Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C21H14Cl2NO2+·CF3O3S, (I), and C20H11Cl2NO2, (II), form triclinic crystals. Adjacent cations of (I) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Together with the CF3SO3 anions, the antiparallel-oriented cations of (I) form layers in which the mol­ecules are linked via a network of C—H...O and π–π inter­actions (between the benzene rings). These layers, in turn, are linked via a network of multidirectional π–π inter­actions between the acridine rings, and the whole lattice is stabilized by electrostatic inter­actions between ions. Adjacent mol­ecules of (II) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Parallel-oriented mol­ecules are arranged in chains stabilized via C—H...Cl inter­actions. These chains are oriented either parallel or antiparallel and are stabilized, in the latter case, via multidirectional π–π inter­actions and more generally via dispersive inter­actions. Acridine and independent benzene moieties lie parallel in the lattices of (I) and (II), and are mutually oriented at an angle of 33.4 (2)° in (I) and 9.3 (2)° in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105004506/gd1365sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004506/gd1365Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105004506/gd1365IIsup3.hkl
Contains datablock II

CCDC references: 269041; 269042

Comment top

Numerous acridine-based derivatives are important, owing to their chemiluminogenic ability and their utility as chemiluminescent indicators or fragments of chemiluminescent labels, with applications in immunoassays, nucleic acid diagnostics and quantitative assays of biomolecules, such as antigens, antibodies, hormones and enzymes, as well as DNA–RNA structural analyses (Becker et al., 1999; Dodeigne et al., 2000; Zomer & Jacquemijns, 2001). Among acridine-based chemiluminogens, phenyl acridine-9-carboxylates are the most promising analytical agents, since they exhibit relatively high quantum yields of light emission and stability (Adamczyk et al., 1999; Dodeigne et al., 2000; Razawi & McCapra, 2000; Renotte et al., 2000; Smith et al., 2000; Zomer & Jacquemijns, 2001). Continuing the search for new analytically interesting acridine-based chemiluminogens, we synthesized phenyl acridine-9-carboxylate substituted with two Cl atoms, (II), and its trifluoromethanesulfonate salt, (I), methylated at the endocyclic N atom, in order to discover how the presence of heavy Cl atoms in the phenyl fragment affects the stability and chemiluminogenic ability of this group of compounds. Presenting as it does the crystal structure of chemiluminogen (I) and its precursor (II), this paper extends, together with our earlier publications on the crystallography of phenyl acridine-9-carboxylates (Meszko et al., 2002; Sikorski et al., 2005), the range of chemiluminogens with potentially interesting applications.

With respective average deviations from planarity of 0.0077 and 0.0094 Å, the acridine and phenyl moieties in (I) are oriented at an angle of 33.4 (2)° (defined as δ, the angle between the mean planes delineated by all the non-H atoms of the acridine and phenyl moieties; Fig. 1, Table 1). The carboxyl group is twisted at an angle of 62.0 (2)° relative to the acridine skeleton (defined as ε, the angle between the mean planes delineated by all the non-H atoms of the acridine moiety and atoms C15, O16 and O17). The H atoms of the methyl group occupy two orientations, rotated by 60° with respect to one another, each with an occupancy of 0.5.

In the crystalline phase, adjacent cations of (I) are oriented either parallel or anti-parallel. In the latter case, they are related by a centre of symmetry (Fig. 2). Antiparallel-oriented cations of (I), together with CF3SO3 anions, form layers in which the molecules are linked via a network of C—H···O interactions involving H atoms from the acridine moiety (at C7) or H atoms from the phenyl moiety (at C20), and two of the O atoms of the CF3SO3 anion (Fig. 2, Table 2), as well as ππ interactions between phenyl rings (Fig. 2, Table 3). These layers are linked via a network of multidirectional ππ interactions between acridine rings (Fig. 2, Table 3). The whole lattice is stabilized by electrostatic interactions between the ions.

With respective average deviations from planarity of 0.0107 and 0.0036 Å, the δ angle between the acridine and phenyl moieties in (II) is 9.3 (2)° (Fig. 3, Table 4). The carboxyl group is twisted at an ε angle of 77.2 (2)° relative to the acridine skeleton.

Adjacent molecules of (II) are oriented either parallel or antiparallel. In the latter case, they are related by a centre of symmetry. Parallel-oriented molecules are arranged in chains stabilized via C—H···Cl interactions involving one of the H atoms of the acridine moiety (at C7) and one of the Cl atoms (Cl25) (Fig. 4, Table 5). Oriented either parallel or antiparallel (Fig. 4), these chains are stabilized, in the latter case, via multidirectional ππ interactions involving the acridine and phenyl moieties (Fig. 4, Table 6), and generally via dispersive interactions.

Experimental top

Compound (II) was synthesized by the conversion of commercially available acridine-9-carboxylic acid to the acid chloride (heating the former compound with excess thionyl chloride), and by the reaction of the latter with 2,6-dichlorophenol (Sato, 1996). The crude product was purified chromatographically [SiO2, cyclohexane–ethyl acetate, 1/1 ((v/v)]. Elemental analysis (% found/calculated): C 81.1/80.7, H 5.1/5.2, N 4.3/4.3. Yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 515–517 K). Compound (I) was obtained upon treating compound (II) with a tenfold molar excess of methyl trifluoromethanesulfonate dissolved in dichloromethane. The product was purified by repeated recrystallization from absolute ethanol. Yellow crystals suitable for X-ray investigations were grown from absolute ethanol (m.p. 404–405 K).

Refinement top

The methyl H atoms in (I) were located from difference Fourier syntheses and refined as a rigid rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C); the location of these atoms was assumed in three unique positions with an occupancy factor of 0.5. Other H atoms were placed geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the ions of (I) in the unit cell, viewed along the a axis. The C—H···O interactions are represented by dashed lines [symmetry code: (i) −1 + x, y, z] and the ππ interactions by dotted lines [symmetry codes: (ii) −x, 1 − y, −z; (iii) −x, 2 − y, 1 − z]. H atoms not involved in C—H···O interactions have been omitted.
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The arrangement of the molecules of (II) in the unit cell, viewed along the a axis. The C—H···Cl interactions are represented by dashed lines [symmetry code: (i) 1 + x, 1 + y, z], the ππ interactions by dotted lines [symmetry codes: (ii) 2 − x, 1 − y, 2 − z; (iii) 1 − x, 1 − y, 1 − z]. H atoms not involved in C—H···Cl interactions have been removed.
(I) 9-[2,6-Dichlorophenoxy)carbonyl]-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H14Cl2NO2+·CF3O3SZ = 2
Mr = 532.31F(000) = 540
Triclinic, P1Dx = 1.621 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.434 (2) ÅCell parameters from 50 reflections
b = 10.905 (2) Åθ = 2.1–25.5°
c = 12.260 (2) ŵ = 0.46 mm1
α = 103.14 (3)°T = 290 K
β = 103.40 (3)°Prism, yellow
γ = 109.51 (3)°0.5 × 0.4 × 0.3 mm
V = 1090.8 (6) Å3
Data collection top
Kuma KM-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.1°
Graphite monochromatorh = 1111
θ/2θ scansk = 1312
4264 measured reflectionsl = 014
4064 independent reflections3 standard reflections every 200 reflections
2056 reflections with I > 2σ(I) intensity decay: 1.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.052P)2 + 0.5298P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4064 reflectionsΔρmax = 0.24 e Å3
309 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (1)
Crystal data top
C21H14Cl2NO2+·CF3O3Sγ = 109.51 (3)°
Mr = 532.31V = 1090.8 (6) Å3
Triclinic, P1Z = 2
a = 9.434 (2) ÅMo Kα radiation
b = 10.905 (2) ŵ = 0.46 mm1
c = 12.260 (2) ÅT = 290 K
α = 103.14 (3)°0.5 × 0.4 × 0.3 mm
β = 103.40 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.016
4264 measured reflections3 standard reflections every 200 reflections
4064 independent reflections intensity decay: 1.7%
2056 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
4064 reflectionsΔρmin = 0.25 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0669 (4)0.7036 (3)0.0199 (3)0.0440 (8)
H10.15350.71130.00020.053*
C20.0564 (4)0.7100 (3)0.1257 (3)0.0489 (8)
H20.13590.72050.17880.059*
C30.0757 (4)0.7007 (3)0.1561 (3)0.0505 (9)
H30.08280.70660.22930.061*
C40.1920 (4)0.6835 (3)0.0819 (3)0.0460 (8)
H40.27790.67760.10420.055*
C50.4003 (4)0.6046 (4)0.2824 (4)0.0590 (10)
H50.48130.59070.25740.071*
C60.3887 (5)0.5918 (4)0.3865 (4)0.0659 (11)
H60.46340.57030.43320.079*
C70.2688 (5)0.6096 (4)0.4268 (4)0.0646 (11)
H70.26560.60220.50040.078*
C80.1566 (4)0.6378 (4)0.3594 (3)0.0515 (9)
H80.07470.64700.38590.062*
C90.0468 (3)0.6788 (3)0.1743 (3)0.0364 (7)
N100.2991 (3)0.6557 (3)0.1054 (2)0.0416 (6)
C110.0516 (3)0.6854 (3)0.0623 (3)0.0363 (7)
C120.1833 (3)0.6745 (3)0.0287 (3)0.0368 (7)
C130.1623 (4)0.6535 (3)0.2486 (3)0.0393 (7)
C140.2893 (4)0.6395 (3)0.2103 (3)0.0414 (8)
C150.0854 (4)0.6984 (3)0.2139 (3)0.0381 (7)
O160.0249 (2)0.8084 (2)0.31341 (19)0.0424 (5)
O170.2238 (3)0.6294 (2)0.1644 (2)0.0565 (6)
C180.1292 (4)0.8558 (3)0.3550 (3)0.0427 (8)
C190.1791 (4)0.8213 (4)0.4445 (3)0.0519 (9)
C200.2653 (5)0.8826 (4)0.4951 (4)0.0634 (11)
H200.29750.85990.55670.076*
C210.3024 (4)0.9775 (4)0.4526 (4)0.0689 (12)
H210.35861.02070.48740.083*
C220.2592 (5)1.0111 (4)0.3601 (4)0.0660 (11)
H220.28841.07390.33090.079*
C230.1712 (4)0.9493 (3)0.3115 (3)0.0511 (9)
Cl240.13500 (15)0.69876 (12)0.49515 (10)0.0778 (4)
Cl250.11251 (16)0.98830 (12)0.19676 (11)0.0830 (4)
C260.4409 (4)0.6552 (5)0.0734 (4)0.0756 (13)
H26A0.42540.65610.00650.113*0.50
H26B0.45580.57370.07920.113*0.50
H26C0.53360.73540.12690.113*0.50
H26D0.51780.65400.13960.113*0.50
H26E0.48740.73640.05380.113*0.50
H26F0.40960.57470.00620.113*0.50
S270.52548 (11)0.74719 (9)0.76454 (8)0.0509 (3)
O280.5567 (4)0.6935 (3)0.8590 (2)0.0763 (8)
O290.3644 (3)0.7329 (3)0.7195 (2)0.0702 (8)
O300.5959 (3)0.7163 (3)0.6771 (2)0.0666 (7)
C310.6358 (5)0.9305 (5)0.8383 (4)0.0722 (12)
F320.6300 (4)0.9984 (3)0.7604 (3)0.1158 (10)
F330.5793 (4)0.9798 (3)0.9165 (3)0.1303 (13)
F340.7878 (3)0.9646 (3)0.8919 (3)0.1120 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (19)0.0442 (19)0.055 (2)0.0234 (16)0.0162 (16)0.0208 (17)
C20.053 (2)0.046 (2)0.047 (2)0.0224 (17)0.0092 (17)0.0196 (16)
C30.067 (2)0.044 (2)0.048 (2)0.0245 (18)0.0265 (19)0.0198 (17)
C40.045 (2)0.0438 (19)0.056 (2)0.0202 (16)0.0255 (17)0.0162 (16)
C50.049 (2)0.061 (2)0.064 (3)0.036 (2)0.0055 (19)0.010 (2)
C60.067 (3)0.065 (3)0.062 (3)0.039 (2)0.001 (2)0.021 (2)
C70.081 (3)0.067 (3)0.057 (2)0.042 (2)0.016 (2)0.029 (2)
C80.058 (2)0.056 (2)0.047 (2)0.0308 (19)0.0136 (18)0.0206 (18)
C90.0324 (17)0.0310 (16)0.0446 (18)0.0124 (13)0.0116 (14)0.0123 (14)
N100.0319 (15)0.0428 (15)0.0467 (16)0.0181 (12)0.0118 (13)0.0059 (13)
C110.0301 (16)0.0302 (16)0.0451 (19)0.0113 (13)0.0100 (14)0.0105 (14)
C120.0319 (17)0.0317 (16)0.0447 (18)0.0123 (14)0.0135 (15)0.0092 (14)
C130.0421 (18)0.0354 (17)0.0395 (18)0.0183 (14)0.0094 (15)0.0112 (14)
C140.0353 (17)0.0362 (18)0.0452 (19)0.0184 (15)0.0035 (15)0.0044 (15)
C150.038 (2)0.0375 (18)0.0413 (18)0.0167 (16)0.0130 (16)0.0160 (15)
O160.0390 (12)0.0436 (12)0.0466 (13)0.0196 (10)0.0169 (10)0.0120 (11)
O170.0369 (14)0.0555 (15)0.0679 (16)0.0157 (13)0.0177 (12)0.0087 (13)
C180.0367 (18)0.0398 (18)0.051 (2)0.0151 (15)0.0194 (16)0.0109 (16)
C190.049 (2)0.049 (2)0.061 (2)0.0181 (17)0.0264 (19)0.0181 (18)
C200.061 (2)0.064 (2)0.070 (3)0.020 (2)0.042 (2)0.017 (2)
C210.055 (2)0.068 (3)0.089 (3)0.031 (2)0.039 (2)0.010 (2)
C220.057 (2)0.060 (2)0.094 (3)0.037 (2)0.031 (2)0.023 (2)
C230.053 (2)0.046 (2)0.061 (2)0.0225 (17)0.0256 (18)0.0209 (17)
Cl240.1024 (9)0.0797 (8)0.0893 (8)0.0480 (7)0.0570 (7)0.0540 (6)
Cl250.1213 (10)0.0848 (8)0.0961 (9)0.0654 (8)0.0657 (8)0.0603 (7)
C260.044 (2)0.114 (4)0.070 (3)0.044 (2)0.021 (2)0.014 (2)
S270.0560 (6)0.0562 (6)0.0501 (5)0.0279 (5)0.0254 (4)0.0195 (4)
O280.092 (2)0.094 (2)0.0695 (18)0.0475 (18)0.0392 (16)0.0473 (17)
O290.0518 (16)0.086 (2)0.0701 (18)0.0310 (15)0.0175 (14)0.0197 (15)
O300.0839 (19)0.0775 (18)0.0601 (16)0.0458 (16)0.0422 (15)0.0238 (14)
C310.067 (3)0.068 (3)0.084 (3)0.030 (2)0.030 (3)0.020 (3)
F320.128 (3)0.0773 (19)0.157 (3)0.0452 (18)0.051 (2)0.058 (2)
F330.133 (3)0.097 (2)0.133 (3)0.039 (2)0.069 (2)0.0239 (19)
F340.0699 (19)0.093 (2)0.133 (3)0.0135 (15)0.0147 (17)0.0143 (18)
Geometric parameters (Å, º) top
C1—C21.338 (4)C15—O171.187 (4)
C1—C111.421 (4)O16—C181.396 (3)
C1—H10.9300C18—C191.369 (4)
C2—C31.409 (5)C18—C231.378 (5)
C2—H20.9300C19—C201.380 (5)
C3—C41.349 (5)C19—Cl241.725 (4)
C3—H30.9300C20—C211.366 (5)
C4—C121.401 (4)C20—H200.9300
C4—H40.9300C21—C221.375 (6)
C5—C61.340 (5)C21—H210.9300
C5—C141.418 (5)C22—C231.386 (5)
C5—H50.9300C22—H220.9300
C6—C71.387 (5)C23—Cl251.715 (3)
C6—H60.9300C26—H26A0.9600
C7—C81.351 (5)C26—H26B0.9600
C7—H70.9300C26—H26C0.9600
C8—C131.418 (4)C26—H26D0.9600
C8—H80.9300C26—H26E0.9600
C9—C131.395 (4)C26—H26F0.9600
C9—C111.403 (4)S27—O301.421 (2)
C9—C151.499 (4)S27—O281.427 (3)
N10—C141.357 (4)S27—O291.433 (3)
N10—C121.372 (4)S27—C311.802 (5)
N10—C261.480 (4)C31—F331.299 (5)
C11—C121.428 (4)C31—F341.313 (5)
C13—C141.424 (4)C31—F321.337 (5)
C15—O161.344 (4)
C2—C1—C11121.4 (3)C18—C19—C20121.1 (3)
C2—C1—H1119.3C18—C19—Cl24120.0 (3)
C11—C1—H1119.3C20—C19—Cl24118.9 (3)
C1—C2—C3119.7 (3)C21—C20—C19118.4 (4)
C1—C2—H2120.2C21—C20—H20120.8
C3—C2—H2120.2C19—C20—H20120.8
C4—C3—C2121.7 (3)C20—C21—C22122.1 (3)
C4—C3—H3119.1C20—C21—H21118.9
C2—C3—H3119.1C22—C21—H21118.9
C3—C4—C12119.9 (3)C21—C22—C23118.4 (4)
C3—C4—H4120.0C21—C22—H22120.8
C12—C4—H4120.0C23—C22—H22120.8
C6—C5—C14120.0 (3)C18—C23—C22120.4 (3)
C6—C5—H5120.0C18—C23—Cl25119.1 (2)
C14—C5—H5120.0C22—C23—Cl25120.5 (3)
C5—C6—C7122.2 (3)N10—C26—H26A109.5
C5—C6—H6118.9N10—C26—H26B109.5
C7—C6—H6118.9H26A—C26—H26B109.5
C8—C7—C6120.1 (4)N10—C26—H26C109.5
C8—C7—H7120.0H26A—C26—H26C109.5
C6—C7—H7120.0H26B—C26—H26C109.5
C7—C8—C13120.7 (3)N10—C26—H26D109.5
C7—C8—H8119.7H26A—C26—H26D141.1
C13—C8—H8119.7H26B—C26—H26D56.3
C13—C9—C11121.0 (3)H26C—C26—H26D56.3
C13—C9—C15119.9 (3)N10—C26—H26E109.5
C11—C9—C15119.1 (3)H26A—C26—H26E56.3
C14—N10—C12122.3 (2)H26B—C26—H26E141.1
C14—N10—C26118.9 (3)H26C—C26—H26E56.3
C12—N10—C26118.8 (3)H26D—C26—H26E109.5
C9—C11—C1123.7 (3)N10—C26—H26F109.5
C9—C11—C12118.4 (3)H26A—C26—H26F56.3
C1—C11—C12117.9 (3)H26B—C26—H26F56.3
N10—C12—C4121.1 (3)H26C—C26—H26F141.1
N10—C12—C11119.5 (3)H26D—C26—H26F109.5
C4—C12—C11119.4 (3)H26E—C26—H26F109.5
C9—C13—C8122.7 (3)O30—S27—O28114.62 (17)
C9—C13—C14118.7 (3)O30—S27—O29115.43 (16)
C8—C13—C14118.5 (3)O28—S27—O29115.03 (17)
N10—C14—C5121.7 (3)O30—S27—C31103.60 (19)
N10—C14—C13119.8 (3)O28—S27—C31102.5 (2)
C5—C14—C13118.5 (3)O29—S27—C31103.17 (19)
C9—C15—O16110.1 (3)F33—C31—F34107.9 (4)
C9—C15—O17125.6 (3)F33—C31—F32106.7 (4)
C15—O16—C18118.8 (2)F34—C31—F32105.9 (4)
O16—C15—O17124.2 (3)F33—C31—S27112.4 (3)
C19—C18—C23119.5 (3)F34—C31—S27112.6 (3)
C19—C18—O16121.7 (3)F32—C31—S27111.0 (3)
C23—C18—O16118.5 (3)
C11—C1—C2—C31.0 (5)C8—C13—C14—N10179.1 (3)
C1—C2—C3—C40.9 (5)C9—C13—C14—C5175.8 (3)
C2—C3—C4—C120.1 (5)C8—C13—C14—C52.7 (5)
C14—C5—C6—C71.0 (6)C13—C9—C15—O17120.2 (4)
C5—C6—C7—C81.5 (6)C13—C9—C15—O1661.1 (4)
C6—C7—C8—C131.8 (6)C11—C9—C15—O16119.3 (3)
C13—C9—C11—C1176.6 (3)O17—C15—O16—C187.8 (4)
C15—C9—C11—C13.0 (4)C9—C15—O16—C18171.0 (2)
C13—C9—C11—C124.0 (4)C11—C9—C15—O1759.5 (4)
C15—C9—C11—C12176.4 (3)C15—O16—C18—C1998.6 (4)
C2—C1—C11—C9179.7 (3)C15—O16—C18—C2387.2 (4)
C2—C1—C11—C120.2 (5)C23—C18—C19—C202.6 (5)
C14—N10—C12—C4176.5 (3)O16—C18—C19—C20171.6 (3)
C26—N10—C12—C44.5 (4)C23—C18—C19—Cl24177.1 (3)
C14—N10—C12—C113.6 (4)O16—C18—C19—Cl248.7 (5)
C26—N10—C12—C11175.4 (3)C18—C19—C20—C211.0 (6)
C3—C4—C12—N10179.4 (3)Cl24—C19—C20—C21178.7 (3)
C3—C4—C12—C110.7 (5)C19—C20—C21—C221.3 (6)
C9—C11—C12—N101.1 (4)C20—C21—C22—C232.0 (6)
C1—C11—C12—N10179.5 (3)C19—C18—C23—C221.9 (5)
C9—C11—C12—C4178.8 (3)O16—C18—C23—C22172.5 (3)
C1—C11—C12—C40.7 (4)C19—C18—C23—Cl25178.3 (3)
C11—C9—C13—C8176.1 (3)O16—C18—C23—Cl257.3 (4)
C15—C9—C13—C83.5 (5)C21—C22—C23—C180.3 (6)
C11—C9—C13—C142.3 (4)C21—C22—C23—Cl25179.5 (3)
C15—C9—C13—C14178.1 (3)O30—S27—C31—F33175.1 (3)
C7—C8—C13—C9178.2 (3)O28—S27—C31—F3365.3 (4)
C7—C8—C13—C140.3 (5)O29—S27—C31—F3354.5 (4)
C12—N10—C14—C5172.7 (3)O30—S27—C31—F3462.8 (4)
C26—N10—C14—C58.2 (5)O28—S27—C31—F3456.8 (4)
C12—N10—C14—C135.4 (4)O29—S27—C31—F34176.6 (3)
C26—N10—C14—C13173.7 (3)O30—S27—C31—F3255.8 (3)
C6—C5—C14—N10178.8 (3)O28—S27—C31—F32175.3 (3)
C6—C5—C14—C133.0 (5)O29—S27—C31—F3264.9 (3)
C9—C13—C14—N102.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O290.932.523.316 (5)144
C20—H20···O30i0.932.523.404 (5)160
Symmetry code: (i) x1, y, z.
(II) 2,6-dichlorophenyl acridine-9-carboxylate top
Crystal data top
C20H11Cl2NO2Z = 2
Mr = 368.20F(000) = 376
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.004 (2) ÅCell parameters from 50 reflections
b = 9.423 (2) Åθ = 2.4–25.5°
c = 12.428 (2) ŵ = 0.41 mm1
α = 101.92 (3)°T = 290 K
β = 107.04 (3)°Prism, yellow
γ = 105.37 (3)°0.4 × 0.3 × 0.3 mm
V = 822.0 (4) Å3
Data collection top
Kuma KM4
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.4°
Graphite monochromatorh = 99
θ/2θ scansk = 1110
3188 measured reflectionsl = 915
3040 independent reflections3 standard reflections every 200 reflections
2004 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1815P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3040 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C20H11Cl2NO2γ = 105.37 (3)°
Mr = 368.20V = 822.0 (4) Å3
Triclinic, P1Z = 2
a = 8.004 (2) ÅMo Kα radiation
b = 9.423 (2) ŵ = 0.41 mm1
c = 12.428 (2) ÅT = 290 K
α = 101.92 (3)°0.4 × 0.3 × 0.3 mm
β = 107.04 (3)°
Data collection top
Kuma KM4
diffractometer
Rint = 0.013
3188 measured reflections3 standard reflections every 200 reflections
3040 independent reflections intensity decay: 0.9%
2004 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
3040 reflectionsΔρmin = 0.18 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6880 (3)0.3703 (3)0.83673 (19)0.0492 (5)
H10.63570.28460.76930.059*
C20.6563 (3)0.3573 (3)0.9359 (2)0.0608 (6)
H20.58280.26270.93620.073*
C30.7339 (4)0.4860 (3)1.0389 (2)0.0641 (7)
H30.70990.47551.10620.077*
C40.8414 (3)0.6230 (3)1.04120 (19)0.0566 (6)
H40.89180.70611.11030.068*
C51.1415 (3)0.9504 (2)0.8600 (2)0.0551 (6)
H51.19051.03060.93070.066*
C61.1804 (3)0.9757 (3)0.7657 (2)0.0606 (6)
H61.25521.07360.77220.073*
C71.1097 (3)0.8565 (3)0.6578 (2)0.0568 (6)
H71.13990.87580.59420.068*
C80.9984 (3)0.7143 (2)0.64596 (19)0.0450 (5)
H80.95200.63670.57390.054*
C90.8381 (2)0.5367 (2)0.73545 (16)0.0348 (4)
N100.9902 (2)0.7829 (2)0.94793 (14)0.0470 (4)
C110.8002 (3)0.5134 (2)0.83442 (16)0.0385 (4)
C120.8799 (3)0.6437 (3)0.93970 (17)0.0444 (5)
C130.9513 (3)0.6813 (2)0.74146 (16)0.0374 (4)
C141.0262 (3)0.8022 (2)0.85227 (17)0.0428 (5)
C150.7641 (3)0.4040 (2)0.62374 (16)0.0347 (4)
O160.61728 (18)0.41472 (14)0.54212 (11)0.0383 (3)
O170.8239 (2)0.30216 (17)0.60825 (13)0.0550 (4)
C180.5268 (3)0.2967 (2)0.43431 (16)0.0372 (4)
C190.5516 (3)0.3207 (2)0.33332 (18)0.0425 (5)
C200.4553 (3)0.2082 (3)0.22557 (18)0.0524 (5)
H200.47350.22580.15830.063*
C210.3323 (3)0.0698 (3)0.2170 (2)0.0556 (6)
H210.26880.00680.14420.067*
C220.3029 (3)0.0443 (2)0.3159 (2)0.0530 (6)
H220.21840.04890.31020.064*
C230.3995 (3)0.1576 (2)0.42378 (18)0.0433 (5)
Cl240.70330 (8)0.49537 (7)0.34268 (5)0.05747 (19)
Cl250.35667 (9)0.12786 (7)0.54652 (5)0.0634 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0495 (12)0.0498 (12)0.0397 (11)0.0088 (10)0.0129 (10)0.0127 (10)
C20.0597 (15)0.0667 (16)0.0530 (14)0.0094 (12)0.0226 (12)0.0258 (12)
C30.0728 (17)0.0844 (19)0.0444 (13)0.0263 (14)0.0294 (12)0.0284 (13)
C40.0689 (16)0.0667 (15)0.0324 (11)0.0253 (13)0.0177 (11)0.0106 (10)
C50.0555 (14)0.0377 (11)0.0484 (13)0.0027 (10)0.0082 (11)0.0014 (10)
C60.0570 (14)0.0398 (12)0.0668 (16)0.0034 (10)0.0205 (12)0.0095 (11)
C70.0558 (14)0.0486 (13)0.0588 (14)0.0022 (11)0.0267 (12)0.0145 (11)
C80.0474 (12)0.0390 (10)0.0400 (11)0.0067 (9)0.0167 (9)0.0052 (9)
C90.0337 (10)0.0341 (9)0.0323 (9)0.0111 (8)0.0093 (8)0.0066 (8)
N100.0535 (11)0.0439 (10)0.0331 (9)0.0143 (8)0.0096 (8)0.0032 (7)
C110.0383 (10)0.0426 (11)0.0311 (10)0.0143 (9)0.0091 (8)0.0096 (8)
C120.0469 (12)0.0510 (12)0.0338 (10)0.0207 (10)0.0117 (9)0.0101 (9)
C130.0369 (10)0.0346 (10)0.0343 (10)0.0109 (8)0.0093 (8)0.0053 (8)
C140.0421 (11)0.0371 (10)0.0376 (11)0.0104 (9)0.0076 (9)0.0030 (9)
C150.0362 (10)0.0312 (9)0.0335 (10)0.0072 (8)0.0139 (8)0.0080 (8)
O160.0447 (8)0.0319 (7)0.0296 (7)0.0120 (6)0.0071 (6)0.0029 (5)
O170.0563 (9)0.0460 (8)0.0501 (9)0.0248 (8)0.0062 (7)0.0005 (7)
C180.0394 (10)0.0326 (10)0.0320 (9)0.0116 (8)0.0073 (8)0.0040 (8)
C190.0439 (11)0.0411 (11)0.0388 (11)0.0147 (9)0.0133 (9)0.0077 (9)
C200.0580 (14)0.0580 (14)0.0337 (11)0.0201 (11)0.0123 (10)0.0057 (10)
C210.0593 (14)0.0460 (12)0.0386 (12)0.0148 (11)0.0008 (10)0.0034 (10)
C220.0523 (13)0.0342 (10)0.0525 (13)0.0085 (10)0.0025 (11)0.0057 (10)
C230.0469 (12)0.0356 (10)0.0389 (10)0.0116 (9)0.0075 (9)0.0100 (9)
Cl240.0658 (4)0.0544 (3)0.0455 (3)0.0067 (3)0.0242 (3)0.0151 (2)
Cl250.0723 (4)0.0515 (3)0.0526 (3)0.0003 (3)0.0195 (3)0.0210 (3)
Geometric parameters (Å, º) top
C1—C21.352 (3)C9—C151.500 (3)
C1—C111.420 (3)N10—C121.337 (3)
C1—H10.9300N10—C141.339 (3)
C2—C31.410 (4)C11—C121.434 (3)
C2—H20.9300C13—C141.435 (3)
C3—C41.338 (4)C15—O161.351 (2)
C3—H30.9300C15—O171.187 (2)
C4—C121.422 (3)O16—C181.395 (2)
C4—H40.9300C18—C191.381 (3)
C5—C61.347 (3)C18—C231.384 (3)
C5—C141.421 (3)C19—C201.374 (3)
C5—H50.9300C19—Cl241.725 (2)
C6—C71.406 (3)C20—C211.372 (3)
C6—H60.9300C20—H200.9300
C7—C81.349 (3)C21—C221.373 (3)
C7—H70.9300C21—H210.9300
C8—C131.414 (3)C22—C231.378 (3)
C8—H80.9300C22—H220.9300
C9—C131.395 (3)C23—Cl251.719 (2)
C9—C111.396 (3)
C2—C1—C11120.7 (2)N10—C12—C4118.26 (19)
C2—C1—H1119.7N10—C12—C11123.56 (18)
C11—C1—H1119.7C4—C12—C11118.2 (2)
C1—C2—C3120.5 (2)C9—C13—C8123.94 (18)
C1—C2—H2119.7C9—C13—C14117.51 (18)
C3—C2—H2119.7C8—C13—C14118.54 (18)
C4—C3—C2121.0 (2)N10—C14—C5118.50 (19)
C4—C3—H3119.5N10—C14—C13123.21 (19)
C2—C3—H3119.5C5—C14—C13118.29 (19)
C3—C4—C12121.1 (2)C9—C15—O16110.75 (16)
C3—C4—H4119.5C9—C15—O17125.26 (18)
C12—C4—H4119.5C15—O16—C18118.14 (15)
C6—C5—C14120.6 (2)O16—C15—O17123.99 (17)
C6—C5—H5119.7C19—C18—C23118.30 (18)
C14—C5—H5119.7C19—C18—O16120.36 (16)
C5—C6—C7121.1 (2)C23—C18—O16121.14 (17)
C5—C6—H6119.5C20—C19—C18120.79 (19)
C7—C6—H6119.5C20—C19—Cl24119.77 (17)
C8—C7—C6120.4 (2)C18—C19—Cl24119.43 (15)
C8—C7—H7119.8C21—C20—C19120.2 (2)
C6—C7—H7119.8C21—C20—H20119.9
C7—C8—C13121.0 (2)C19—C20—H20119.9
C7—C8—H8119.5C20—C21—C22120.1 (2)
C13—C8—H8119.5C20—C21—H21120.0
C13—C9—C11120.28 (17)C22—C21—H21120.0
C13—C9—C15119.75 (16)C21—C22—C23119.6 (2)
C11—C9—C15119.92 (16)C21—C22—H22120.2
C12—N10—C14118.19 (17)C23—C22—H22120.2
C9—C11—C1124.18 (18)C22—C23—C18121.1 (2)
C9—C11—C12117.24 (18)C22—C23—Cl25119.44 (16)
C1—C11—C12118.58 (18)C18—C23—Cl25119.46 (15)
C11—C1—C2—C30.2 (4)C6—C5—C14—N10179.4 (2)
C1—C2—C3—C40.6 (4)C6—C5—C14—C130.6 (3)
C2—C3—C4—C120.5 (4)C9—C13—C14—N101.1 (3)
C14—C5—C6—C70.6 (4)C8—C13—C14—N10179.99 (19)
C5—C6—C7—C81.1 (4)C9—C13—C14—C5179.89 (19)
C6—C7—C8—C130.5 (4)C8—C13—C14—C51.2 (3)
C13—C9—C11—C1179.55 (19)C13—C9—C15—O17102.2 (2)
C15—C9—C11—C12.3 (3)C13—C9—C15—O1678.4 (2)
C13—C9—C11—C120.8 (3)C11—C9—C15—O16104.33 (19)
C15—C9—C11—C12178.04 (17)O17—C15—O16—C182.0 (3)
C2—C1—C11—C9179.4 (2)C9—C15—O16—C18177.47 (14)
C2—C1—C11—C120.3 (3)C11—C9—C15—O1775.1 (3)
C14—N10—C12—C4180.0 (2)C15—O16—C18—C19105.7 (2)
C14—N10—C12—C110.8 (3)C15—O16—C18—C2379.4 (2)
C3—C4—C12—N10179.3 (2)C23—C18—C19—C201.4 (3)
C3—C4—C12—C110.0 (3)O16—C18—C19—C20176.40 (18)
C9—C11—C12—N101.5 (3)C23—C18—C19—Cl24177.79 (16)
C1—C11—C12—N10178.85 (19)O16—C18—C19—Cl242.8 (3)
C9—C11—C12—C4179.31 (19)C18—C19—C20—C210.1 (3)
C1—C11—C12—C40.4 (3)Cl24—C19—C20—C21179.05 (18)
C11—C9—C13—C8179.21 (19)C19—C20—C21—C221.0 (3)
C15—C9—C13—C82.0 (3)C20—C21—C22—C230.9 (3)
C11—C9—C13—C140.4 (3)C21—C22—C23—C180.4 (3)
C15—C9—C13—C14176.88 (17)C21—C22—C23—Cl25177.83 (18)
C7—C8—C13—C9179.5 (2)C19—C18—C23—C221.5 (3)
C7—C8—C13—C140.7 (3)O16—C18—C23—C22176.52 (18)
C12—N10—C14—C5179.29 (19)C19—C18—C23—Cl25176.73 (15)
C12—N10—C14—C130.5 (3)O16—C18—C23—Cl251.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl25i0.932.833.570 (3)137
Symmetry code: (i) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H14Cl2NO2+·CF3O3SC20H11Cl2NO2
Mr532.31368.20
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)290290
a, b, c (Å)9.434 (2), 10.905 (2), 12.260 (2)8.004 (2), 9.423 (2), 12.428 (2)
α, β, γ (°)103.14 (3), 103.40 (3), 109.51 (3)101.92 (3), 107.04 (3), 105.37 (3)
V3)1090.8 (6)822.0 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.460.41
Crystal size (mm)0.5 × 0.4 × 0.30.4 × 0.3 × 0.3
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4264, 4064, 2056 3188, 3040, 2004
Rint0.0160.013
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.00 0.033, 0.098, 1.01
No. of reflections40643040
No. of parameters309227
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.250.20, 0.18

Computer programs: KM-4 Software (Kuma Diffraction, 1989), KM-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C9—C111.403 (4)C15—O171.187 (4)
C9—C151.499 (4)O16—C181.396 (3)
N10—C121.372 (4)C18—C191.369 (4)
N10—C261.480 (4)C19—Cl241.725 (4)
C15—O161.344 (4)
C9—C15—O16110.1 (3)C15—O16—C18118.8 (2)
C9—C15—O17125.6 (3)O16—C15—O17124.2 (3)
C9—C15—O16—C18171.0 (2)C15—O16—C18—C1998.6 (4)
C11—C9—C15—O1759.5 (4)O16—C18—C19—Cl248.7 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O290.932.523.316 (5)144
C20—H20···O30i0.932.523.404 (5)160
Symmetry code: (i) x1, y, z.
ππ interactions (Å, °) in (I) top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
Cg1Cg2ii3.532 (2)1.93.488 (3)0.556 (2)
Cg2Cg1ii3.532 (2)1.93.482 (3)0.556 (2)
Cg2Cg3ii3.956 (2)5.53.510 (3)1.825 (2)
Cg3Cg2ii3.956 (2)5.53.334 (3)2.130 (2)
Cg4Cg4iii3.788 (2)0.03.473 (3)1.512 (2)
Symmetry codes: (ii) −x, 1 − y, −z; (iii) −x, 2 − y, 1 − z. Cg represents the centre of gravity of the following rings: Cg1 (ring delineated by atoms N10, C12, C11,C9, C13 and C14), Cg2 (ring delineated by atoms C1, C2, C3, C4, C12 and C11), Cg3 (ring delineated by atoms C5, C6, C7, C8, C13 and C14), Cg4 (ring delineated by atoms C18, C19, C20, C21, C22 and C23). Cg···Cg is the distance between ring centroids. Dihedral angle is that between the planes of CgI and CgJ. Interplanar distance is the perpendicular distance of CgI from ring J. Offset is the perpendicular distance of ring I from ring J.
Selected geometric parameters (Å, º) for (II) top
C9—C111.396 (3)C15—O171.187 (2)
C9—C151.500 (3)O16—C181.395 (2)
N10—C121.337 (3)C18—C191.381 (3)
C15—O161.351 (2)C19—Cl241.725 (2)
C9—C15—O16110.75 (16)C15—O16—C18118.14 (15)
C9—C15—O17125.26 (18)O16—C15—O17123.99 (17)
C9—C15—O16—C18177.47 (14)C15—O16—C18—C19105.7 (2)
C11—C9—C15—O1775.1 (3)O16—C18—C19—Cl242.8 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl25i0.932.833.570 (3)137
Symmetry code: (i) x+1, y+1, z.
ππ interactions (Å, °) in (II) top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
Cg1Cg2ii3.986 (2)0.83.466 (3)1.969 (2)
Cg1Cg4iii3.754 (2)8.63.449 (3)1.482 (2)
Cg2Cg1ii3.986 (2)0.83.461 (3)1.977 (2)
Cg2Cg2ii3.593 (2)0.03.470 (3)0.932 (2)
Cg3Cg4iii3.762 (2)8.73.418 (3)1.572 (2)
Cg4Cg1iii3.754 (2)8.63.536 (3)1.260 (2)
Cg4Cg3iii3.762 (2)8.73.537 (3)1.282 (2)
Symmetry codes: (ii) 2 − x, 1 − y, 2 − z; (iii) 1 − x, 1 − y, 1 − z. Cg represents the centre of gravity of the following rings: Cg1 (ring delineated by atoms N10, C12, C11,C9, C13 and C14), Cg2 (ring delineated by atoms C1, C2, C3, C4, C12 and C11), Cg3 (ring delineated by atoms C5, C6, C7, C8, C13 and C14), Cg4 (ring delineated by atoms C18, C19, C20, C21, C22 and C23). Cg···Cg is the distance between ring centroids. Dihedral angle is that between planes I and J. Interplanar distance is the perpendicular distance of CgI from ring J. Offset is the perpendicular distance of ring I from ring J.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds