Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
5,6-Bis(2-pyridyl)­pyrazine-2,3-di­carboxyl­ic acid exists as an inner-salt zwitterion, 3-carboxy-5-(2-pyridinio)-6-(2-pyridyl)­pyrazine-2-carboxyl­ate, (Ia), C16H10N4O4. The adjacent pyridine and pyridinium rings are almost coplanar due to the presence of an intramolecular hydrogen bond involving the pyridine N atom and the NH H atom of the pyridinium group. In the crystal of (Ia), symmetry-related mol­ecules are hydrogen bonded via the carboxyl­ic acid OH group and one of the carboxyl­ate O atoms to form a polymer, which exhibits a channel-type structure. In the HCl, HClO4 and HPF6 salts, 6-­carboxy-5-carboxyl­ato­pyrazine-2,3-diyldi-2-pyridinium chloride 2.25-hydrate, (II), C16H11N4O4+·Cl-·2.25H2O, 6-­carboxy-5-carboxyl­ato­pyrazine-2,3-diyldi-2-pyridinium perchlor­ate trihydrate, (IIIa), C16H11N4O4+·ClO4-·3H2O, and 6-car­boxy-5-carboxyl­ato­pyrazine-2,3-diyldi-2-pyridinium hexa­fluoro­phosphate trihydrate, (IIIb), C16H11N4O4+·PF6-·3H2O, both pyridine rings are protonated. In the perchlorate form, and in the isomorphous hexa­fluoro­phosphate form, the mol­ecule possesses C2 symmetry, with has a symmetrical intramolecular hydrogen bond involving the adjacent carboxyl­ate and carboxyl­ic acid substituents. In the crystals of the chloride and perchlorate (or hexa­fluoro­phosphate) salts, hydrogen-bonded polymers are formed which are three-dimensional and one-dimensional, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101010757/gd1159sup1.cif
Contains datablocks global, Ia, II, IIIa, IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010757/gd1159Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010757/gd1159IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010757/gd1159IIIasup4.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101010757/gd1159IIIbsup5.hkl
Contains datablock IIIb

CCDC references: 174829; 174830; 174831; 174832

Comment top

The potentially bis-tridentate coordinating ligand 5,6-bis(2-pyridyl)pyrazine-2,3-dicarboxylic acid, (I), was synthesized in order to study its coordination behaviour with transition metals, and it does indeed exhibit a highly diverse coordination geometry. At least eight different coordination modes have been observed in the formation of mononuclear, binuclear and polymeric coordination complexes (Alfonso et al., 2001). A prominent characteristic of this compound is its amphoteric character. It can exist as an inner salt zwitterion, (Ia), and as different charged species, for example as in the chloride 2.25 hydrate, (II), or the perchlorate and hexafluorophosphate trihydrate salts, (IIIa) and (IIIb), as shown in the Scheme. \sch

When recrystallized from water, compound (I) exists as the inner-salt zwitterion, (Ia) (Fig. 1). As a result of an intramolecular hydrogen bond involving the pyridinium N+—H and the pyridine N atoms, the adjacent pyridine (py) rings are almost coplanar with the central pyrazine (pz) ring, with a pyH-to-pz dihedral angle of 4.3 (1)° and a py-to-pz dihedral angle of 7.9 (1)°. The N atoms are separated by 2.528 (3) Å, and this rather short intramolecular hydrogen bond [N3—H3 1.22 (3) and H3···N4 1.32 (3) Å, and N3—H3···N4 167 (3)°; Table 1] leads to a slight twist of the pyrazine ring (plane C1/N1/C4 to plane C2/N2/C3) of 3.6 (4)°, as well as to two unusually large exocyclic angles, C3—C4—C5 [131.0 (3)°] and C4—C3—C10 [131.2 (2)°]. This type of hydrogen-bond, with almost identical bond distances and angles, was also found in the diprotonated form of tetra(2-pyridyl)pyrazine by Bock et al. (1992) and analysed theoretically. An analysis of hydrogen bonding in organoammonium H(N) atoms of this type has been made by Robertson et al. (1998).

The carboxylate group (C16/O3/O4) and the carboxylic acid group (C15/O1/O2) are rotated out of the plane of the pyrazine ring. They are inclined to one another by 59.5 (3)°, and to the pyrazine ring by 37.9 (1) and 58.3 (2)°, respectively. In the crystal of (Ia), symmetry-related molecules are hydrogen bonded via the carboxylic acid OH group and one of the carboxylate O atoms (Table 1). This results in the formation of a one-dimensional polymer with a channel-type structure (Fig. 2). A similar strong intermolecular O—H.·O hydrogen bond, with almost identical bond distances and angles, has been observed previously in caesium trihydrogen diphthalate (Krol et al., 1983).

Recrystallization of (Ia) from 1M HCl yielded colourless single crystals of (II) (Fig. 3). Here, both of the pyridine rings are protonated and they are both rotated by ca 180° from their positions in (Ia). They are inclined to one another by 65.6 (1)°, and by 49.2 (1)° (N3/C5—C9) and 30.8 (1)° (N4/C10—C14) to the pyrazine ring. This places the pyridine N atoms slightly above and below the plane of the pyrazine ring, which is twisted by 4.9 (2)° (plane C1/N1/C4 to plane C2/N2/C3). The carboxylic acid group (C15/O1/O2) is out of the plane of the pyrazine ring by 75.7 (1)°, compared with 58.3 (1)° in (Ia). The carboxylate group (C16/O3/O4) is inclined to the pyrazine ring by only 15.3 (3)°, compared with 37.9 (1)° in (Ia).

This triprotonated form, (II), also differs from (Ia) in the type of hydrogen bonding. There are no intramolecular hydrogen bonds in the crystal structure of (II). However, symmetry-related molecules are linked by hydrogen bonds to form a three-dimensional hydrogen-bonded network. This involves the N atoms of both protonated pyridine rings, the O atoms of the carboxylate, the OH of the carboxylic acid, the lattice water molecules and the Cl- anion, which participates in four hydrogen-bond interactions. Details are given in Table 2 and Fig. 4.

A second triprotonated form, (IIIa), was obtained on slow evaporation of a solution of (Ia) in 1M HClO4. Compound (IIIa) possesses C2 symmetry and its structure differs significantly from that of (Ia) (Fig. 5). Here again, both pyridine rings are protonated and are twisted out of the plane of the pyrazine ring by 34.8 (1)°, and inclined to one another by 62.2 (1)°. The carboxylate and carboxylic acid groups are both inclined to the pyrazine plane by 19.7 (3)° and to one another by 5.2 (4)°. This arrangement is the result of the presence of a strong symmetrical intramolecular hydrogen bond (Table 3). This type of symmetrical hydrogen bond has been observed previously in pyrazine-2,3-dicarboxylic acid 3-amino-1,2,4-triazole (Lynch et al., 1994) and in bis[dihydrogen 1,2,4,5-benzenetetracarboxylate(2-)] (Karanović et al., 1999). It is interesting to note that the deviation from planarity of the pyrazine ring is larger than in (Ia) or (II), with a twist angle of 9.6 (4)°. In the crystal, the C16H11N4O4+ cations and the lattice water form a one-dimensional hydrogen-bonded polymer, separated by the disordered perchlorate anions. Details are given in Table 3 and Fig. 6.

From the reaction of (Ia) with Ag[PF6] in water, a silver complex was not obtained, but slow evaporation of the solution gave crystals of (IIIb) (Fig. 7), which proved to be isomorphous with (IIIa). The structural details for (IIIb) are very similar to those observed for (IIIa). Details concerning the hydrogen bonding are given in Table 4 and Fig. 8.

Experimental top

Compound (Ia) was prepared by adding 2,3-bis(2-pyridyl)quinoxaline (5.7 g, 20 mmol; Goodwin & Lions, 1959) to water (450 ml). This solution was heated to 368 K with stirring. KMnO4 (25 g, 0.16 mol) was then added in small portions over a period of 2 h. The reaction mixture was stirred for 1 h and the temperature reduced to 348 K. Ethanol (10 ml) was added to remove the excess KMnO4. The reaction mixture was filtered to give a colourless filtrate, which was concentrated to 20 ml and acidified with 4M HCl until a white precipitate formed. The crude product was dissolved in water (15 ml) and the solution was acidified again with concentrated HCl to yield a white solid. The product, (Ia), was filtered off, washed with ethanol, recrystallized from water and dried under vacuum (yield 3.9 g, 60.5%; m.p. 533–534 K). Analysis calculated for C16H10N4O4: C 59.6, H 3.1, N 17.4%; found: C 59.5, H 3.0, N 17.3%. Selected IR bands (KBr, cm-1): 3426 (br, m), 3083 (w), 3026 (w), 2922 (w), 2854 (w), 1706 (m), 1653 (m), 1602 (versus), 1488 (s), 1433 (m), 1337 (m), 1268 (s), 1148 (s), 1115 (s), 1083 (s), 1040 (m), 943 (m), 865 (m), 820 (w), 793 (versus), 743 (s); 1H NMR (D2O, 200 MHz, δ, p.p.m.): 8.84–8.82 (m, 2H, PyH), 8.46–8.37 (m, 2H, PyH), 8.08–7.99 (m, 4H, PyH); 13C NMR (D2O, 50 MHz, δ, p.p.m): 170.2, 150.2, 148.3, 148.1, 147.8, 147.4, 130.6, 130.3; DCI-MS (DCI is?) (m/z): 323 (MH+, 4), 322 (M+, 2). Compound (II) was obtained by dissolving (Ia) in a 1M HCl aqueous solution, which on slow evaporaton gave colourless rod-like crystals. Compound (IIIa) was obtained by dissolving (Ia) in a 1M HClO4 aqueous solution, which on slow evaporation yielded pale-yellow block-like crystals. Compound (IIIb) was obtained by dissolving (Ia) in an aqueous solution of Ag[PF6]. On slow evaporation, pale-yellow block-like crystals were obtained.

Refinement top

The H atoms were located from difference Fourier maps and refined isotropically. The pyNH and CO2H H atoms were all located from difference maps and refined isotropically. For compounds (Ia) and (II), the hydrogen bonds involving these H atoms are of the unusual symmetric type, hence the long N—H, H···N, O—H and O···H distances. This type of hydrogen bond, N—H···N for example, with identical bond distances and angles, has been observed previously and analysed theoretically by Bock et al. (1992). In compound (II), water molecules O2W and O3W are the same atom but disordered over two sites, with refined occupancies of 0.62 and 0.38. In compound (IIIa), the perchlorate anion possesses C2 symmetry and the O atoms, O12, O13 and O14, are disordered. In some cases, the water H atoms could be located from difference Fourier maps and were refined isotropically. When the refinement was unstable in the final cycles of refinement they were held fixed, as for water O4W in (II) and O2W in (IIIa) and (IIIb) (Uiso = 0.1 Å2).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997) for (Ia); EXPOSE (Stoe & Cie, 2000) for (II), (IIIa), (IIIb). Cell refinement: STADI4 for (Ia); CELL (Stoe & Cie, 2000) for (II), (IIIa), (IIIb). Data reduction: X-RED in STADI4 for (Ia); INTEGRATE (Stoe & Cie, 2000) for (II), (IIIb); X-RED in STADI4 (Stoe & Cie, 1997) for (IIIa). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (Ia) showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of (Ia) viewed down the c axis. The hydrogen bonding is shown as dashed lines [symmetry code as in Table 1].
[Figure 3] Fig. 3. The molecular structure of (II) showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The crystal packing of (II) viewed down the b axis. The hydrogen bonding is shown as dashed lines [symmetry codes as in Table 2].
[Figure 5] Fig. 5. The molecular structure of (IIIa) showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 6] Fig. 6. Part of the crystal packing of (IIIa) viewed down the a axis. The hydrogen bonding, which extends in both the a and c directions, is shown as dashed lines [symmetry codes as in Table 3].
[Figure 7] Fig. 7. The molecular structure of (IIIb) showing the atom-numbering scheme and with displacement ellipsoids at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 8] Fig. 8. Part of the crystal packing of (IIIb) viewed down the a axis. The hydrogen bonding, which extends in both the a and the c directions, is shown as dashed lines [symmetry codes as in Table 4].
(Ia) 3-Carboxy-5-(2-pyridinio)-6-(2-pyridyl)pyrazine-2-carboxylate top
Crystal data top
C16H10N4O4F(000) = 664
Mr = 322.28Dx = 1.599 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.477 (1) ÅCell parameters from 20 reflections
b = 13.523 (2) Åθ = 14–19°
c = 10.058 (1) ŵ = 0.12 mm1
β = 110.07 (1)°T = 293 K
V = 1338.5 (3) Å3Plate, pale yellow
Z = 40.46 × 0.30 × 0.11 mm
Data collection top
Stoe four-circle
diffractometer
Rint = 0.039
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 012
2θ/ω scansk = 160
2356 measured reflectionsl = 1111
2336 independent reflections3 standard reflections every 60 min
1227 reflections with I > 2σ(I) intensity decay: <2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
2336 reflectionsΔρmax = 0.17 e Å3
258 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C16H10N4O4V = 1338.5 (3) Å3
Mr = 322.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.477 (1) ŵ = 0.12 mm1
b = 13.523 (2) ÅT = 293 K
c = 10.058 (1) Å0.46 × 0.30 × 0.11 mm
β = 110.07 (1)°
Data collection top
Stoe four-circle
diffractometer
Rint = 0.039
2356 measured reflections3 standard reflections every 60 min
2336 independent reflections intensity decay: <2%
1227 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.092All H-atom parameters refined
S = 0.90Δρmax = 0.17 e Å3
2336 reflectionsΔρmin = 0.20 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0606 (2)0.16027 (19)0.7237 (2)0.0590 (7)
O20.1543 (2)0.26898 (18)0.5480 (2)0.0416 (6)
O30.2703 (2)0.07332 (17)0.3870 (2)0.0471 (7)
O40.26759 (19)0.13092 (17)0.1812 (2)0.0417 (6)
N10.1355 (2)0.16093 (19)0.5751 (2)0.0360 (7)
N20.0163 (2)0.10376 (19)0.2992 (2)0.0350 (7)
N30.4589 (2)0.12789 (19)0.5341 (2)0.0374 (7)
N40.3489 (2)0.09486 (19)0.2720 (3)0.0355 (7)
C10.0013 (3)0.1570 (2)0.5164 (3)0.0334 (8)
C20.0600 (3)0.1244 (2)0.3771 (3)0.0319 (8)
C30.1531 (3)0.1131 (2)0.3540 (3)0.0291 (8)
C40.2148 (3)0.1377 (2)0.4983 (3)0.0309 (8)
C50.3616 (3)0.1443 (2)0.5897 (3)0.0312 (7)
C60.3982 (3)0.1669 (3)0.7323 (3)0.0415 (9)
C70.5345 (3)0.1726 (3)0.8139 (4)0.0449 (9)
C80.6322 (3)0.1562 (3)0.7545 (3)0.0415 (9)
C90.5914 (3)0.1339 (3)0.6132 (3)0.0396 (9)
C100.2126 (3)0.0967 (2)0.2395 (3)0.0328 (8)
C110.1310 (3)0.0839 (3)0.0996 (3)0.0427 (9)
C120.1874 (3)0.0685 (3)0.0032 (4)0.0474 (10)
C130.3273 (3)0.0655 (3)0.0342 (3)0.0429 (9)
C140.4054 (3)0.0804 (3)0.1723 (3)0.0420 (9)
C150.0765 (3)0.1949 (3)0.6078 (3)0.0383 (9)
C160.2119 (3)0.1083 (2)0.3103 (3)0.0335 (8)
H2O0.200 (4)0.315 (3)0.623 (4)0.095 (13)*
H3N0.419 (3)0.112 (2)0.407 (3)0.071 (11)*
H60.326 (3)0.171 (2)0.768 (3)0.044 (9)*
H70.561 (2)0.1891 (19)0.912 (3)0.028 (8)*
H80.723 (3)0.1572 (19)0.805 (3)0.025 (8)*
H90.659 (3)0.120 (2)0.560 (3)0.059 (10)*
H110.034 (3)0.087 (2)0.074 (3)0.056 (10)*
H120.127 (3)0.059 (2)0.104 (3)0.063 (10)*
H130.368 (3)0.052 (2)0.035 (3)0.039 (9)*
H140.515 (3)0.076 (2)0.207 (3)0.065 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0600 (16)0.088 (2)0.0356 (14)0.0218 (15)0.0250 (12)0.0141 (14)
O20.0344 (13)0.0594 (17)0.0292 (13)0.0129 (12)0.0088 (11)0.0012 (12)
O30.0373 (13)0.0647 (18)0.0432 (13)0.0069 (12)0.0188 (11)0.0060 (13)
O40.0267 (12)0.0652 (17)0.0311 (13)0.0086 (11)0.0073 (10)0.0025 (12)
N10.0257 (15)0.0509 (19)0.0301 (15)0.0025 (13)0.0079 (12)0.0009 (13)
N20.0279 (15)0.0460 (19)0.0315 (14)0.0005 (12)0.0109 (12)0.0058 (13)
N30.0264 (16)0.057 (2)0.0270 (14)0.0026 (13)0.0068 (12)0.0029 (14)
N40.0258 (15)0.0508 (19)0.0292 (15)0.0008 (13)0.0086 (12)0.0044 (13)
C10.0287 (17)0.044 (2)0.0300 (17)0.0042 (16)0.0130 (14)0.0040 (16)
C20.0282 (17)0.035 (2)0.0336 (18)0.0023 (15)0.0127 (14)0.0007 (15)
C30.0257 (17)0.033 (2)0.0292 (17)0.0005 (14)0.0098 (14)0.0034 (15)
C40.0229 (16)0.036 (2)0.0336 (17)0.0007 (14)0.0092 (14)0.0017 (15)
C50.0289 (18)0.034 (2)0.0304 (17)0.0001 (15)0.0094 (14)0.0016 (15)
C60.033 (2)0.057 (3)0.035 (2)0.0019 (17)0.0117 (17)0.0005 (18)
C70.039 (2)0.062 (3)0.0295 (19)0.0001 (18)0.0064 (17)0.0061 (19)
C80.0265 (19)0.054 (2)0.037 (2)0.0026 (18)0.0015 (16)0.0003 (18)
C90.0227 (18)0.056 (3)0.0390 (19)0.0007 (16)0.0095 (16)0.0018 (18)
C100.0275 (18)0.040 (2)0.0319 (18)0.0013 (15)0.0112 (14)0.0005 (16)
C110.0285 (19)0.065 (3)0.0338 (19)0.0040 (18)0.0101 (17)0.0053 (17)
C120.035 (2)0.074 (3)0.032 (2)0.0027 (19)0.0102 (17)0.0065 (19)
C130.045 (2)0.057 (3)0.034 (2)0.0038 (18)0.0224 (18)0.0040 (18)
C140.0323 (19)0.058 (3)0.041 (2)0.0000 (18)0.0197 (17)0.0051 (18)
C150.0217 (18)0.057 (3)0.0338 (19)0.0012 (17)0.0067 (15)0.0041 (18)
C160.0276 (17)0.038 (2)0.0385 (19)0.0002 (15)0.0163 (16)0.0019 (16)
Geometric parameters (Å, º) top
O1—C151.214 (3)C3—C101.502 (4)
O2—C151.301 (4)C4—C51.499 (4)
O2—H2O1.20 (4)C5—C61.386 (4)
O3—C161.231 (3)C6—C71.383 (4)
O4—C161.265 (3)C6—H60.94 (3)
N1—C11.326 (4)C7—C81.368 (4)
N1—C41.352 (3)C7—H70.96 (2)
N2—C21.327 (3)C8—C91.370 (4)
N2—C31.354 (3)C8—H80.91 (2)
N3—C51.338 (3)C9—H91.03 (3)
N3—C91.345 (3)C10—C111.384 (4)
N3—H3N1.22 (3)C11—C121.372 (4)
N4—C141.342 (3)C11—H110.95 (3)
N4—C101.351 (3)C12—C131.383 (4)
N4—H3N1.32 (3)C12—H121.00 (3)
C1—C21.398 (4)C13—C141.364 (4)
C1—C151.512 (4)C13—H130.95 (3)
C2—C161.516 (4)C14—H141.08 (3)
C3—C41.411 (4)
C15—O2—H2O115.4 (17)C6—C7—H7119.8 (15)
C1—N1—C4120.2 (2)C7—C8—C9118.4 (3)
C2—N2—C3120.6 (2)C7—C8—H8123.2 (16)
C5—N3—C9121.5 (3)C9—C8—H8118.4 (16)
C5—N3—H3N115.7 (14)N3—C9—C8121.2 (3)
C9—N3—H3N122.7 (14)N3—C9—H9115.6 (16)
C14—N4—C10121.5 (3)C8—C9—H9123.2 (16)
C14—N4—H3N123.8 (13)N4—C10—C11118.5 (3)
C10—N4—H3N114.6 (13)N4—C10—C3120.0 (2)
N1—C1—C2120.7 (3)C11—C10—C3121.6 (3)
N1—C1—C15115.3 (3)C12—C11—C10120.6 (3)
C2—C1—C15123.9 (3)C12—C11—H11119.6 (17)
N2—C2—C1119.7 (3)C10—C11—H11119.8 (17)
N2—C2—C16117.5 (3)C11—C12—C13119.4 (3)
C1—C2—C16122.8 (3)C11—C12—H12119.6 (17)
N2—C3—C4119.2 (3)C13—C12—H12121.1 (17)
N2—C3—C10109.5 (2)C14—C13—C12118.8 (3)
C4—C3—C10131.2 (2)C14—C13—H13120.6 (16)
N1—C4—C3119.2 (2)C12—C13—H13120.6 (16)
N1—C4—C5109.8 (2)N4—C14—C13121.2 (3)
C3—C4—C5131.0 (3)N4—C14—H14117.3 (15)
N3—C5—C6119.3 (3)C13—C14—H14121.4 (15)
N3—C5—C4120.1 (2)O1—C15—O2126.8 (3)
C6—C5—C4120.6 (3)O1—C15—C1121.9 (3)
C7—C6—C5119.2 (3)O2—C15—C1111.3 (3)
C7—C6—H6125.0 (17)O3—C16—O4125.7 (3)
C5—C6—H6115.5 (17)O3—C16—C2116.6 (3)
C8—C7—C6120.5 (3)O4—C16—C2117.7 (3)
C8—C7—H7119.7 (15)
C4—N1—C1—C23.1 (5)C5—C6—C7—C80.0 (6)
C4—N1—C1—C15173.8 (3)C6—C7—C8—C90.1 (6)
C3—N2—C2—C10.7 (4)C5—N3—C9—C80.6 (5)
C3—N2—C2—C16177.6 (3)C7—C8—C9—N30.2 (5)
N1—C1—C2—N24.8 (5)C14—N4—C10—C110.5 (5)
C15—C1—C2—N2171.8 (3)C14—N4—C10—C3180.0 (3)
N1—C1—C2—C16173.4 (3)N2—C3—C10—N4174.9 (3)
C15—C1—C2—C1610.0 (5)C4—C3—C10—N47.0 (5)
C2—N2—C3—C44.9 (4)N2—C3—C10—C115.6 (4)
C2—N2—C3—C10173.5 (3)C4—C3—C10—C11172.5 (3)
C1—N1—C4—C32.5 (4)N4—C10—C11—C120.8 (5)
C1—N1—C4—C5178.0 (3)C3—C10—C11—C12179.6 (3)
N2—C3—C4—N16.5 (4)C10—C11—C12—C130.2 (6)
C10—C3—C4—N1171.4 (3)C11—C12—C13—C141.5 (6)
N2—C3—C4—C5174.1 (3)C10—N4—C14—C130.9 (5)
C10—C3—C4—C58.0 (6)C12—C13—C14—N41.9 (5)
C9—N3—C5—C60.7 (5)N1—C1—C15—O157.6 (4)
C9—N3—C5—C4179.6 (3)C2—C1—C15—O1125.6 (4)
N1—C4—C5—N3177.5 (3)N1—C1—C15—O2119.9 (3)
C3—C4—C5—N32.0 (5)C2—C1—C15—O256.8 (4)
N1—C4—C5—C62.8 (4)N2—C2—C16—O3140.5 (3)
C3—C4—C5—C6177.7 (3)C1—C2—C16—O337.8 (5)
N3—C5—C6—C70.4 (5)N2—C2—C16—O439.0 (4)
C4—C5—C6—C7179.9 (3)C1—C2—C16—O4142.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i1.20 (4)1.29 (4)2.475 (3)169 (3)
N3—H3N···N41.22 (3)1.32 (3)2.528 (3)167 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
(II) 6-Carboxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium chloride 2.25 hydrate top
Crystal data top
C16H11N4O4+·Cl·2.25H2OF(000) = 1652
Mr = 399.27Dx = 1.464 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 19.5883 (17) ÅCell parameters from 5000 reflections
b = 8.0623 (5) Åθ = 2.1–25.9°
c = 22.936 (2) ŵ = 0.26 mm1
β = 90.559 (11)°T = 293 K
V = 3622.0 (5) Å3Rod, colourless
Z = 80.5 × 0.2 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
1943 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.9°, θmin = 2.1°
Detector resolution: 0.81Å pixels mm-1h = 2423
ϕ oscillation scansk = 99
13718 measured reflectionsl = 2828
3488 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.093All H-atom parameters refined
S = 0.82 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
3488 reflections(Δ/σ)max = 0.027
327 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H11N4O4+·Cl·2.25H2OV = 3622.0 (5) Å3
Mr = 399.27Z = 8
Monoclinic, I2/aMo Kα radiation
a = 19.5883 (17) ŵ = 0.26 mm1
b = 8.0623 (5) ÅT = 293 K
c = 22.936 (2) Å0.5 × 0.2 × 0.1 mm
β = 90.559 (11)°
Data collection top
Stoe IPDS
diffractometer
1943 reflections with I > 2σ(I)
13718 measured reflectionsRint = 0.055
3488 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093All H-atom parameters refined
S = 0.82Δρmax = 0.63 e Å3
3488 reflectionsΔρmin = 0.26 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.00022 (9)0.1926 (2)0.33297 (7)0.0504 (5)
O20.04931 (9)0.4384 (2)0.31389 (8)0.0468 (4)
H2O0.0711 (17)0.427 (4)0.3513 (16)0.098 (11)*
O30.12559 (9)0.1414 (3)0.14811 (8)0.0677 (6)
O40.12505 (7)0.1999 (2)0.24294 (7)0.0445 (4)
N10.07729 (9)0.3448 (2)0.23364 (8)0.0335 (5)
N20.00305 (9)0.2937 (2)0.13643 (8)0.0332 (4)
N30.20722 (9)0.4782 (3)0.21689 (8)0.0362 (5)
H3N0.1784 (14)0.552 (4)0.2371 (11)0.059 (8)*
N40.04464 (11)0.2977 (3)0.02828 (8)0.0419 (5)
H4N0.0143 (14)0.218 (4)0.0390 (11)0.056 (9)*
C10.01098 (10)0.3102 (3)0.23847 (9)0.0299 (5)
C20.02847 (10)0.2726 (3)0.18944 (9)0.0315 (5)
C30.06192 (11)0.3391 (3)0.13071 (9)0.0327 (5)
C40.10405 (10)0.3533 (3)0.17995 (9)0.0316 (5)
C50.17977 (11)0.3684 (3)0.17965 (10)0.0347 (5)
C60.22210 (13)0.2671 (4)0.14841 (12)0.0462 (7)
H60.2041 (12)0.194 (3)0.1250 (11)0.043 (8)*
C70.29176 (13)0.2780 (4)0.15607 (13)0.0529 (7)
H70.3200 (15)0.208 (4)0.1362 (12)0.068 (9)*
C80.31845 (13)0.3931 (4)0.19409 (12)0.0492 (7)
H80.3652 (14)0.403 (3)0.2006 (10)0.051 (7)*
C90.27469 (12)0.4937 (4)0.22394 (12)0.0438 (7)
H90.2894 (12)0.575 (3)0.2516 (11)0.043 (7)*
C100.08151 (12)0.3768 (3)0.06990 (10)0.0367 (6)
C110.12867 (14)0.4934 (4)0.05341 (12)0.0500 (7)
H110.1562 (14)0.547 (4)0.0826 (12)0.060 (8)*
C120.13715 (17)0.5273 (5)0.00524 (13)0.0633 (9)
H120.1709 (15)0.608 (4)0.0163 (12)0.063 (8)*
C130.09857 (17)0.4461 (4)0.04616 (13)0.0629 (9)
H140.0993 (16)0.469 (4)0.0863 (15)0.089 (10)*
C140.05233 (17)0.3294 (4)0.02876 (12)0.0562 (8)
H130.0220 (14)0.270 (4)0.0548 (12)0.064 (9)*
C150.01420 (11)0.3048 (3)0.30038 (10)0.0357 (6)
C160.09956 (11)0.1984 (3)0.19289 (11)0.0389 (6)
Cl10.12673 (3)0.94713 (9)0.07395 (3)0.0540 (2)
O1W0.44735 (11)0.9286 (3)0.04654 (11)0.0664 (6)
H1A0.4215 (18)0.931 (4)0.0177 (16)0.084 (12)*
H1B0.4188 (19)0.899 (5)0.0784 (18)0.106 (13)*
O2W0.2565 (4)0.7120 (7)0.1020 (5)0.089 (3)0.62 (2)
H210.228 (4)0.789 (11)0.088 (3)0.09 (2)*0.62 (2)
H220.288 (4)0.774 (10)0.107 (4)0.11 (3)*0.62 (2)
O3W0.2358 (5)0.770 (2)0.1446 (9)0.115 (8)0.38 (2)
H310.286 (5)0.786 (10)0.145 (4)0.06 (2)*0.38 (2)
H320.210 (6)0.846 (15)0.115 (7)0.11 (4)*0.38 (2)
O4W0.25000.1391 (9)0.00000.137 (4)0.50
H410.21870.09200.01890.100*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (11)0.0532 (13)0.0397 (10)0.0104 (9)0.0035 (8)0.0102 (9)
O20.0603 (11)0.0369 (11)0.0434 (10)0.0024 (9)0.0184 (8)0.0000 (8)
O30.0412 (10)0.1094 (19)0.0523 (12)0.0232 (11)0.0046 (9)0.0108 (11)
O40.0344 (9)0.0507 (12)0.0484 (10)0.0046 (8)0.0079 (7)0.0039 (8)
N10.0317 (10)0.0371 (13)0.0316 (10)0.0004 (9)0.0024 (8)0.0011 (8)
N20.0316 (10)0.0360 (13)0.0322 (10)0.0009 (9)0.0007 (8)0.0001 (9)
N30.0273 (10)0.0426 (14)0.0386 (11)0.0000 (9)0.0024 (8)0.0017 (10)
N40.0490 (12)0.0445 (15)0.0321 (11)0.0066 (11)0.0014 (9)0.0029 (10)
C10.0300 (12)0.0264 (14)0.0333 (12)0.0007 (10)0.0034 (9)0.0015 (10)
C20.0288 (11)0.0315 (15)0.0341 (13)0.0022 (9)0.0005 (10)0.0024 (10)
C30.0344 (12)0.0299 (14)0.0337 (12)0.0022 (10)0.0033 (9)0.0003 (10)
C40.0296 (11)0.0314 (15)0.0338 (12)0.0002 (10)0.0024 (9)0.0014 (10)
C50.0313 (12)0.0395 (15)0.0333 (12)0.0002 (11)0.0031 (9)0.0026 (11)
C60.0408 (15)0.0471 (19)0.0509 (16)0.0011 (13)0.0116 (12)0.0069 (14)
C70.0398 (15)0.052 (2)0.0667 (19)0.0112 (14)0.0168 (13)0.0061 (15)
C80.0282 (13)0.056 (2)0.0635 (18)0.0039 (13)0.0038 (12)0.0153 (15)
C90.0322 (13)0.0515 (19)0.0477 (15)0.0048 (12)0.0025 (11)0.0044 (13)
C100.0372 (12)0.0394 (15)0.0334 (13)0.0061 (11)0.0026 (10)0.0007 (11)
C110.0477 (16)0.055 (2)0.0471 (16)0.0023 (14)0.0053 (13)0.0104 (14)
C120.0627 (19)0.070 (2)0.0571 (19)0.0060 (17)0.0208 (15)0.0231 (17)
C130.077 (2)0.075 (2)0.0372 (16)0.0269 (19)0.0155 (16)0.0134 (17)
C140.072 (2)0.063 (2)0.0329 (15)0.0233 (17)0.0009 (14)0.0036 (14)
C150.0331 (12)0.0373 (16)0.0365 (13)0.0036 (11)0.0018 (10)0.0006 (12)
C160.0286 (12)0.0420 (16)0.0460 (15)0.0017 (11)0.0025 (11)0.0027 (12)
Cl10.0539 (4)0.0623 (5)0.0460 (4)0.0026 (3)0.0048 (3)0.0016 (3)
O1W0.0630 (13)0.0796 (17)0.0565 (13)0.0058 (11)0.0065 (12)0.0218 (12)
O2W0.062 (4)0.065 (4)0.141 (7)0.009 (3)0.028 (4)0.007 (3)
O3W0.057 (6)0.137 (12)0.150 (14)0.001 (5)0.008 (6)0.077 (11)
O4W0.159 (7)0.069 (5)0.187 (8)0.0000.151 (7)0.000
Geometric parameters (Å, º) top
O1—C151.205 (3)C7—C81.373 (4)
O2—C151.317 (3)C7—H70.92 (3)
O2—H2O0.97 (4)C8—C91.369 (4)
O3—C161.231 (3)C8—H80.93 (3)
O4—C161.256 (3)C9—H90.95 (3)
N1—C11.334 (3)C10—C111.373 (4)
N1—C41.345 (3)C11—C121.384 (4)
N2—C21.329 (3)C11—H110.96 (3)
N2—C31.332 (3)C12—C131.366 (5)
N3—C91.336 (3)C12—H120.96 (3)
N3—C51.339 (3)C13—C141.368 (5)
N3—H3N0.94 (3)C13—H140.94 (3)
N4—C141.343 (3)C14—H130.96 (3)
N4—C101.351 (3)O1W—H1A0.83 (4)
N4—H4N0.91 (3)O1W—H1B0.95 (4)
C1—C21.392 (3)O2W—H210.89 (9)
C1—C151.508 (3)O2W—H220.81 (9)
C2—C161.518 (3)O2W—H311.29 (8)
C3—C41.397 (3)O2W—H321.45 (12)
C3—C101.482 (3)O3W—H211.32 (6)
C4—C51.488 (3)O3W—H221.34 (7)
C5—C61.371 (3)O3W—H311.00 (10)
C6—C71.377 (4)O3W—H321.05 (14)
C6—H60.87 (3)O4W—H410.8444
C15—O2—H2O112 (2)C8—C9—H9123.5 (14)
C1—N1—C4118.39 (18)N4—C10—C11119.0 (2)
C2—N2—C3119.48 (18)N4—C10—C3115.2 (2)
C9—N3—C5122.0 (2)C11—C10—C3125.5 (2)
C9—N3—H3N118.5 (16)C10—C11—C12119.4 (3)
C5—N3—H3N119.4 (16)C10—C11—H11119.4 (16)
C14—N4—C10122.3 (3)C12—C11—H11121.2 (16)
C14—N4—H4N118.5 (17)C13—C12—C11120.1 (3)
C10—N4—H4N119.2 (17)C13—C12—H12121.3 (17)
N1—C1—C2120.78 (19)C11—C12—H12118.6 (17)
N1—C1—C15114.33 (18)C12—C13—C14119.5 (3)
C2—C1—C15124.77 (19)C12—C13—H14125 (2)
N2—C2—C1120.09 (19)C14—C13—H14116 (2)
N2—C2—C16116.74 (19)N4—C14—C13119.7 (3)
C1—C2—C16123.09 (19)N4—C14—H13115.7 (17)
N2—C3—C4120.02 (19)C13—C14—H13124.5 (17)
N2—C3—C10113.93 (19)O1—C15—O2126.0 (2)
C4—C3—C10126.0 (2)O1—C15—C1121.9 (2)
N1—C4—C3120.24 (19)O2—C15—C1112.0 (2)
N1—C4—C5113.94 (19)O3—C16—O4126.9 (2)
C3—C4—C5125.7 (2)O3—C16—C2118.4 (2)
N3—C5—C6119.1 (2)O4—C16—C2114.6 (2)
N3—C5—C4116.4 (2)H1A—O1W—H1B105 (3)
C6—C5—C4124.2 (2)H21—O2W—H2295 (7)
C5—C6—C7119.9 (3)H21—O2W—H31103 (6)
C5—C6—H6118.9 (16)H22—O2W—H3142 (6)
C7—C6—H6121.2 (16)H21—O2W—H3233 (6)
C8—C7—C6119.7 (3)H22—O2W—H3290 (7)
C8—C7—H7120.3 (19)H31—O2W—H3278 (7)
C6—C7—H7120.0 (19)H21—O3W—H2257 (5)
C9—C8—C7118.8 (3)H21—O3W—H3196 (6)
C9—C8—H8119.1 (16)H22—O3W—H3141 (5)
C7—C8—H8122.1 (16)H21—O3W—H3240 (6)
N3—C9—C8120.5 (3)H22—O3W—H3287 (7)
N3—C9—H9116.0 (14)H31—O3W—H32114 (8)
C4—N1—C1—C24.4 (3)C5—C6—C7—C81.4 (4)
C4—N1—C1—C15179.5 (2)C6—C7—C8—C90.5 (4)
C3—N2—C2—C14.9 (3)C5—N3—C9—C81.9 (4)
C3—N2—C2—C16171.9 (2)C7—C8—C9—N31.1 (4)
N1—C1—C2—N29.6 (3)C14—N4—C10—C110.2 (4)
C15—C1—C2—N2174.7 (2)C14—N4—C10—C3174.3 (2)
N1—C1—C2—C16167.0 (2)N2—C3—C10—N426.8 (3)
C15—C1—C2—C168.7 (4)C4—C3—C10—N4155.6 (2)
C2—N2—C3—C44.3 (3)N2—C3—C10—C11147.2 (2)
C2—N2—C3—C10173.4 (2)C4—C3—C10—C1130.3 (4)
C1—N1—C4—C34.9 (3)N4—C10—C11—C120.2 (4)
C1—N1—C4—C5171.7 (2)C3—C10—C11—C12173.6 (2)
N2—C3—C4—N19.5 (3)C10—C11—C12—C130.4 (4)
C10—C3—C4—N1167.9 (2)C11—C12—C13—C141.0 (5)
N2—C3—C4—C5166.7 (2)C10—N4—C14—C130.4 (4)
C10—C3—C4—C515.9 (4)C12—C13—C14—N41.0 (4)
C9—N3—C5—C61.0 (4)N1—C1—C15—O172.5 (3)
C9—N3—C5—C4174.7 (2)C2—C1—C15—O1103.4 (3)
N1—C4—C5—N345.6 (3)N1—C1—C15—O2104.1 (2)
C3—C4—C5—N3138.0 (2)C2—C1—C15—O280.0 (3)
N1—C4—C5—C6127.8 (3)N2—C2—C16—O39.8 (3)
C3—C4—C5—C648.6 (4)C1—C2—C16—O3166.9 (2)
N3—C5—C6—C70.7 (4)N2—C2—C16—O4171.5 (2)
C4—C5—C6—C7172.5 (2)C1—C2—C16—O411.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl1i0.97 (4)2.05 (4)2.9996 (18)168 (3)
N3—H3N···O4ii0.94 (3)1.65 (3)2.582 (3)167 (2)
N4—H4N···O1Wiii0.91 (3)1.78 (3)2.674 (3)169 (3)
O1W—H1A···Cl1iv0.83 (4)2.30 (4)3.112 (3)167 (3)
O1W—H1B···O3v0.95 (4)1.86 (4)2.802 (3)170 (3)
O2W—H21···Cl10.89 (9)2.38 (10)3.230 (6)160 (6)
O2W—H22···O3v0.81 (9)2.04 (10)2.794 (6)155 (8)
O3W—H31···O3v1.00 (10)1.82 (10)2.809 (9)168 (7)
O3W—H32···Cl11.05 (14)2.04 (14)3.028 (9)157 (9)
O4W—H41···Cl1vi0.842.503.344 (3)179
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1, z; (iv) x+1/2, y, z; (v) x+1/2, y+1, z; (vi) x, y1, z.
(IIIa) 6-carboxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium perchlorate trihydrate top
Crystal data top
C16H11N4O4+·ClO4·3H2OF(000) = 492
Mr = 476.79Dx = 1.609 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 6.1401 (7) ÅCell parameters from 5000 reflections
b = 15.6358 (12) Åθ = 1.7–26.1°
c = 10.7154 (8) ŵ = 0.27 mm1
β = 106.934 (8)°T = 223 K
V = 984.13 (15) Å3Block, pale yellow
Z = 20.36 × 0.35 × 0.26 mm
Data collection top
Stoe IPDS
diffractometer
1419 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.9°, θmin = 2.4°
Detector resolution: 0.82Å pixels mm-1h = 77
ϕ oscillation scansk = 1919
7650 measured reflectionsl = 1313
1914 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.115All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0786P)2]
where P = (Fo2 + 2Fc2)/3
1914 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
C16H11N4O4+·ClO4·3H2OV = 984.13 (15) Å3
Mr = 476.79Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.1401 (7) ŵ = 0.27 mm1
b = 15.6358 (12) ÅT = 223 K
c = 10.7154 (8) Å0.36 × 0.35 × 0.26 mm
β = 106.934 (8)°
Data collection top
Stoe IPDS
diffractometer
1419 reflections with I > 2σ(I)
7650 measured reflectionsRint = 0.033
1914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.02Δρmax = 0.18 e Å3
1914 reflectionsΔρmin = 0.58 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3233 (3)0.03491 (9)0.10493 (15)0.0487 (4)
O20.1347 (3)0.12771 (9)0.18880 (15)0.0464 (4)
H2O0.00000.130 (3)0.25000.080 (12)*
N10.0965 (3)0.09766 (9)0.15109 (14)0.0297 (4)
N20.1821 (3)0.24553 (10)0.03765 (14)0.0321 (4)
H2N0.285 (4)0.2022 (15)0.051 (2)0.047 (6)*
C10.0643 (3)0.02366 (11)0.20518 (16)0.0298 (4)
C20.0346 (3)0.17086 (11)0.19261 (16)0.0276 (4)
C30.0324 (3)0.24614 (11)0.10802 (16)0.0291 (4)
C40.1222 (4)0.31173 (12)0.09105 (19)0.0362 (5)
H40.229 (4)0.3116 (13)0.1394 (19)0.035 (5)*
C50.1203 (4)0.37640 (13)0.0023 (2)0.0447 (5)
H50.224 (5)0.4201 (16)0.010 (2)0.054 (7)*
C60.0372 (4)0.37459 (14)0.0665 (2)0.0456 (5)
H60.045 (4)0.4182 (16)0.125 (2)0.053 (6)*
C70.1876 (4)0.30819 (13)0.04735 (19)0.0402 (5)
H70.299 (4)0.3010 (14)0.096 (2)0.045 (6)*
C80.1833 (4)0.05126 (12)0.16216 (18)0.0351 (4)
Cl10.50000.44850 (5)0.25000.0616 (3)
O110.50000.35788 (14)0.25000.0530 (6)
O120.5187 (7)0.4638 (2)0.4036 (3)0.0658 (10)0.50
O130.2741 (12)0.4793 (5)0.2005 (7)0.100 (3)0.50
O140.3338 (13)0.4887 (5)0.2673 (6)0.093 (2)0.50
O1W0.5044 (3)0.12538 (10)0.06311 (16)0.0441 (4)
H1A0.552 (5)0.1116 (17)0.000 (3)0.072 (9)*
H1B0.442 (5)0.0793 (18)0.080 (2)0.054 (7)*
O2W0.50000.25145 (16)0.75000.0713 (8)
H2WA0.35850.21040.71360.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0584 (10)0.0409 (8)0.0574 (10)0.0081 (7)0.0338 (9)0.0015 (6)
O20.0539 (9)0.0312 (8)0.0586 (9)0.0040 (6)0.0236 (8)0.0015 (6)
N10.0274 (8)0.0322 (8)0.0301 (8)0.0009 (6)0.0094 (6)0.0005 (6)
N20.0342 (9)0.0329 (8)0.0317 (8)0.0027 (7)0.0135 (7)0.0034 (6)
C10.0287 (10)0.0312 (9)0.0277 (8)0.0013 (7)0.0056 (7)0.0019 (7)
C20.0235 (9)0.0299 (9)0.0297 (9)0.0004 (7)0.0085 (7)0.0008 (7)
C30.0300 (10)0.0310 (9)0.0271 (8)0.0030 (7)0.0095 (7)0.0022 (7)
C40.0376 (11)0.0370 (10)0.0360 (10)0.0026 (8)0.0137 (9)0.0014 (8)
C50.0534 (14)0.0365 (11)0.0431 (11)0.0085 (10)0.0125 (10)0.0067 (9)
C60.0654 (15)0.0396 (11)0.0345 (10)0.0026 (10)0.0187 (10)0.0069 (9)
C70.0508 (13)0.0416 (11)0.0331 (10)0.0093 (9)0.0198 (9)0.0019 (8)
C80.0385 (11)0.0342 (10)0.0325 (9)0.0043 (8)0.0103 (8)0.0013 (8)
Cl10.0433 (5)0.0381 (4)0.0898 (7)0.0000.0020 (4)0.000
O110.0560 (14)0.0413 (12)0.0661 (14)0.0000.0249 (12)0.000
O120.086 (3)0.071 (2)0.0430 (18)0.023 (2)0.0225 (18)0.0166 (16)
O130.069 (3)0.070 (3)0.122 (5)0.022 (2)0.032 (4)0.013 (4)
O140.115 (6)0.086 (4)0.104 (5)0.052 (4)0.073 (4)0.017 (4)
O1W0.0407 (9)0.0466 (9)0.0517 (9)0.0004 (7)0.0236 (7)0.0074 (7)
O2W0.0666 (18)0.0549 (15)0.096 (2)0.0000.0298 (15)0.000
Geometric parameters (Å, º) top
O1—C81.219 (2)C5—H50.92 (3)
O2—C81.284 (2)C6—C71.365 (3)
O2—H2O1.1965 (19)C6—H60.94 (2)
N1—C21.323 (2)C7—H70.98 (2)
N1—C11.334 (2)Cl1—O141.258 (6)
N2—C71.345 (2)Cl1—O14ii1.258 (6)
N2—C31.348 (2)Cl1—O111.417 (2)
N2—H2N0.91 (2)Cl1—O13ii1.418 (6)
C1—C1i1.410 (4)Cl1—O131.418 (6)
C1—C81.522 (3)Cl1—O121.634 (3)
C2—C2i1.413 (3)Cl1—O12ii1.634 (3)
C2—C31.483 (2)O12—O141.615 (8)
C3—C41.373 (3)O13—O140.718 (7)
C4—C51.391 (3)O1W—H1A0.84 (3)
C4—H40.95 (2)O1W—H1B0.86 (3)
C5—C61.376 (3)O2W—H2WA1.0590
C8—O2—H2O113 (2)O2—C8—C1119.08 (17)
C2—N1—C1120.69 (15)O14—Cl1—O14ii120.0 (8)
C7—N2—C3121.96 (18)O14—Cl1—O11120.0 (4)
C7—N2—H2N119.7 (14)O14ii—Cl1—O11120.0 (4)
C3—N2—H2N118.3 (14)O14—Cl1—O13ii121.5 (4)
N1—C1—C1i118.63 (10)O14ii—Cl1—O13ii30.4 (4)
N1—C1—C8113.01 (16)O11—Cl1—O13ii109.9 (3)
C1i—C1—C8128.32 (11)O14—Cl1—O1330.4 (4)
N1—C2—C2i118.77 (10)O14ii—Cl1—O13121.5 (4)
N1—C2—C3115.67 (15)O11—Cl1—O13109.9 (3)
C2i—C2—C3125.48 (10)O13ii—Cl1—O13140.3 (6)
N2—C3—C4119.27 (17)O14—Cl1—O1266.4 (3)
N2—C3—C2116.75 (16)O14ii—Cl1—O12104.7 (3)
C4—C3—C2123.80 (16)O11—Cl1—O1298.43 (13)
C3—C4—C5119.36 (19)O13ii—Cl1—O1278.5 (4)
C3—C4—H4119.3 (12)O13—Cl1—O1295.8 (4)
C5—C4—H4121.4 (12)O14—Cl1—O12ii104.7 (3)
C6—C5—C4119.9 (2)O14ii—Cl1—O12ii66.4 (3)
C6—C5—H5120.4 (16)O11—Cl1—O12ii98.43 (13)
C4—C5—H5119.7 (16)O13ii—Cl1—O12ii95.8 (4)
C7—C6—C5119.05 (19)O13—Cl1—O12ii78.5 (4)
C7—C6—H6119.3 (15)O12—Cl1—O12ii163.1 (3)
C5—C6—H6121.6 (15)O14—O12—Cl145.6 (2)
N2—C7—C6120.44 (19)O14—O13—Cl162.4 (8)
N2—C7—H7115.9 (13)O13—O14—Cl187.2 (9)
C6—C7—H7123.6 (13)O13—O14—O12150.7 (12)
O1—C8—O2123.39 (17)Cl1—O14—O1268.0 (4)
O1—C8—C1117.52 (17)H1A—O1W—H1B104 (3)
C2—N1—C1—C1i8.5 (3)O11—Cl1—O12—O14119.1 (4)
C2—N1—C1—C8169.67 (16)O13ii—Cl1—O12—O14132.2 (4)
C1—N1—C2—C2i9.4 (3)O13—Cl1—O12—O148.0 (7)
C1—N1—C2—C3167.37 (16)O12ii—Cl1—O12—O1460.9 (4)
C7—N2—C3—C41.2 (3)O14ii—Cl1—O13—O1496.5 (14)
C7—N2—C3—C2176.52 (16)O11—Cl1—O13—O14115.8 (11)
N1—C2—C3—N229.8 (2)O13ii—Cl1—O13—O1464.2 (11)
C2i—C2—C3—N2153.7 (2)O12—Cl1—O13—O1414.6 (12)
N1—C2—C3—C4145.31 (18)O12ii—Cl1—O13—O14149.3 (12)
C2i—C2—C3—C431.2 (3)Cl1—O13—O14—O1231 (2)
N2—C3—C4—C50.4 (3)O14ii—Cl1—O14—O13102.1 (12)
C2—C3—C4—C5175.34 (18)O11—Cl1—O14—O1377.9 (12)
C3—C4—C5—C60.7 (3)O13ii—Cl1—O14—O13137.5 (11)
C4—C5—C6—C70.9 (3)O12—Cl1—O14—O13164.1 (13)
C3—N2—C7—C61.0 (3)O12ii—Cl1—O14—O1331.1 (13)
C5—C6—C7—N20.1 (3)O14ii—Cl1—O14—O1293.9 (3)
N1—C1—C8—O112.7 (2)O11—Cl1—O14—O1286.1 (3)
C1i—C1—C8—O1165.2 (2)O13ii—Cl1—O14—O1258.4 (5)
N1—C1—C8—O2168.12 (16)O13—Cl1—O14—O12164.1 (13)
C1i—C1—C8—O214.0 (3)O12ii—Cl1—O14—O12164.8 (2)
O14ii—Cl1—O12—O14116.7 (8)Cl1—O12—O14—O1334 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i1.20 (1)1.20 (1)2.392 (3)177 (4)
N2—H2N···O1W0.91 (2)1.78 (3)2.684 (2)172 (2)
O1W—H1A···O1iii0.84 (3)1.94 (3)2.734 (2)156 (3)
O1W—H1B···O10.86 (3)1.98 (3)2.830 (2)172 (3)
O2W—H2WA···O2iv1.061.852.889 (2)167
Symmetry codes: (i) x, y, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1/2.
(IIIb) 6-carboxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium hexafluorophosphate trihydrate top
Crystal data top
C16H11N4O4+·PF6·3H2OF(000) = 532
Mr = 522.31Dx = 1.722 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 6.1910 (6) ÅCell parameters from 5000 reflections
b = 15.6564 (11) Åθ = 1.7–26.1°
c = 10.8349 (10) ŵ = 0.24 mm1
β = 106.400 (11)°T = 293 K
V = 1007.48 (15) Å3Rod, pale yellow
Z = 20.70 × 0.20 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
1628 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.9°, θmin = 3.3°
Detector resolution: 0.81Å pixels mm-1h = 77
ϕ oscillation scansk = 1919
7713 measured reflectionsl = 1313
1944 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.152All H-atom parameters refined
S = 1.20 w = 1/[σ2(Fo2) + (0.1018P)2 + 0.1313P]
where P = (Fo2 + 2Fc2)/3
1944 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C16H11N4O4+·PF6·3H2OV = 1007.48 (15) Å3
Mr = 522.31Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.1910 (6) ŵ = 0.24 mm1
b = 15.6564 (11) ÅT = 293 K
c = 10.8349 (10) Å0.70 × 0.20 × 0.15 mm
β = 106.400 (11)°
Data collection top
Stoe IPDS
diffractometer
1628 reflections with I > 2σ(I)
7713 measured reflectionsRint = 0.029
1944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.152All H-atom parameters refined
S = 1.20Δρmax = 0.25 e Å3
1944 reflectionsΔρmin = 0.83 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4040 (3)0.09425 (10)0.34843 (16)0.0286 (4)
N20.3208 (3)0.24229 (11)0.46196 (15)0.0302 (4)
H2N0.214 (6)0.2008 (19)0.451 (3)0.049 (7)*
O10.1776 (3)0.03754 (11)0.39442 (18)0.0473 (5)
O20.3656 (3)0.13016 (10)0.31136 (18)0.0478 (5)
H2O0.50000.124 (4)0.25000.101 (19)*
C10.4356 (3)0.02054 (13)0.29450 (18)0.0293 (4)
C20.4658 (3)0.16771 (12)0.30675 (17)0.0263 (4)
C30.4688 (3)0.24235 (13)0.39136 (17)0.0265 (4)
C40.6261 (4)0.30703 (14)0.40890 (19)0.0334 (5)
H40.747 (5)0.3146 (17)0.359 (3)0.045 (7)*
C50.6266 (4)0.37137 (15)0.4977 (2)0.0407 (5)
H50.725 (5)0.4157 (19)0.508 (3)0.048 (8)*
C60.4718 (4)0.36946 (15)0.5673 (2)0.0411 (6)
H60.474 (5)0.413 (2)0.634 (3)0.053 (8)*
C70.3190 (4)0.30384 (14)0.54757 (19)0.0363 (5)
H70.215 (5)0.2940 (17)0.592 (3)0.042 (7)*
C80.3177 (4)0.05412 (14)0.3380 (2)0.0361 (5)
O1W0.0014 (3)0.12351 (12)0.43619 (18)0.0434 (5)
H1WA0.047 (6)0.110 (2)0.495 (4)0.069 (11)*
H1WB0.059 (7)0.076 (2)0.416 (4)0.074 (11)*
O2W0.00000.2445 (3)0.25000.1238 (18)
H2WA0.14510.23210.21360.100*
P10.00000.45753 (5)0.25000.0331 (3)
F10.00000.35438 (12)0.25000.0437 (5)
F20.00000.55917 (14)0.25000.0610 (6)
F30.0436 (3)0.45621 (10)0.40178 (13)0.0532 (5)
F40.2650 (2)0.45701 (10)0.26905 (15)0.0523 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0279 (8)0.0322 (9)0.0258 (8)0.0012 (6)0.0075 (6)0.0005 (6)
N20.0326 (9)0.0330 (9)0.0257 (8)0.0021 (7)0.0096 (7)0.0023 (7)
O10.0580 (11)0.0395 (9)0.0541 (10)0.0102 (7)0.0317 (9)0.0014 (7)
O20.0599 (11)0.0300 (8)0.0578 (11)0.0040 (7)0.0233 (9)0.0021 (7)
C10.0298 (9)0.0313 (10)0.0254 (9)0.0001 (8)0.0053 (8)0.0009 (8)
C20.0238 (8)0.0295 (10)0.0253 (9)0.0000 (7)0.0066 (7)0.0014 (7)
C30.0288 (9)0.0297 (10)0.0213 (9)0.0016 (7)0.0073 (7)0.0025 (7)
C40.0378 (11)0.0348 (11)0.0280 (9)0.0044 (9)0.0102 (8)0.0000 (8)
C50.0532 (14)0.0362 (12)0.0301 (10)0.0089 (10)0.0073 (10)0.0024 (9)
C60.0590 (14)0.0384 (12)0.0253 (10)0.0030 (10)0.0112 (9)0.0040 (9)
C70.0472 (12)0.0390 (12)0.0259 (9)0.0067 (10)0.0155 (9)0.0021 (8)
C80.0415 (12)0.0342 (11)0.0316 (10)0.0045 (9)0.0088 (9)0.0030 (8)
O1W0.0399 (9)0.0472 (11)0.0491 (10)0.0032 (7)0.0223 (8)0.0074 (8)
O2W0.089 (3)0.099 (3)0.182 (6)0.0000.037 (3)0.000
P10.0331 (4)0.0381 (5)0.0288 (5)0.0000.0101 (3)0.000
F10.0530 (11)0.0404 (11)0.0437 (10)0.0000.0233 (9)0.000
F20.0629 (14)0.0399 (12)0.0721 (15)0.0000.0060 (12)0.000
F30.0609 (9)0.0684 (10)0.0307 (8)0.0100 (7)0.0136 (6)0.0075 (6)
F40.0354 (8)0.0632 (10)0.0596 (10)0.0034 (6)0.0153 (7)0.0023 (7)
Geometric parameters (Å, º) top
N1—C21.331 (3)C5—C61.377 (4)
N1—C11.333 (3)C5—H50.91 (3)
N2—C71.340 (3)C6—C71.372 (4)
N2—C31.349 (3)C6—H60.99 (3)
N2—H2N0.91 (3)C7—H70.92 (3)
O1—C81.222 (3)O1W—H1WA0.79 (4)
O2—C81.279 (3)O1W—H1WB0.89 (4)
O2—H2O1.206 (5)O2W—H2WA0.8946
C1—C1i1.414 (4)P1—F3ii1.5897 (14)
C1—C81.522 (3)P1—F31.5897 (14)
C2—C2i1.409 (4)P1—F21.591 (2)
C2—C31.482 (3)P1—F4ii1.5948 (14)
C3—C41.380 (3)P1—F41.5948 (14)
C4—C51.393 (3)P1—F11.615 (2)
C4—H41.05 (3)
C2—N1—C1120.49 (17)N2—C7—C6120.4 (2)
C7—N2—C3122.12 (19)N2—C7—H7112.7 (17)
C7—N2—H2N116.9 (18)C6—C7—H7126.8 (17)
C3—N2—H2N121.0 (19)O1—C8—O2123.6 (2)
C8—O2—H2O107 (3)O1—C8—C1117.53 (19)
N1—C1—C1i118.69 (12)O2—C8—C1118.9 (2)
N1—C1—C8112.74 (17)H1WA—O1W—H1WB104 (4)
C1i—C1—C8128.56 (12)F3ii—P1—F3178.51 (13)
N1—C2—C2i118.84 (11)F3ii—P1—F290.75 (6)
N1—C2—C3115.22 (16)F3—P1—F290.75 (6)
C2i—C2—C3125.84 (11)F3ii—P1—F4ii89.88 (8)
N2—C3—C4119.21 (18)F3—P1—F4ii90.11 (8)
N2—C3—C2117.27 (17)F2—P1—F4ii90.30 (7)
C4—C3—C2123.29 (17)F3ii—P1—F490.11 (8)
C3—C4—C5119.3 (2)F3—P1—F489.88 (8)
C3—C4—H4126.3 (15)F2—P1—F490.30 (7)
C5—C4—H4114.3 (15)F4ii—P1—F4179.41 (13)
C6—C5—C4119.8 (2)F3ii—P1—F189.25 (6)
C6—C5—H5119.8 (19)F3—P1—F189.25 (6)
C4—C5—H5120.3 (19)F2—P1—F1180.0
C7—C6—C5119.1 (2)F4ii—P1—F189.70 (7)
C7—C6—H6119.7 (18)F4—P1—F189.70 (7)
C5—C6—H6121.1 (18)
C2—N1—C1—C1i9.0 (3)N2—C3—C4—C50.9 (3)
C2—N1—C1—C8169.71 (17)C2—C3—C4—C5175.14 (19)
C1—N1—C2—C2i9.2 (3)C3—C4—C5—C60.4 (3)
C1—N1—C2—C3167.13 (17)C4—C5—C6—C70.0 (3)
C7—N2—C3—C41.0 (3)C3—N2—C7—C60.7 (3)
C7—N2—C3—C2175.63 (17)C5—C6—C7—N20.2 (3)
N1—C2—C3—N230.2 (2)N1—C1—C8—O113.5 (3)
C2i—C2—C3—N2153.7 (2)C1i—C1—C8—O1165.0 (3)
N1—C2—C3—C4144.14 (19)N1—C1—C8—O2168.02 (19)
C2i—C2—C3—C431.9 (3)C1i—C1—C8—O213.5 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i1.21 (1)1.21 (1)2.405 (4)171 (6)
N2—H2N···O1W0.91 (3)1.77 (3)2.683 (3)177 (3)
O1W—H1WA···O1iii0.79 (4)1.98 (4)2.739 (2)160 (4)
O1W—H1WB···O10.89 (4)1.96 (4)2.841 (3)171 (4)
O2W—H2WA···O2ii0.892.072.815 (4)140
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z+1.

Experimental details

(Ia)(II)(IIIa)(IIIb)
Crystal data
Chemical formulaC16H10N4O4C16H11N4O4+·Cl·2.25H2OC16H11N4O4+·ClO4·3H2OC16H11N4O4+·PF6·3H2O
Mr322.28399.27476.79522.31
Crystal system, space groupMonoclinic, P21/cMonoclinic, I2/aMonoclinic, P2/cMonoclinic, P2/c
Temperature (K)293293223293
a, b, c (Å)10.477 (1), 13.523 (2), 10.058 (1)19.5883 (17), 8.0623 (5), 22.936 (2)6.1401 (7), 15.6358 (12), 10.7154 (8)6.1910 (6), 15.6564 (11), 10.8349 (10)
α, β, γ (°)90, 110.07 (1), 9090, 90.559 (11), 9090, 106.934 (8), 9090, 106.400 (11), 90
V3)1338.5 (3)3622.0 (5)984.13 (15)1007.48 (15)
Z4822
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.120.260.270.24
Crystal size (mm)0.46 × 0.30 × 0.110.5 × 0.2 × 0.10.36 × 0.35 × 0.260.70 × 0.20 × 0.15
Data collection
DiffractometerStoe four-circle
diffractometer
Stoe IPDS
diffractometer
Stoe IPDS
diffractometer
Stoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2356, 2336, 1227 13718, 3488, 1943 7650, 1914, 1419 7713, 1944, 1628
Rint0.0390.0550.0330.029
(sin θ/λ)max1)0.5940.6150.6150.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.092, 0.90 0.039, 0.093, 0.82 0.040, 0.115, 1.02 0.044, 0.152, 1.20
No. of reflections2336348819141944
No. of parameters258327190186
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.200.63, 0.260.18, 0.580.25, 0.83

Computer programs: , EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), X-RED in STADI4 (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 1990), SHELXL97.

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i1.20 (4)1.29 (4)2.475 (3)169 (3)
N3—H3N···N41.22 (3)1.32 (3)2.528 (3)167 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl1i0.97 (4)2.05 (4)2.9996 (18)168 (3)
N3—H3N···O4ii0.94 (3)1.65 (3)2.582 (3)167 (2)
N4—H4N···O1Wiii0.91 (3)1.78 (3)2.674 (3)169 (3)
O1W—H1A···Cl1iv0.83 (4)2.30 (4)3.112 (3)167 (3)
O1W—H1B···O3v0.95 (4)1.86 (4)2.802 (3)170 (3)
O2W—H21···Cl10.89 (9)2.38 (10)3.230 (6)160 (6)
O2W—H22···O3v0.81 (9)2.04 (10)2.794 (6)155 (8)
O3W—H31···O3v1.00 (10)1.82 (10)2.809 (9)168 (7)
O3W—H32···Cl11.05 (14)2.04 (14)3.028 (9)157 (9)
O4W—H41···Cl1vi0.842.503.344 (3)179
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1/2, y+1, z; (iv) x+1/2, y, z; (v) x+1/2, y+1, z; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i1.1965 (19)1.1965 (19)2.392 (3)177 (4)
N2—H2N···O1W0.91 (2)1.78 (3)2.684 (2)172 (2)
O1W—H1A···O1ii0.84 (3)1.94 (3)2.734 (2)156 (3)
O1W—H1B···O10.86 (3)1.98 (3)2.830 (2)172 (3)
O2W—H2WA···O2iii1.061.852.889 (2)167
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O2i1.206 (5)1.206 (5)2.405 (4)171 (6)
N2—H2N···O1W0.91 (3)1.77 (3)2.683 (3)177 (3)
O1W—H1WA···O1ii0.79 (4)1.98 (4)2.739 (2)160 (4)
O1W—H1WB···O10.89 (4)1.96 (4)2.841 (3)171 (4)
O2W—H2WA···O2iii0.892.072.815 (4)140
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1; (iii) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds