Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We present the crystal and molecular structures of 2,3,6,7,8,8a-hexa­hydro-6,8-methano-7,7,8a-tri­methyl-3-(1-methyl-2-oxo­propyl­idene)-5H-1,4-benzoxazin-2-one, C16H21NO3, (III), and 2,3,6,7,8,8a-hexa­hydro-3-(2-hydroxy-1-methyl­propyl)-6,8-methano-7,7,8a-tri­methyl-5H-1,4-benzoxazin-2-one, C16H25NO3, (V). These compounds are two of the four key intermediates in our synthetic route to (2R,3R,4R)-4-hydroxy­isoleucine. The two structures provide a full understanding of the stereochemistry in successive steps. This synthesis was based on a new optically pure chiral oxazinone auxiliary derived from (1R,2R,5R)-2-hydroxy­pinan-3-one.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014597/gd1165sup1.cif
Contains datablocks global, III, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014597/gd1165IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014597/gd1165Vsup3.hkl
Contains datablock V

CCDC references: 179265; 179266

Comment top

For the synthesis of γ-hydroxy-α-aminoacids (Jacob et al., 1997), and in particular of 4-hydroxyisoleucine, we have explored a new strategy using the oxazinone (El Achkar et al., 1988) derived from (1R,2R,5R)-2-hydroxypinan-3-one as the starting material. By this route, enantiomerically pure isomers of (2R,3R,4R)-4-hydroxyisoleucine have been prepared (Kassem et al., 2001). The strategy used is outlined in the reaction scheme below. We have recently described the molecular structures of compounds (II) and (IV) (Kassem et al., 2000). At that time, we did not possess crystals of compounds (III) and (V) of sufficient quality to be able to determine their structure and stereochemistry, and without this information it is difficult to obtain a full stereochemical understanding of the different steps in the synthetic route; a particular requirement is the structure of the key didehydro intermediate, (III). \sch

During the enantioselective synthesis of 4-hydroxyisoleucine from the oxazinone, (I), three stereogenic centres were created, the key intermediate being the chiral didehydro amino-acid derivative, (III), where hydrogenation of the double bond would allow control of the configurations of the C atoms C2 and C3. The configuration of atom C3 controls the stereochemistry of atom C4 after reduction of the ketone. Hence, it was necessary to determine the geometry of the double bond of (III) and the configuration of C4 in compound (IV).

For these intermediates, we found the R configuration for C2 and S for C3 in compound (II), and the R configuration for both C2 and C3 in compound (IV). To determine the stereochemistry unambiguously during the dehydration step from (II) to (III), and the reduction step between (IV) and (V), the structures of two key intermediates, (III) and (V), were determined and their structures are presented here.

The C2C3 double bond was found to have the E configuration in compound (III). From the known R configuration of C7, C10 and C12, coresponding to the chiral auxiliary oxazinone, we found the R configuration for C2, C3 and C4 in compound (V).

Compounds (III) and (V) have different structures. The carbonyl group on C4 and the C2C3 double bond in compound (III) were reduced in two steps, producing three asymmetric C atoms, C2, C3 and C4, in compound (V). The six-membered C1—C2—N1—C8—C7—O3 ring of the oxazinone shares one side (C7—C8) with the bicyclo system of the (1R,2R,5R)-2-hydroxypinan-3-one. On atom C2 is found the future amino-acid side chain (C3—C4—C5).

The C1—C2—N1—C8—C7—O3 ring can be described as having a boat conformation, with slight distortion differences between (III) and (V). Atoms C2 and C7 are 0.2915 (17) and 0.5533 (17) Å, respectively, above the mean plane of the other four atoms (r.m.s. deviation 0.065 Å) in (III). However, in (V), atoms C2 and C7 are 0.3347 (17) and 0.5163 (18) Å, respectively, out of the same mean plane (r.m.s. deviation 0.066 Å). This difference is better indicated by the C8—N1—C2—C3 torsion angle, which is -158.28 (19)° in (III) and 155.44 (17)° in (V). In compound (III), a partial conjugation of the C2C3 double bond with C8N1 can be observed, but not with the carbonyl group of the ketone.

The bicyclo system, including the six-membered C7—C8—C9—C10—C11—C12 ring, is bridged by atom C13 between C12 and C10.

Related literature top

For related literature, see: El Achkar, Boumzebra, Roumestant & Viallefont (1988); Jacob et al. (1997); Kassem et al. (2000, 2001).

Experimental top

The enantioselective condensation of butan-2,3-dione with the (1'R,2'R,5'R)-oxazinone, (I), resulted in the alcohol, (II). After a dehydration step, a stereoselective hydrogenation of the double bond of compound (III) gave the second optically pure intermediate, (IV). After a reduction step, the final cleavage of the chiral auxiliary produced one pure isomer of 4-hydroxyisoleucine. Crystals of (III) (m.p. 375–377 K) and (V) (m.p. 382–384 K) suitable for single-crystal X-ray diffraction were grown from solutions in diethyl ether.

Refinement top

For both structures, the H atoms were introduced at calculated positions and refined as riding (O—H = 0.82 Å, and C—H = 0.96, 0.97 and 0.98 Å), with a displacement parameter equal to 1.2 (OH, CH and CH2) or 1.5 (CH3) times that of the parent atom.

Computing details top

For both compounds, data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO and SCALEPAK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecular structure of (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(III) 2,3,5,6,7,8-Hexahydro-6,8-methano-7,7,8a-trimethyl-3-(1-methyl-2- oxopropylidene)-5H-1,4-benzoxazin-2-one top
Crystal data top
C16H21NO3Dx = 1.200 Mg m3
Mr = 275.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 10878 reflections
a = 8.4160 (3) Åθ = 1.0–26.4°
b = 12.3127 (5) ŵ = 0.08 mm1
c = 14.7039 (4) ÅT = 293 K
V = 1523.72 (9) Å3Prism, colourless
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 592
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.033
Radiation source: X-ray tubeθmax = 26.4°, θmin = 3.3°
ϕ–scanh = 1010
10878 measured reflectionsk = 1515
1775 independent reflectionsl = 1717
1668 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1091P]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H21NO3V = 1523.72 (9) Å3
Mr = 275.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4160 (3) ŵ = 0.08 mm1
b = 12.3127 (5) ÅT = 293 K
c = 14.7039 (4) Å0.4 × 0.3 × 0.2 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1668 reflections with I > 2σ(I)
10878 measured reflectionsRint = 0.033
1775 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.13 e Å3
1775 reflectionsΔρmin = 0.16 e Å3
181 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0355 (2)0.61400 (17)0.53152 (14)0.0809 (6)
O20.1157 (2)0.54369 (11)0.71948 (10)0.0560 (4)
O30.16674 (16)0.36925 (9)0.73540 (8)0.0442 (3)
N10.3561 (2)0.37272 (13)0.58021 (11)0.0495 (4)
C10.1678 (2)0.46121 (14)0.68663 (12)0.0408 (4)
C20.2433 (2)0.45510 (15)0.59522 (12)0.0427 (4)
C30.2174 (3)0.53378 (16)0.53378 (13)0.0489 (5)
C40.1034 (3)0.62506 (17)0.54936 (14)0.0530 (5)
C50.1713 (4)0.73112 (18)0.5795 (2)0.0805 (8)
C60.2937 (4)0.5352 (2)0.44169 (17)0.0825 (9)
C70.1963 (2)0.26619 (14)0.68705 (12)0.0384 (4)
C80.3392 (2)0.28487 (15)0.62532 (13)0.0445 (4)
C90.4713 (3)0.2018 (2)0.62734 (18)0.0622 (6)
C100.4679 (3)0.1384 (2)0.71647 (18)0.0621 (6)
C110.4121 (3)0.2148 (2)0.79336 (16)0.0607 (6)
C120.2411 (2)0.18707 (15)0.76226 (14)0.0463 (4)
C130.3078 (3)0.07631 (17)0.72646 (17)0.0586 (5)
C140.2422 (4)0.0191 (2)0.6446 (2)0.0829 (8)
C150.3131 (4)0.0056 (2)0.8054 (2)0.0939 (10)
C160.0437 (3)0.24001 (18)0.63723 (16)0.0539 (5)
H5A0.08740.78350.58560.121*
H5B0.24670.75620.53530.121*
H5C0.22350.72190.63710.121*
H6A0.32720.60770.42750.124*
H6B0.21870.51090.39690.124*
H6C0.38430.48780.44170.124*
H9A0.57300.23810.62100.075*
H9B0.45920.15210.57670.075*
H100.56360.09580.72980.074*
H11A0.44160.29030.78490.073*
H11B0.43800.18970.85410.073*
H120.16320.18090.81150.056*
H14A0.30520.04410.63190.124*
H14B0.24490.06720.59320.124*
H14C0.13450.00230.65630.124*
H15A0.20710.02860.81980.141*
H15B0.36010.02810.85770.141*
H15C0.37540.06740.78790.141*
H16A0.03710.22080.68040.081*
H16B0.06140.18020.59660.081*
H16C0.01000.30240.60310.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0615 (10)0.0981 (14)0.0831 (12)0.0083 (10)0.0161 (9)0.0013 (11)
O20.0765 (10)0.0421 (7)0.0492 (7)0.0106 (7)0.0077 (7)0.0055 (6)
O30.0580 (7)0.0392 (6)0.0354 (6)0.0053 (6)0.0070 (6)0.0019 (5)
N10.0530 (9)0.0465 (9)0.0490 (8)0.0020 (8)0.0135 (7)0.0002 (7)
C10.0470 (9)0.0372 (8)0.0384 (8)0.0024 (8)0.0011 (8)0.0030 (7)
C20.0467 (9)0.0405 (9)0.0411 (9)0.0024 (8)0.0056 (8)0.0018 (8)
C30.0554 (12)0.0461 (10)0.0452 (10)0.0052 (9)0.0075 (9)0.0043 (8)
C40.0584 (12)0.0536 (11)0.0471 (10)0.0000 (10)0.0012 (9)0.0117 (10)
C50.0801 (17)0.0432 (11)0.118 (2)0.0022 (13)0.0139 (18)0.0081 (13)
C60.105 (2)0.0812 (17)0.0609 (13)0.0109 (17)0.0342 (15)0.0196 (13)
C70.0415 (9)0.0353 (8)0.0385 (8)0.0018 (7)0.0009 (7)0.0034 (7)
C80.0458 (10)0.0448 (9)0.0428 (9)0.0029 (9)0.0066 (8)0.0055 (8)
C90.0535 (11)0.0584 (12)0.0748 (15)0.0131 (11)0.0189 (11)0.0003 (12)
C100.0479 (11)0.0607 (12)0.0775 (14)0.0160 (10)0.0005 (10)0.0075 (12)
C110.0539 (12)0.0691 (14)0.0589 (12)0.0057 (11)0.0118 (10)0.0043 (12)
C120.0463 (9)0.0454 (10)0.0473 (10)0.0047 (8)0.0018 (9)0.0069 (8)
C130.0546 (11)0.0430 (10)0.0783 (14)0.0118 (9)0.0050 (12)0.0065 (10)
C140.0798 (16)0.0510 (13)0.118 (2)0.0071 (13)0.0027 (18)0.0262 (14)
C150.0873 (19)0.0661 (15)0.128 (3)0.0293 (16)0.016 (2)0.0414 (17)
C160.0510 (11)0.0519 (11)0.0589 (12)0.0025 (10)0.0103 (10)0.0019 (10)
Geometric parameters (Å, º) top
O1—C41.205 (3)C5—H5A0.9600
O2—C11.207 (2)C5—H5B0.9600
O3—C11.340 (2)C5—H5C0.9600
O3—C71.476 (2)C6—H6A0.9600
N1—C81.277 (2)C6—H6B0.9600
N1—C21.407 (2)C6—H6C0.9600
C1—C21.488 (2)C10—H100.9800
C2—C31.342 (3)C9—H9A0.9700
C3—C41.495 (3)C9—H9B0.9700
C3—C61.499 (3)C11—H11A0.9700
C4—C51.493 (3)C11—H11B0.9700
C7—C81.524 (3)C12—H120.9800
C8—C91.511 (3)C14—H14A0.9600
C9—C101.526 (4)C14—H14B0.9600
C7—C161.513 (3)C14—H14C0.9600
C7—C121.521 (3)C15—H15A0.9600
C10—C111.544 (3)C15—H15B0.9600
C10—C131.556 (3)C15—H15C0.9600
C11—C121.547 (3)C16—H16A0.9600
C12—C131.566 (3)C16—H16B0.9600
C13—C141.500 (4)C16—H16C0.9600
C13—C151.538 (3)
C1—O3—C7117.87 (12)H5B—C5—H5C109.5
C8—N1—C2117.02 (15)C3—C6—H6A109.5
O2—C1—O3119.63 (15)C3—C6—H6B109.5
O2—C1—C2123.97 (17)H6A—C6—H6B109.5
O3—C1—C2116.31 (15)C3—C6—H6C109.5
C3—C2—N1121.62 (17)H6A—C6—H6C109.5
C3—C2—C1120.13 (17)H6B—C6—H6C109.5
N1—C2—C1117.79 (16)C8—C9—H9A109.6
C2—C3—C4122.92 (17)C10—C9—H9A109.6
C2—C3—C6123.1 (2)C8—C9—H9B109.6
C4—C3—C6113.88 (19)C10—C9—H9B109.6
O1—C4—C5122.3 (2)H9A—C9—H9B108.1
O1—C4—C3120.2 (2)C9—C10—H10115.4
C5—C4—C3117.2 (2)C11—C10—H10115.4
O3—C7—C16105.88 (15)C13—C10—H10115.4
O3—C7—C12104.02 (13)C11—C12—H12114.9
C16—C7—C12115.22 (16)C13—C12—H12114.9
O3—C7—C8106.86 (14)C10—C11—H11A114.3
C16—C7—C8114.43 (16)C12—C11—H11A114.3
C12—C7—C8109.48 (15)C10—C11—H11B114.3
N1—C8—C9120.11 (18)C12—C11—H11B114.3
N1—C8—C7121.67 (16)H11A—C11—H11B111.4
C9—C8—C7117.83 (16)C7—C12—H12114.9
C8—C9—C10110.45 (18)C13—C14—H14A109.5
C9—C10—C11108.82 (18)C13—C14—H14B109.5
C9—C10—C13110.4 (2)H14A—C14—H14B109.5
C11—C10—C1388.08 (18)C13—C14—H14C109.5
C10—C11—C1286.11 (16)H14A—C14—H14C109.5
C7—C12—C11107.71 (17)H14B—C14—H14C109.5
C7—C12—C13113.73 (17)C13—C15—H15A109.5
C11—C12—C1387.61 (16)C13—C15—H15B109.5
C14—C13—C15107.9 (2)H15A—C15—H15B109.5
C14—C13—C10118.3 (2)C13—C15—H15C109.5
C15—C13—C10111.6 (2)H15A—C15—H15C109.5
C14—C13—C12123.1 (2)H15B—C15—H15C109.5
C15—C13—C12109.1 (2)C7—C16—H16A109.5
C10—C13—C1285.10 (16)C7—C16—H16B109.5
C4—C5—H5A109.5H16A—C16—H16B109.5
C4—C5—H5B109.5C7—C16—H16C109.5
H5A—C5—H5B109.5H16A—C16—H16C109.5
C4—C5—H5C109.5H16B—C16—H16C109.5
H5A—C5—H5C109.5
C7—O3—C1—O2166.26 (18)N1—C8—C9—C10150.7 (2)
C7—O3—C1—C217.0 (2)C7—C8—C9—C1022.3 (3)
C8—N1—C2—C3158.28 (19)C8—C9—C10—C1134.0 (3)
C8—N1—C2—C129.6 (3)C8—C9—C10—C1361.1 (2)
O2—C1—C2—C319.2 (3)C9—C10—C11—C1283.8 (2)
O3—C1—C2—C3164.23 (18)C13—C10—C11—C1227.10 (16)
O2—C1—C2—N1153.1 (2)O3—C7—C12—C1174.35 (18)
O3—C1—C2—N123.5 (2)C16—C7—C12—C11170.23 (17)
N1—C2—C3—C4177.34 (19)C8—C7—C12—C1139.6 (2)
C1—C2—C3—C45.4 (3)O3—C7—C12—C13169.66 (15)
N1—C2—C3—C65.8 (3)C16—C7—C12—C1374.9 (2)
C1—C2—C3—C6177.8 (2)C8—C7—C12—C1355.7 (2)
C2—C3—C4—O185.9 (3)C10—C11—C12—C787.25 (18)
C6—C3—C4—O191.2 (3)C10—C11—C12—C1326.92 (17)
C2—C3—C4—C599.3 (3)C9—C10—C13—C1442.6 (3)
C6—C3—C4—C583.6 (3)C11—C10—C13—C14152.0 (2)
C1—O3—C7—C1676.3 (2)C9—C10—C13—C15168.8 (2)
C1—O3—C7—C12161.85 (16)C11—C10—C13—C1581.9 (2)
C1—O3—C7—C846.1 (2)C9—C10—C13—C1282.6 (2)
C2—N1—C8—C9167.9 (2)C11—C10—C13—C1226.79 (16)
C2—N1—C8—C74.7 (3)C7—C12—C13—C1439.2 (3)
O3—C7—C8—N141.3 (2)C11—C12—C13—C14147.5 (2)
C16—C7—C8—N175.5 (2)C7—C12—C13—C15167.2 (2)
C12—C7—C8—N1153.39 (18)C11—C12—C13—C1584.4 (2)
O3—C7—C8—C9131.52 (18)C7—C12—C13—C1081.6 (2)
C16—C7—C8—C9111.6 (2)C11—C12—C13—C1026.74 (17)
C12—C7—C8—C919.5 (2)
(V) 2,3,5,6,7,8-Hexahydro-3-(2-hydroxy-1-methylpropyl)-6,8-methano-7,7,8a- trimethyl-5H-1,4-benzoxazin-2-one top
Crystal data top
C16H25NO3Dx = 1.182 Mg m3
Mr = 279.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 11088 reflections
a = 10.2905 (3) Åθ = 1.0–26.3°
b = 11.8864 (5) ŵ = 0.08 mm1
c = 12.8317 (5) ÅT = 293 K
V = 1569.50 (10) Å3Prism, colourless
Z = 40.4 × 0.3 × 0.2 mm
F(000) = 608
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.036
Radiation source: X-ray tubeθmax = 26.3°, θmin = 3.1°
ϕ–scanh = 1212
11088 measured reflectionsk = 1414
1791 independent reflectionsl = 1616
1638 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.1278P]
where P = (Fo2 + 2Fc2)/3
1791 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C16H25NO3V = 1569.50 (10) Å3
Mr = 279.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2905 (3) ŵ = 0.08 mm1
b = 11.8864 (5) ÅT = 293 K
c = 12.8317 (5) Å0.4 × 0.3 × 0.2 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1638 reflections with I > 2σ(I)
11088 measured reflectionsRint = 0.036
1791 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.13 e Å3
1791 reflectionsΔρmin = 0.12 e Å3
181 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42623 (16)0.73053 (16)0.57239 (13)0.0716 (5)
O20.72659 (16)1.05251 (14)0.44797 (14)0.0734 (5)
O30.63837 (14)1.00686 (11)0.29869 (11)0.0556 (4)
N10.50368 (15)0.82874 (13)0.38796 (13)0.0496 (4)
C10.66693 (18)0.98389 (17)0.39881 (17)0.0533 (5)
C20.61678 (16)0.87394 (15)0.44380 (15)0.0464 (4)
C30.58141 (17)0.88756 (16)0.56013 (15)0.0485 (4)
C40.54706 (19)0.77388 (18)0.60934 (17)0.0549 (5)
C50.5371 (3)0.7795 (3)0.72699 (18)0.0731 (7)
C60.4750 (2)0.9749 (2)0.57512 (19)0.0690 (6)
C70.59405 (18)0.91485 (15)0.23041 (15)0.0471 (4)
C80.49354 (17)0.84735 (14)0.29143 (15)0.0463 (4)
C90.3705 (2)0.8141 (2)0.23492 (17)0.0597 (5)
C100.3425 (2)0.89586 (19)0.14670 (19)0.0628 (5)
C110.3903 (2)1.0134 (2)0.1794 (2)0.0685 (6)
C120.5264 (2)0.97498 (17)0.14047 (16)0.0535 (5)
C130.4521 (2)0.89393 (18)0.06422 (16)0.0572 (5)
C140.4139 (3)0.9582 (2)0.0349 (2)0.0837 (8)
C150.5060 (3)0.78096 (19)0.0297 (2)0.0701 (6)
C160.71463 (19)0.8475 (2)0.20144 (18)0.0631 (6)
H10.41990.74240.50970.086*
H20.68690.81840.43890.056*
H30.65910.91560.59590.058*
H40.61560.72000.59130.066*
H5A0.52880.70480.75460.110*
H5B0.46230.82310.74620.110*
H5C0.61390.81420.75480.110*
H6A0.50271.04540.54620.103*
H6B0.45770.98400.64820.103*
H6C0.39730.95040.54040.103*
H9A0.29820.81380.28350.072*
H9B0.37990.73870.20700.072*
H100.25390.89310.11880.075*
H11A0.38571.02760.25380.082*
H11B0.35271.07470.13970.082*
H120.57811.03370.10640.064*
H14A0.37981.03060.01630.126*
H14B0.34890.91640.07210.126*
H14C0.48900.96770.07840.126*
H15A0.52030.73430.08970.105*
H15B0.58680.79220.00620.105*
H15C0.44510.74500.01610.105*
H16A0.76630.88990.15310.095*
H16B0.68900.77770.16990.095*
H16C0.76460.83250.26310.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0648 (9)0.0831 (11)0.0669 (9)0.0289 (8)0.0023 (8)0.0110 (9)
O20.0752 (10)0.0718 (10)0.0732 (9)0.0331 (9)0.0081 (9)0.0056 (8)
O30.0578 (7)0.0476 (7)0.0616 (8)0.0177 (6)0.0058 (7)0.0016 (6)
N10.0448 (8)0.0478 (8)0.0562 (9)0.0100 (7)0.0022 (8)0.0039 (7)
C10.0444 (9)0.0532 (10)0.0623 (11)0.0107 (8)0.0006 (9)0.0017 (9)
C20.0371 (8)0.0455 (9)0.0565 (10)0.0028 (7)0.0004 (8)0.0020 (8)
C30.0394 (8)0.0512 (10)0.0549 (10)0.0011 (8)0.0010 (8)0.0061 (9)
C40.0458 (9)0.0584 (11)0.0604 (11)0.0003 (8)0.0011 (9)0.0029 (10)
C50.0593 (12)0.0986 (18)0.0613 (13)0.0017 (13)0.0014 (10)0.0125 (13)
C60.0661 (13)0.0616 (12)0.0792 (14)0.0123 (11)0.0132 (12)0.0049 (11)
C70.0419 (9)0.0438 (9)0.0555 (10)0.0061 (7)0.0007 (8)0.0002 (8)
C80.0411 (8)0.0415 (8)0.0562 (10)0.0056 (8)0.0042 (9)0.0039 (8)
C90.0479 (10)0.0710 (13)0.0603 (11)0.0180 (10)0.0012 (9)0.0036 (10)
C100.0453 (10)0.0701 (13)0.0728 (13)0.0013 (10)0.0100 (10)0.0025 (11)
C110.0629 (13)0.0602 (12)0.0823 (15)0.0133 (11)0.0123 (12)0.0040 (11)
C120.0546 (10)0.0446 (9)0.0613 (11)0.0043 (8)0.0047 (9)0.0053 (8)
C130.0616 (11)0.0529 (10)0.0572 (11)0.0055 (9)0.0076 (10)0.0036 (9)
C140.0999 (19)0.0812 (17)0.0699 (14)0.0087 (15)0.0241 (14)0.0142 (13)
C150.0826 (15)0.0623 (12)0.0653 (13)0.0079 (13)0.0013 (13)0.0092 (10)
C160.0459 (10)0.0770 (14)0.0663 (12)0.0066 (10)0.0097 (10)0.0065 (11)
Geometric parameters (Å, º) top
O1—C41.427 (2)C3—H30.9800
O2—C11.200 (2)C4—H40.9800
O3—C11.346 (3)C5—H5A0.9600
O3—C71.474 (2)C5—H5B0.9600
N1—C81.262 (2)C5—H5C0.9600
N1—C21.468 (2)C6—H6A0.9600
C1—C21.519 (3)C6—H6B0.9600
C2—C31.545 (3)C6—H6C0.9600
C3—C61.521 (3)C9—H9A0.9700
C3—C41.533 (3)C9—H9B0.9700
C4—C51.515 (3)C10—H100.9800
C7—C161.522 (3)C11—H11A0.9700
C7—C81.525 (2)C11—H11B0.9700
C7—C121.526 (3)C12—H120.9800
C8—C91.512 (3)C14—H14A0.9600
C9—C101.520 (3)C14—H14B0.9600
C10—C111.539 (3)C14—H14C0.9600
C10—C131.547 (3)C15—H15A0.9600
C11—C121.555 (3)C15—H15B0.9600
C12—C131.571 (3)C15—H15C0.9600
C13—C151.519 (3)C16—H16A0.9600
C13—C141.535 (3)C16—H16B0.9600
O1—H10.8200C16—H16C0.9600
C2—H20.9800
C1—O3—C7118.99 (15)C4—C5—H5A109.5
C8—N1—C2118.69 (16)C4—C5—H5B109.5
O2—C1—O3118.40 (18)H5A—C5—H5B109.5
O2—C1—C2123.97 (19)C4—C5—H5C109.5
O3—C1—C2117.58 (16)H5A—C5—H5C109.5
N1—C2—C1113.49 (16)H5B—C5—H5C109.5
N1—C2—C3108.85 (14)C3—C6—H6A109.5
C1—C2—C3110.92 (16)C3—C6—H6B109.5
C6—C3—C4112.55 (16)H6A—C6—H6B109.5
C6—C3—C2111.30 (17)C3—C6—H6C109.5
C4—C3—C2111.10 (16)H6A—C6—H6C109.5
O1—C4—C5106.75 (19)H6B—C6—H6C109.5
O1—C4—C3112.48 (17)C8—C9—H9A109.6
C5—C4—C3112.8 (2)C10—C9—H9A109.6
O3—C7—C16106.44 (16)C8—C9—H9B109.6
O3—C7—C8107.15 (15)C10—C9—H9B109.6
C16—C7—C8113.67 (16)H9A—C9—H9B108.1
O3—C7—C12104.09 (14)C9—C10—H10115.3
C16—C7—C12115.68 (17)C11—C10—H10115.3
C8—C7—C12108.99 (16)C13—C10—H10115.3
N1—C8—C9119.60 (17)C10—C11—H11A114.3
N1—C8—C7122.67 (17)C12—C11—H11A114.3
C9—C8—C7117.34 (17)C10—C11—H11B114.3
C8—C9—C10110.42 (17)C12—C11—H11B114.3
C9—C10—C11108.45 (19)H11A—C11—H11B111.4
C9—C10—C13111.21 (18)C7—C12—H12115.0
C11—C10—C1388.08 (18)C11—C12—H12115.0
C10—C11—C1286.24 (16)C13—C12—H12115.0
C7—C12—C11107.77 (18)C13—C14—H14A109.5
C7—C12—C13113.94 (16)C13—C14—H14B109.5
C11—C12—C1386.68 (16)H14A—C14—H14B109.5
C15—C13—C14107.0 (2)C13—C14—H14C109.5
C15—C13—C10118.61 (19)H14A—C14—H14C109.5
C14—C13—C10111.9 (2)H14B—C14—H14C109.5
C15—C13—C12123.07 (18)C13—C15—H15A109.5
C14—C13—C12109.62 (18)C13—C15—H15B109.5
C10—C13—C1285.40 (16)H15A—C15—H15B109.5
C4—O1—H1109.5C13—C15—H15C109.5
N1—C2—H2107.8H15A—C15—H15C109.5
C1—C2—H2107.8H15B—C15—H15C109.5
C3—C2—H2107.8C7—C16—H16A109.5
C6—C3—H3107.2C7—C16—H16B109.5
C4—C3—H3107.2H16A—C16—H16B109.5
C2—C3—H3107.2C7—C16—H16C109.5
O1—C4—H4108.2H16A—C16—H16C109.5
C5—C4—H4108.2H16B—C16—H16C109.5
C3—C4—H4108.2
C7—O3—C1—O2165.45 (18)N1—C8—C9—C10147.37 (19)
C7—O3—C1—C216.8 (2)C7—C8—C9—C1025.6 (3)
C8—N1—C2—C131.4 (2)C8—C9—C10—C1132.9 (2)
C8—N1—C2—C3155.42 (17)C8—C9—C10—C1362.4 (2)
O2—C1—C2—N1154.7 (2)C9—C10—C11—C1284.0 (2)
O3—C1—C2—N122.8 (2)C13—C10—C11—C1227.69 (16)
O2—C1—C2—C331.8 (3)O3—C7—C12—C1177.21 (18)
O3—C1—C2—C3145.74 (17)C16—C7—C12—C11166.40 (17)
N1—C2—C3—C664.7 (2)C8—C7—C12—C1136.9 (2)
C1—C2—C3—C660.8 (2)O3—C7—C12—C13171.55 (16)
N1—C2—C3—C461.6 (2)C16—C7—C12—C1372.1 (2)
C1—C2—C3—C4172.90 (15)C8—C7—C12—C1357.5 (2)
C6—C3—C4—O155.3 (2)C10—C11—C12—C786.83 (18)
C2—C3—C4—O170.2 (2)C10—C11—C12—C1327.27 (16)
C6—C3—C4—C565.5 (3)C9—C10—C13—C1543.8 (3)
C2—C3—C4—C5168.94 (18)C11—C10—C13—C15152.8 (2)
C1—O3—C7—C1677.0 (2)C9—C10—C13—C14169.05 (19)
C1—O3—C7—C844.9 (2)C11—C10—C13—C1481.9 (2)
C1—O3—C7—C12160.32 (16)C9—C10—C13—C1281.65 (18)
C2—N1—C8—C9172.59 (17)C11—C10—C13—C1227.41 (15)
C2—N1—C8—C70.0 (3)C7—C12—C13—C1540.6 (3)
O3—C7—C8—N137.5 (2)C11—C12—C13—C15148.5 (2)
C16—C7—C8—N179.8 (2)C7—C12—C13—C14167.6 (2)
C12—C7—C8—N1149.57 (19)C11—C12—C13—C1484.4 (2)
O3—C7—C8—C9135.27 (17)C7—C12—C13—C1080.83 (19)
C16—C7—C8—C9107.4 (2)C11—C12—C13—C1027.15 (16)
C12—C7—C8—C923.2 (2)

Experimental details

(III)(V)
Crystal data
Chemical formulaC16H21NO3C16H25NO3
Mr275.34279.37
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)293293
a, b, c (Å)8.4160 (3), 12.3127 (5), 14.7039 (4)10.2905 (3), 11.8864 (5), 12.8317 (5)
V3)1523.72 (9)1569.50 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.4 × 0.3 × 0.20.4 × 0.3 × 0.2
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10878, 1775, 1668 11088, 1791, 1638
Rint0.0330.036
(sin θ/λ)max1)0.6260.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.06 0.038, 0.100, 1.06
No. of reflections17751791
No. of parameters181181
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.160.13, 0.12

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPAK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), maXus (Mackay et al., 1999).

Selected geometric parameters (Å, º) for (III) top
O1—C41.205 (3)C1—C21.488 (2)
O2—C11.207 (2)C2—C31.342 (3)
O3—C11.340 (2)C3—C41.495 (3)
O3—C71.476 (2)C3—C61.499 (3)
N1—C81.277 (2)C4—C51.493 (3)
N1—C21.407 (2)C7—C81.524 (3)
C1—O3—C7117.87 (12)C2—C3—C4122.92 (17)
C8—N1—C2117.02 (15)C2—C3—C6123.1 (2)
O2—C1—O3119.63 (15)C4—C3—C6113.88 (19)
O2—C1—C2123.97 (17)O1—C4—C5122.3 (2)
O3—C1—C2116.31 (15)O1—C4—C3120.2 (2)
C3—C2—N1121.62 (17)C5—C4—C3117.2 (2)
C3—C2—C1120.13 (17)O3—C7—C8106.86 (14)
N1—C2—C1117.79 (16)N1—C8—C7121.67 (16)
C8—N1—C2—C3158.28 (19)C2—C3—C4—O185.9 (3)
O3—C1—C2—C3164.23 (18)C2—C3—C4—C599.3 (3)
C1—C2—C3—C45.4 (3)
Selected geometric parameters (Å, º) for (V) top
O1—C41.427 (2)C1—C21.519 (3)
O2—C11.200 (2)C2—C31.545 (3)
O3—C11.346 (3)C3—C61.521 (3)
O3—C71.474 (2)C3—C41.533 (3)
N1—C81.262 (2)C4—C51.515 (3)
N1—C21.468 (2)C7—C81.525 (2)
C1—O3—C7118.99 (15)C6—C3—C4112.55 (16)
C8—N1—C2118.69 (16)C6—C3—C2111.30 (17)
O2—C1—O3118.40 (18)C4—C3—C2111.10 (16)
O2—C1—C2123.97 (19)O1—C4—C5106.75 (19)
O3—C1—C2117.58 (16)O1—C4—C3112.48 (17)
N1—C2—C1113.49 (16)C5—C4—C3112.8 (2)
N1—C2—C3108.85 (14)O3—C7—C8107.15 (15)
C1—C2—C3110.92 (16)N1—C8—C7122.67 (17)
C8—N1—C2—C3155.42 (17)C2—C3—C4—O170.2 (2)
O3—C1—C2—C3145.74 (17)C2—C3—C4—C5168.94 (18)
C1—C2—C3—C4172.90 (15)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds