.39980.051*
N_90.3071 (3)1.12688 (16)0.45799 (11)0.0248 (7)
H0_90.29801.13900.43170.030*
CA_90.2191 (4)1.1082 (2)0.48334 (13)0.0265 (9)
HA_90.23271.11640.51410.032*
C_90.2017 (3)1.04007 (19)0.47778 (13)0.0254 (9)
O_90.1979 (3)1.00418 (15)0.50891 (10)0.0366 (8)
CB_90.1254 (4)1.1444 (2)0.46968 (15)0.0305 (10)
HB1_90.07131.13580.49000.037*
HB2_90.10391.13050.44120.037*
CG_90.1417 (4)1.2136 (2)0.46785 (16)0.0340 (10)
HG_90.19351.22150.44580.041*
CD1_90.1795 (4)1.2392 (2)0.51022 (19)0.0441 (13)
HD1A_90.24051.21850.51850.066*
HD1B_90.12921.23350.53230.066*
HD1C_90.19301.28180.50690.066*
CD2_90.0459 (4)1.2449 (2)0.45312 (17)0.0411 (12)
HD2A_90.02431.22780.42590.062*
HD2B_90.05851.28760.44950.062*
HD2C_90.00581.23920.47460.062*
N_100.1910 (4)1.02259 (17)0.43632 (12)0.0335 (9)
H0_100.19171.05080.41690.040*
CA_100.1787 (4)0.9617 (2)0.42122 (15)0.0343 (10)
HA_100.19040.93330.44520.041*
C_100.2570 (5)0.9519 (2)0.38630 (16)0.0394 (12)
O_100.2770 (4)0.99305 (17)0.36062 (14)0.0663 (15)
CB_100.0700 (5)0.9528 (3)0.4031 (2)0.0542 (15)
HB_100.06050.98280.37990.065*
CG1_100.0085 (5)0.9677 (4)0.4394 (3)0.070 (2)
HG1A_100.00980.93430.46010.083*
HG1B_100.01351.00380.45480.083*
CG2_100.0520 (7)0.8922 (3)0.3839 (3)0.075 (2)
HG2A_100.01610.89000.37330.112*
HG2B_100.06220.86150.40560.112*
HG2C_100.09810.88580.36020.112*
CD1_100.1168 (6)0.9783 (4)0.4223 (4)0.091 (3)
HD1A_100.16080.98740.44620.137*
HD1B_100.14010.94230.40770.137*
HD1C_100.11671.01180.40220.137*
N_110.3010 (4)0.89743 (18)0.38294 (13)0.0426 (11)
H0_110.28640.86880.40090.051*
CA_110.3744 (5)0.8875 (2)0.34815 (16)0.0467 (14)
HA_110.43590.91130.35290.056*
C_110.3280 (5)0.9013 (2)0.30415 (16)0.0436 (13)
O_110.2413 (4)0.8913 (3)0.29452 (15)0.0749 (15)
CB_110.3990 (6)0.8172 (3)0.3434 (2)0.0324 (17)0.664 (9)
HB1_110.33680.79440.33990.039*0.664 (9)
HB2_110.44050.81050.31780.039*0.664 (9)
CG_110.4543 (7)0.7957 (3)0.3836 (2)0.038 (2)0.664 (9)
HG1_110.40960.79890.40850.046*0.664 (9)
HG2_110.51170.82210.38880.046*0.664 (9)
CD_110.4919 (9)0.7294 (5)0.3798 (3)0.038 (3)0.664 (9)
OE1_110.5314 (6)0.7046 (3)0.41120 (19)0.0497 (18)0.664 (9)
OE2_110.4807 (5)0.7058 (3)0.34168 (19)0.0456 (17)*0.664 (9)
HE2_110.50130.67070.34190.068*0.664 (9)
CB_11'0.4427 (11)0.8338 (6)0.3582 (5)0.039 (4)*0.336 (9)
HB3_110.50070.83400.33890.046*0.336 (9)
HB4_110.46670.83610.38790.046*0.336 (9)
CG_11'0.3822 (13)0.7772 (6)0.3517 (6)0.050 (5)*0.336 (9)
HG3_110.35380.77780.32260.060*0.336 (9)
HG4_110.32640.77740.37210.060*0.336 (9)
CD_11'0.4407 (12)0.7189 (6)0.3574 (5)0.042 (4)*0.336 (9)
OE1_11'0.4164 (10)0.6780 (5)0.3318 (4)0.051 (4)*0.336 (9)
OE2_11'0.5106 (16)0.7173 (11)0.3856 (8)0.064 (7)*0.336 (9)
HE2A_110.54260.68560.38290.096*0.336 (9)
C_120.2493 (10)0.7925 (4)0.4874 (3)0.100 (4)
C1_120.2223 (11)0.8335 (4)0.5246 (3)0.119 (4)
H1A_120.22580.81110.55140.178*
H1B_120.15500.84880.52060.178*
H1C_120.26880.86700.52570.178*
O_120.2517 (7)0.8072 (2)0.44995 (18)0.107 (3)
O1_120.2722 (7)0.7370 (3)0.50026 (19)0.111 (3)
C2_120.3038 (10)0.6923 (4)0.4687 (3)0.101 (4)
H2A_120.24860.68330.44900.121*
H2B_120.35980.70800.45170.121*
C3_120.3341 (8)0.6382 (4)0.4911 (3)0.094 (3)
H3A_120.35530.60820.47030.140*
H3B_120.27820.62270.50760.140*
H3C_120.38910.64740.51040.140*
O1_130.2399 (3)1.11851 (17)0.36699 (10)0.0366 (8)
H1_130.209 (5)1.137 (3)0.346 (2)0.046 (17)*
H2_130.268 (5)1.091 (3)0.361 (2)0.04 (2)*
O1_140.6164 (3)0.8782 (2)0.02202 (14)0.0454 (9)
H1_140.607 (6)0.915 (4)0.033 (3)0.18 (2)*
H2_140.614 (6)0.845 (3)0.033 (2)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.039 (5)0.033 (4)0.064 (6)0.007 (3)0.010 (4)0.000 (4)
C70.060 (5)0.045 (4)0.060 (5)0.001 (4)0.000 (4)0.006 (4)
C80.065 (7)0.093 (8)0.101 (9)0.013 (6)0.016 (7)0.055 (7)
C90.090 (8)0.063 (6)0.083 (7)0.008 (6)0.009 (7)0.019 (6)
O0.0414 (19)0.0326 (16)0.0240 (15)0.0060 (15)0.0025 (14)0.0046 (12)
C0.039 (3)0.034 (2)0.028 (2)0.005 (2)0.002 (2)0.0070 (19)
C10.073 (4)0.031 (2)0.036 (3)0.003 (3)0.003 (3)0.009 (2)
C20.038 (3)0.035 (2)0.039 (3)0.005 (2)0.011 (2)0.011 (2)
O10.048 (2)0.0362 (18)0.063 (2)0.0086 (18)0.006 (2)0.0202 (18)
N_10.039 (2)0.038 (2)0.0189 (17)0.0013 (18)0.0024 (16)0.0103 (15)
CA_10.035 (2)0.039 (2)0.024 (2)0.003 (2)0.001 (2)0.0035 (19)
C_10.042 (3)0.031 (2)0.0208 (19)0.002 (2)0.001 (2)0.0042 (17)
O_10.048 (2)0.0371 (17)0.0258 (16)0.0053 (16)0.0007 (15)0.0117 (13)
CB_10.047 (3)0.044 (3)0.033 (3)0.001 (3)0.008 (2)0.006 (2)
CG_10.066 (4)0.048 (3)0.059 (4)0.014 (3)0.023 (3)0.012 (3)
CD1_10.088 (6)0.065 (4)0.083 (5)0.024 (4)0.049 (5)0.013 (4)
CD2_10.048 (4)0.084 (5)0.095 (6)0.003 (4)0.018 (4)0.007 (5)
N_20.042 (2)0.0257 (17)0.0196 (16)0.0043 (17)0.0008 (17)0.0055 (14)
CA_20.044 (3)0.023 (2)0.029 (2)0.004 (2)0.004 (2)0.0012 (17)
C_20.046 (3)0.040 (2)0.021 (2)0.014 (2)0.005 (2)0.0050 (18)
O_20.089 (3)0.069 (3)0.0262 (18)0.053 (3)0.003 (2)0.0019 (18)
CB_20.046 (3)0.033 (2)0.022 (2)0.009 (2)0.003 (2)0.0013 (18)
CG_20.042 (3)0.037 (2)0.022 (2)0.000 (2)0.007 (2)0.0023 (18)
OD1_20.047 (2)0.038 (2)0.053 (2)0.0033 (18)0.0212 (19)0.0004 (17)
OD2_20.051 (2)0.0328 (16)0.0303 (16)0.0005 (16)0.0110 (16)0.0011 (14)
N_30.038 (2)0.0259 (17)0.0190 (16)0.0034 (16)0.0002 (16)0.0057 (14)
CA_30.037 (2)0.028 (2)0.020 (2)0.0001 (19)0.0016 (19)0.0036 (16)
C_30.041 (3)0.0240 (19)0.0194 (19)0.0041 (19)0.0007 (19)0.0028 (16)
O_30.0417 (19)0.0308 (16)0.0197 (14)0.0000 (14)0.0043 (14)0.0055 (12)
CB_30.055 (3)0.029 (2)0.027 (2)0.009 (2)0.001 (2)0.0029 (18)
OG1_30.056 (2)0.0349 (16)0.0224 (15)0.0074 (17)0.0021 (16)0.0045 (13)
CG2_30.095 (5)0.052 (3)0.034 (3)0.037 (4)0.008 (3)0.011 (2)
N_40.035 (2)0.0303 (18)0.0244 (17)0.0024 (17)0.0011 (16)0.0065 (15)
CA_40.032 (2)0.037 (2)0.024 (2)0.002 (2)0.0052 (19)0.0056 (18)
C_40.036 (2)0.033 (2)0.023 (2)0.009 (2)0.0011 (19)0.0013 (17)
O_40.057 (2)0.0341 (16)0.0247 (16)0.0096 (17)0.0031 (16)0.0037 (13)
CB_40.033 (3)0.058 (3)0.040 (3)0.000 (3)0.002 (2)0.004 (3)
CG_40.066 (5)0.082 (5)0.095 (6)0.025 (4)0.016 (5)0.006 (5)
CD1_40.068 (6)0.130 (9)0.163 (11)0.027 (6)0.030 (7)0.033 (8)
CD2_40.118 (10)0.164 (12)0.222 (16)0.097 (9)0.060 (10)0.106 (12)
CB_50.049 (6)0.025 (4)0.009 (3)0.009 (3)0.006 (3)0.002 (3)
CG_50.053 (5)0.028 (3)0.020 (3)0.007 (3)0.000 (3)0.005 (2)
CD1_50.065 (5)0.046 (4)0.024 (3)0.006 (4)0.005 (4)0.011 (3)
CD2_50.069 (6)0.033 (4)0.053 (5)0.024 (4)0.010 (5)0.001 (3)
N_50.047 (2)0.0281 (18)0.0220 (17)0.0003 (18)0.0006 (18)0.0018 (14)
CA_50.055 (3)0.027 (2)0.020 (2)0.000 (2)0.002 (2)0.0012 (16)
C_50.062 (3)0.040 (3)0.017 (2)0.007 (3)0.004 (2)0.0041 (19)
O_50.085 (3)0.040 (2)0.052 (2)0.025 (2)0.027 (2)0.0174 (18)
N_60.046 (2)0.0336 (19)0.0222 (18)0.0105 (19)0.0069 (18)0.0030 (15)
CA_60.043 (3)0.045 (3)0.025 (2)0.015 (2)0.001 (2)0.003 (2)
C_60.036 (3)0.034 (2)0.025 (2)0.012 (2)0.001 (2)0.0045 (18)
O_60.0373 (19)0.046 (2)0.041 (2)0.0167 (17)0.0027 (16)0.0057 (16)
CB_60.045 (3)0.052 (3)0.041 (3)0.004 (3)0.001 (3)0.006 (2)
OG_60.045 (2)0.0426 (19)0.0336 (18)0.0065 (17)0.0093 (16)0.0002 (15)
N_70.034 (2)0.0306 (18)0.0213 (17)0.0123 (17)0.0050 (16)0.0002 (14)
CA_70.036 (2)0.0228 (19)0.024 (2)0.0059 (19)0.0060 (19)0.0033 (16)
C_70.029 (2)0.030 (2)0.021 (2)0.0041 (19)0.0002 (17)0.0037 (17)
O_70.0434 (19)0.0350 (16)0.0227 (15)0.0061 (15)0.0031 (14)0.0029 (12)
CB_70.036 (3)0.029 (2)0.037 (2)0.002 (2)0.004 (2)0.0074 (19)
CG_70.046 (3)0.043 (3)0.059 (4)0.002 (3)0.021 (3)0.016 (3)
CD1_70.061 (5)0.091 (6)0.148 (9)0.001 (5)0.055 (6)0.044 (6)
CD2_70.064 (4)0.038 (3)0.076 (4)0.004 (3)0.011 (4)0.012 (3)
N_80.0304 (19)0.0298 (17)0.0168 (16)0.0012 (16)0.0035 (15)0.0009 (14)
CA_80.025 (2)0.032 (2)0.025 (2)0.0017 (18)0.0002 (18)0.0021 (17)
C_80.030 (2)0.027 (2)0.0182 (19)0.0013 (18)0.0003 (18)0.0010 (16)
O_80.0352 (18)0.0449 (18)0.0264 (16)0.0049 (16)0.0040 (14)0.0104 (14)
CB_80.036 (2)0.032 (2)0.027 (2)0.001 (2)0.000 (2)0.0014 (18)
CG_80.032 (2)0.041 (2)0.032 (2)0.001 (2)0.000 (2)0.002 (2)
CD_80.037 (3)0.032 (2)0.029 (2)0.007 (2)0.001 (2)0.0007 (18)
OE1_80.044 (2)0.0410 (18)0.0395 (18)0.0003 (17)0.0104 (17)0.0070 (15)
NE2_80.035 (2)0.052 (3)0.041 (2)0.006 (2)0.003 (2)0.001 (2)
N_90.0279 (19)0.0324 (18)0.0141 (15)0.0017 (16)0.0009 (14)0.0017 (14)
CA_90.032 (2)0.033 (2)0.0149 (18)0.0038 (19)0.0031 (17)0.0003 (16)
C_90.027 (2)0.028 (2)0.0209 (19)0.0012 (18)0.0032 (17)0.0011 (16)
O_90.052 (2)0.0347 (16)0.0231 (15)0.0083 (17)0.0036 (15)0.0058 (13)
CB_90.027 (2)0.039 (2)0.025 (2)0.002 (2)0.0026 (18)0.0019 (18)
CG_90.036 (3)0.036 (2)0.031 (2)0.006 (2)0.004 (2)0.0012 (19)
CD1_90.043 (3)0.036 (3)0.053 (3)0.003 (2)0.003 (3)0.014 (2)
CD2_90.048 (3)0.038 (3)0.037 (3)0.015 (3)0.004 (2)0.001 (2)
N_100.056 (3)0.0244 (18)0.0198 (17)0.0001 (19)0.0026 (18)0.0012 (14)
CA_100.048 (3)0.027 (2)0.028 (2)0.001 (2)0.004 (2)0.0043 (18)
C_100.060 (3)0.027 (2)0.032 (2)0.003 (2)0.011 (2)0.0039 (19)
O_100.111 (4)0.0328 (18)0.055 (2)0.018 (2)0.046 (3)0.0111 (17)
CB_100.053 (4)0.061 (4)0.048 (3)0.016 (3)0.001 (3)0.016 (3)
CG1_100.051 (4)0.086 (5)0.072 (5)0.010 (4)0.010 (4)0.015 (4)
CG2_100.070 (5)0.063 (4)0.092 (6)0.006 (4)0.002 (4)0.036 (4)
CD1_100.063 (5)0.083 (6)0.128 (8)0.005 (5)0.009 (5)0.023 (6)
N_110.064 (3)0.0314 (19)0.032 (2)0.013 (2)0.012 (2)0.0091 (17)
CA_110.061 (4)0.045 (3)0.034 (3)0.022 (3)0.009 (3)0.012 (2)
C_110.065 (4)0.034 (2)0.032 (3)0.011 (3)0.005 (3)0.008 (2)
O_110.065 (3)0.116 (4)0.043 (2)0.016 (3)0.014 (2)0.016 (3)
CB_110.045 (4)0.028 (3)0.024 (3)0.004 (3)0.006 (3)0.004 (3)
CG_110.059 (5)0.028 (3)0.027 (4)0.013 (4)0.002 (4)0.008 (3)
CD_110.052 (6)0.043 (5)0.020 (4)0.006 (5)0.003 (4)0.001 (3)
OE1_110.081 (5)0.041 (3)0.027 (3)0.023 (3)0.010 (3)0.007 (2)
C_120.168 (10)0.061 (4)0.069 (5)0.036 (6)0.041 (6)0.025 (4)
C1_120.200 (13)0.074 (5)0.082 (6)0.055 (7)0.043 (8)0.014 (5)
O_120.186 (7)0.066 (3)0.069 (3)0.041 (4)0.054 (4)0.035 (3)
O1_120.188 (7)0.070 (3)0.074 (3)0.060 (4)0.056 (4)0.033 (3)
C2_120.147 (10)0.088 (6)0.068 (5)0.038 (6)0.047 (6)0.024 (4)
C3_120.104 (7)0.072 (5)0.105 (7)0.034 (5)0.016 (6)0.003 (5)
O1_130.059 (2)0.0319 (17)0.0187 (15)0.0045 (18)0.0026 (16)0.0022 (13)
O1_140.047 (2)0.037 (2)0.052 (2)0.0053 (19)0.0148 (19)0.004 (2)
Geometric parameters (Å, º) top
C3—C21.488 (11)CA_5—C_51.516 (8)
C3—C41.521 (13)C_5—O_51.226 (6)
C4—C51.484 (13)C_5—N_61.352 (7)
C5—C61.524 (15)N_6—CA_61.455 (7)
C6—C71.526 (16)CA_6—CB_61.498 (8)
C7—C81.495 (14)CA_6—C_61.526 (7)
C8—C91.476 (16)C_6—O_61.229 (6)
C3'—C4'1.54 (3)C_6—N_71.340 (6)
C3'—C21.57 (2)CB_6—OG_61.424 (7)
C4'—C5'1.65 (3)N_7—CA_71.454 (6)
C5'—C6'1.58 (4)CA_7—C_71.532 (6)
C6'—C7'1.38 (5)CA_7—CB_71.533 (7)
C7'—C8'1.59 (4)C_7—O_71.231 (5)
C8'—C9'1.51 (5)C_7—N_81.335 (6)
O—C1.246 (6)CB_7—CG_71.523 (7)
C—N_11.336 (6)CG_7—CD2_71.504 (8)
C—C11.519 (7)CG_7—CD1_71.550 (10)
C1—C21.503 (7)N_8—CA_81.456 (5)
C2—O11.439 (6)CA_8—CB_81.527 (6)
N_1—CA_11.471 (6)CA_8—C_81.525 (6)
CA_1—C_11.503 (7)C_8—O_81.231 (5)
CA_1—CB_11.544 (7)C_8—N_91.333 (6)
C_1—O_11.245 (5)CB_8—CG_81.533 (7)
C_1—N_21.335 (6)CG_8—CD_81.520 (7)
CB_1—CG_11.536 (9)CD_8—OE1_81.235 (6)
CG_1—CD2_11.530 (11)CD_8—NE2_81.326 (7)
CG_1—CD1_11.535 (9)N_9—CA_91.461 (6)
N_2—CA_21.447 (6)CA_9—C_91.525 (6)
CA_2—CB_21.516 (7)CA_9—CB_91.533 (7)
CA_2—C_21.532 (6)C_9—O_91.241 (5)
C_2—O_21.226 (6)C_9—N_101.338 (5)
C_2—N_31.333 (6)CB_9—CG_91.538 (7)
CB_2—CG_21.509 (7)CG_9—CD1_91.504 (7)
CG_2—OD2_21.208 (6)CG_9—CD2_91.513 (7)
CG_2—OD1_21.324 (6)N_10—CA_101.426 (6)
N_3—CA_31.448 (5)CA_10—C_101.508 (7)
CA_3—C_31.533 (6)CA_10—CB_101.556 (8)
CA_3—CB_31.535 (6)C_10—O_101.230 (6)
C_3—O_31.244 (5)C_10—N_111.335 (6)
C_3—N_41.327 (7)CB_10—CG2_101.476 (9)
CB_3—OG1_31.455 (6)CB_10—CG1_101.559 (9)
CB_3—CG2_31.492 (7)CG1_10—CD1_101.545 (11)
OG1_3—C_111.336 (7)N_11—CA_111.461 (6)
N_4—CA_41.469 (6)CA_11—C_111.516 (7)
CA_4—CB_41.524 (7)CA_11—CB_11'1.519 (12)
CA_4—C_41.529 (7)CA_11—CB_111.585 (8)
C_4—O_41.247 (5)C_11—O_111.207 (7)
C_4—N_51.335 (6)CB_11—CG_111.513 (9)
CB_4—CG_41.507 (10)CG_11—CD_111.544 (12)
CG_4—CD2_41.364 (14)CD_11—OE1_111.226 (12)
CG_4—CD1_41.561 (13)CD_11—OE2_111.289 (10)
CB_5—CG_51.564 (14)CB_11'—CG_11'1.494 (16)
CB_5—CA_51.575 (12)CG_11'—CD_11'1.508 (15)
CG_5—CD2_51.508 (11)CD_11'—OE1_11'1.238 (14)
CG_5—CD1_51.541 (9)CD_11'—OE2_11'1.268 (16)
CB_5'—CA_51.36 (4)C_12—O_121.197 (9)
CB_5'—CG_5'1.57 (6)C_12—O1_121.318 (9)
CG_5'—CD2_5'1.37 (5)C_12—C1_121.499 (12)
CG_5'—CD1_5'1.69 (5)O1_12—C2_121.443 (10)
N_5—CA_51.472 (6)C2_12—C3_121.432 (11)
C2—C3—C4112.6 (7)O_5—C_5—N_6121.7 (5)
C5—C4—C3113.5 (8)O_5—C_5—CA_5120.7 (5)
C4—C5—C6112.6 (9)N_6—C_5—CA_5117.5 (4)
C5—C6—C7115.6 (10)C_5—N_6—CA_6120.6 (4)
C8—C7—C6116.2 (9)N_6—CA_6—CB_6111.7 (4)
C9—C8—C7115.8 (10)N_6—CA_6—C_6111.7 (4)
C4'—C3'—C2115.2 (15)CB_6—CA_6—C_6107.8 (4)
C3'—C4'—C5'112.2 (17)O_6—C_6—N_7122.0 (4)
C6'—C5'—C4'107 (2)O_6—C_6—CA_6119.9 (5)
C7'—C6'—C5'120 (3)N_7—C_6—CA_6117.9 (4)
C6'—C7'—C8'119 (3)OG_6—CB_6—CA_6113.2 (5)
C9'—C8'—C7'114 (3)C_6—N_7—CA_7122.0 (4)
O—C—N_1121.7 (4)N_7—CA_7—C_7112.8 (4)
O—C—C1122.4 (5)N_7—CA_7—CB_7109.0 (4)
N_1—C—C1115.8 (4)C_7—CA_7—CB_7112.2 (4)
C2—C1—C115.0 (4)O_7—C_7—N_8122.6 (4)
O1—C2—C3111.6 (5)O_7—C_7—CA_7119.8 (4)
O1—C2—C1108.6 (4)N_8—C_7—CA_7117.5 (4)
C3—C2—C1118.1 (6)CG_7—CB_7—CA_7113.1 (4)
O1—C2—C3'103.6 (8)CD2_7—CG_7—CB_7110.9 (5)
C3—C2—C3'22.4 (7)CD2_7—CG_7—CD1_7110.5 (6)
C1—C2—C3'103.8 (8)CB_7—CG_7—CD1_7108.5 (6)
C—N_1—CA_1120.6 (4)C_7—N_8—CA_8121.0 (4)
N_1—CA_1—C_1111.5 (4)N_8—CA_8—CB_8109.3 (4)
N_1—CA_1—CB_1109.8 (4)N_8—CA_8—C_8113.1 (4)
C_1—CA_1—CB_1109.7 (4)CB_8—CA_8—C_8110.3 (4)
O_1—C_1—N_2121.8 (5)O_8—C_8—N_9123.4 (4)
O_1—C_1—CA_1120.1 (5)O_8—C_8—CA_8119.5 (4)
N_2—C_1—CA_1118.0 (4)N_9—C_8—CA_8117.1 (4)
CG_1—CB_1—CA_1116.0 (5)CA_8—CB_8—CG_8112.4 (4)
CD2_1—CG_1—CD1_1110.4 (6)CD_8—CG_8—CB_8112.7 (4)
CD2_1—CG_1—CB_1113.9 (5)OE1_8—CD_8—NE2_8122.6 (5)
CD1_1—CG_1—CB_1109.0 (6)OE1_8—CD_8—CG_8120.3 (5)
C_1—N_2—CA_2121.4 (4)NE2_8—CD_8—CG_8117.0 (4)
N_2—CA_2—CB_2112.3 (4)C_8—N_9—CA_9123.1 (3)
N_2—CA_2—C_2112.7 (4)N_9—CA_9—C_9109.7 (4)
CB_2—CA_2—C_2111.3 (4)N_9—CA_9—CB_9110.7 (3)
O_2—C_2—N_3122.3 (4)C_9—CA_9—CB_9110.9 (4)
O_2—C_2—CA_2119.7 (4)O_9—C_9—N_10123.2 (4)
N_3—C_2—CA_2118.0 (4)O_9—C_9—CA_9123.0 (4)
CG_2—CB_2—CA_2115.4 (4)N_10—C_9—CA_9113.9 (4)
OD2_2—CG_2—OD1_2125.2 (5)CA_9—CB_9—CG_9114.2 (4)
OD2_2—CG_2—CB_2124.8 (4)CD1_9—CG_9—CD2_9111.6 (4)
OD1_2—CG_2—CB_2110.0 (4)CD1_9—CG_9—CB_9112.6 (4)
C_2—N_3—CA_3120.3 (4)CD2_9—CG_9—CB_9110.0 (4)
N_3—CA_3—C_3110.1 (4)C_9—N_10—CA_10126.3 (4)
N_3—CA_3—CB_3109.7 (4)N_10—CA_10—C_10106.7 (4)
C_3—CA_3—CB_3113.2 (4)N_10—CA_10—CB_10109.9 (5)
O_3—C_3—N_4121.5 (4)C_10—CA_10—CB_10111.4 (4)
O_3—C_3—CA_3120.5 (4)O_10—C_10—N_11121.1 (5)
N_4—C_3—CA_3117.9 (4)O_10—C_10—CA_10120.0 (4)
OG1_3—CB_3—CG2_3107.5 (4)N_11—C_10—CA_10118.9 (4)
OG1_3—CB_3—CA_3105.4 (4)CG2_10—CB_10—CA_10114.0 (6)
CG2_3—CB_3—CA_3112.0 (5)CG2_10—CB_10—CG1_10111.6 (6)
C_11—OG1_3—CB_3117.4 (5)CA_10—CB_10—CG1_10109.6 (5)
C_3—N_4—CA_4118.8 (4)CD1_10—CG1_10—CB_10114.0 (7)
N_4—CA_4—CB_4111.2 (4)C_10—N_11—CA_11118.7 (4)
N_4—CA_4—C_4110.6 (4)N_11—CA_11—C_11110.7 (4)
CB_4—CA_4—C_4110.5 (4)N_11—CA_11—CB_11'111.4 (7)
O_4—C_4—N_5122.1 (4)C_11—CA_11—CB_11'125.3 (7)
O_4—C_4—CA_4120.9 (4)N_11—CA_11—CB_11110.5 (5)
N_5—C_4—CA_4117.0 (4)C_11—CA_11—CB_11101.3 (4)
CG_4—CB_4—CA_4115.1 (5)CB_11—CA_11—CB_11'30.6 (6)
CD2_4—CG_4—CB_4119.5 (8)O_11—C_11—OG1_3126.0 (5)
CD2_4—CG_4—CD1_4116.2 (9)O_11—C_11—CA_11124.6 (6)
CB_4—CG_4—CD1_4107.3 (8)OG1_3—C_11—CA_11109.3 (5)
CG_5—CB_5—CA_5113.5 (8)CG_11—CB_11—CA_11109.3 (5)
CD2_5—CG_5—CD1_5111.4 (6)CB_11—CG_11—CD_11113.0 (6)
CD2_5—CG_5—CB_5114.1 (8)OE1_11—CD_11—OE2_11125.8 (10)
CD1_5—CG_5—CB_5106.7 (7)OE1_11—CD_11—CG_11119.9 (7)
CA_5—CB_5'—CG_5'119 (4)OE2_11—CD_11—CG_11114.3 (8)
CD2_5'—CG_5'—CB_5'120 (4)CG_11'—CB_11'—CA_11107.5 (11)
CD2_5'—CG_5'—CD1_5'107 (4)CB_11'—CG_11'—CD_11'114.7 (12)
CB_5'—CG_5'—CD1_5'103 (3)OE1_11'—CD_11'—OE2_11'127.2 (16)
C_4—N_5—CA_5121.8 (4)OE1_11'—CD_11'—CG_11'114.2 (13)
CB_5—CA_5—N_5109 (2)OE2_11'—CD_11'—CG_11'118.6 (15)
CB_5'—CA_5—C_5116 (2)O_12—C_12—O1_12122.1 (8)
N_5—CA_5—C_5114.1 (4)O_12—C_12—C1_12125.3 (7)
CB_5—CA_5—CB_5'6 (3)O1_12—C_12—C1_12112.6 (7)
N_5—CA_5—CB_5'108.3 (5)C_12—O1_12—C2_12119.7 (6)
C_5—CA_5—CB_5111.1 (7)C3_12—C2_12—O1_12108.8 (7)

Experimental details

Crystal data
Chemical formulaC67H115N12O20·C4H8O2·2H2O
Mr1532.84
Crystal system, space groupOrthorhombic, P212121
Temperature (K)122
a, b, c (Å)13.245 (10), 21.984 (10), 30.732 (10)
V3)8948 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.32 × 0.23 × 0.15
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21476, 11858, 8739
Rint0.087
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.205, 1.04
No. of reflections11858
No. of parameters1031
No. of restraints34
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.40
Absolute structureFlack (1983)
Absolute structure parameter0.3 (3)

Computer programs: CAD-4 Express (Enraf-Nonius, 1994), CAD-4 Express, XCAD4 (Harms, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), VMD (Humphrey et al., 1996), SHELXL97.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds