Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the title compounds, C12H18N2O4, have been determined in order to establish the relative configurations. In both structures, the isopropyl substituent strongly prefers the quasi-equatorial position. Therefore, the exo isomer adopts a dioxepanoaziridine pattern of a chair-chair (CC) conformation and the endo isomer a boat-chair (BC) conformation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105035134/gd1417sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035134/gd1417Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105035134/gd1417IIsup3.hkl
Contains datablock II

CCDC references: 294333; 294334

Comment top

Fused aziridines, e.g. N-arenesulfonyl-protected 1,3-dioxepanoaziridines, are of interest as potent antihypoglycaemic agents (Dumić et al., 1993, 1995; Oresić et al., 2001; Filić et al., 1996). Such compounds have been prepared from trans-acetylaminochlorodioxepanes by ring-closure dehydrohalogenation and subsequent N-protection with arenesulfonylchlorides. Direct aziridination of 4,7-dihydro-1,3-dioxepins using sulfonylazides as the nitrogen source failed (Dumić et al., 1993). The crystal structures of these compounds have been thoroughly studied in order to develop quantitative structure–property and structure–activity relationship models.

Recently, we have developed a new aziridination procedure using N-aminosuccinimide as the nitrogen source and iodosylbenzene diacetate as the oxidizing agent, which directly leads to N-amino-protected fused dioxepanoaziridines (Flock et al., 2005). Thus, a diastereomeric mixture of the title compounds, (I) and (II) (Figs 1 and 2), was obtained from 2-isopropyl-4,7-dihydro-1,3-dioxepin, N-aminosuccinimide and iodosylbenzene diacetate. The relative configurations of these compounds are of interest with respect to their reactivity and stability.

Separation of the diastereomeric mixture by column chromatography afforded (I) and (II) as colourless solids. However, determination of the relative configurations using nuclear Overhauser experiments failed because of the flexibility of the dioxepin moiety in solution. After recrystallization from diethyl ether–acetone and evaporation from acetone, respectively, (I) and (II) crystallized as well formed plate-like colourless crystals.

The exo isomer, (I), crystallizes in the non-centrosymmetric space group P21 with Z' = 1, but the absolute configuration could not be determined. The endo isomer, (II), crystallizes in space group P21/c with Z' = 2. The difference between the two independent molecules in (II) lies in the conformation of the isopropyl substituent around the C5—C6 and C17—C18 bonds (Fig. 2). Neither isomer shows any strong intermolecular interactions.

In both isomers, the isopropyl substituent at the acetalic unit was found in a quasi-equatorial position. Analysis of the endo isomer, (II), reveals that the dioxepanoaziridine moiety adopts a boat–chair (BC) conformation, while for the exo isomer, (I), the preferred conformation in the solid state is the chair–chair (CC) conformation. The substituent on the aziridine N atom occupies, in both cases, the anti position with respect to the dioxepane ring, which supports previous results found for 8-sulfonyl-protected bicyclooctane derivatives (Dumić et al., 1995).

Experimental top

Under a nitrogen atmosphere, small portions of iodosylbenzene diacetate (3.865 g, 12 mmol) were added at room temperature to a solution of 2-isopropyl-4,7-dihydro-1,3-dioxepine (2.560 g, 18 mmol) and N-aminosuccinimide (1.141 g, 10 mmol) in dry acetonitrile (30 ml) over a period of 2.5 h. After stirring for a further 15 h, the reaction mixture was evaporated under reduced pressure. The oily residue was purified by column chromatography (silica gel, cyclohexane 100 ethylacetate–cyclohexane: 80:20) to give the separated isomers, (I) and (II), as colourless solids (total yield 1.602 g, 6.3 mmol, 63%). Single crystals of isomer (I) (exo) for X-ray diffraction studies were obtained by slow evaporation from acetone (m.p. 413–415 K). Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 0.90 [d, 6H, J = 6.84 Hz, CH(CH3)2], 1.84 [m, 1H, CH(CH3)2], 2.63 [s, 4H, CO—(CH2)2—CO], 2.82 (m, 2H, CH—N), 3.84 (m, 2H, O—CH2), 4.12 (d, 1H, J = 6.84 Hz, O—CHR—O), 4.56 (m, 2H, O—CH2); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 172.45 (2 C, CO), 112.42 (1 C, O—CHR—O), 66.64 (2 C, O—CH2), 47.46 (2 C, CH—N), 31.56 [1 C, CH(CH3)2], 26.46 [2 C, CO-(CH2)2-CO], 17.74 [2 C, CH(CH3)2]. Single crystals of isomer (II) (endo) for X-ray diffraction studies were obtained by recrystallization from diethyl ether–acetone (Ratio?) at 253 K (m.p. 415–417 K). Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 0.88 [d, 6H, J = 6.88 Hz, CH(CH3)2], 1.83 [m, 1H, CH(CH3)2], 2.62 [s, 4H, CO—(CH2)2—CO], 2.71 (m, 2H, CH—N), 3.94 (d, 1H, J = 6.83 Hz, O—CHR—O), 3.98 (m, 2H, O—CH2), 4.62 (m, 2H, O—CH2); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 172.70 (2 C, CO), 111.28 (1 C, O—CHR—O), 65.36 (2 C, O—CH2), 48.15 (2 C, CH—N), 32.23 [1 C, CH(CH3)2], 26.60 [2 C, CO—(CH2)2—CO], 17.72 [2 C, CH(CH3)2]. APCI-MS, mixture of isomers: m/z (%) = 255 (100) [M+H]+; 287 (21) [M+H+MeOH]+.

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.98–1.00 Å and Uiso(H) = 1.2Ueq(C). [Please check added text] The Friedel-equivalent reflections were merged.

Computing details top

For both compounds, data collection: Please provide missing details; cell refinement: Please provide missing details; data reduction: Please provide missing details; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Please provide missing details; software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. The exo isomer (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The asymmetric unit of the endo isomer (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii.
(I) endo- 1-(4-isopropyl-3,5-dioxa-8-azabicyclo[5.1.0]octan-8-yl)pyrrolidine-2,5-dione top
Crystal data top
C12H18N2O4F(000) = 272
Mr = 254.28Dx = 1.363 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7302 reflections
a = 6.1449 (11) Åθ = 1.6–26.0°
b = 7.8343 (10) ŵ = 0.10 mm1
c = 13.080 (3) ÅT = 153 K
β = 100.250 (15)°Plate, colourless
V = 619.6 (2) Å30.47 × 0.41 × 0.05 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
1244 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus998 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.057
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.6°
rotation scansh = 77
Absorption correction: integration
X-RED32 (Stoe & Cie, 2004)
k = 99
Tmin = 0.954, Tmax = 0.995l = 1515
8393 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
1244 reflections(Δ/σ)max = 0.004
165 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C12H18N2O4V = 619.6 (2) Å3
Mr = 254.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1449 (11) ŵ = 0.10 mm1
b = 7.8343 (10) ÅT = 153 K
c = 13.080 (3) Å0.47 × 0.41 × 0.05 mm
β = 100.250 (15)°
Data collection top
Stoe IPDS 2
diffractometer
1244 independent reflections
Absorption correction: integration
X-RED32 (Stoe & Cie, 2004)
998 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.995Rint = 0.057
8393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
1244 reflectionsΔρmin = 0.21 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1562 (5)0.8397 (4)0.6551 (2)0.0359 (7)
H1A0.29980.89330.65000.043*
H1B0.17190.71490.64720.043*
C20.1003 (5)0.8771 (4)0.7606 (2)0.0310 (6)
H2A0.15200.98900.79300.037*
C30.1000 (4)0.8033 (4)0.7901 (2)0.0314 (6)
H3A0.16920.87010.84110.038*
C40.2544 (5)0.6976 (4)0.7130 (2)0.0345 (7)
H4B0.17580.59450.69510.041*
H4A0.38090.65990.74480.041*
C50.1931 (4)0.7912 (4)0.5452 (2)0.0314 (6)
H5A0.13960.67250.53640.038*
C60.3220 (5)0.8561 (4)0.4427 (2)0.0341 (6)
H6A0.35170.98050.45040.041*
C70.1823 (5)0.8357 (4)0.3577 (2)0.0403 (7)
H7A0.15940.71410.34570.048*
H7B0.03890.89160.37960.048*
H7C0.25920.88850.29330.048*
C80.5429 (5)0.7652 (4)0.4124 (2)0.0421 (8)
H8C0.61640.80510.34390.051*
H8B0.63640.79020.46390.051*
H8A0.51800.64180.41000.051*
C90.3970 (5)0.8568 (4)0.9687 (2)0.0357 (7)
C100.4386 (5)0.8615 (4)1.0854 (2)0.0403 (7)
H10A0.45730.98051.11090.048*
H10B0.57310.79581.11430.048*
C110.2335 (5)0.7804 (4)1.1162 (2)0.0398 (7)
H11B0.27570.68531.16560.048*
H11A0.14920.86581.14900.048*
C120.0983 (5)0.7156 (4)1.0165 (2)0.0354 (7)
N10.1217 (4)0.7252 (3)0.83085 (17)0.0313 (5)
N20.2005 (4)0.7706 (3)0.93619 (15)0.0299 (5)
O10.5120 (3)0.9170 (3)0.91070 (15)0.0453 (6)
O20.0704 (4)0.6317 (3)1.00440 (16)0.0455 (6)
O30.0102 (3)0.9024 (3)0.57294 (13)0.0347 (5)
O40.3350 (3)0.7922 (3)0.62015 (13)0.0341 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (14)0.0462 (19)0.0319 (14)0.0004 (14)0.0061 (12)0.0008 (14)
C20.0335 (15)0.0281 (15)0.0319 (14)0.0004 (13)0.0070 (11)0.0002 (13)
C30.0298 (14)0.0342 (15)0.0304 (14)0.0046 (13)0.0061 (12)0.0005 (12)
C40.0354 (17)0.0419 (18)0.0264 (15)0.0042 (13)0.0060 (12)0.0062 (12)
C50.0313 (14)0.0350 (15)0.0297 (14)0.0041 (14)0.0100 (11)0.0007 (12)
C60.0385 (15)0.0330 (15)0.0312 (14)0.0001 (14)0.0071 (12)0.0014 (13)
C70.0489 (18)0.0394 (18)0.0337 (15)0.0013 (15)0.0105 (13)0.0011 (14)
C80.0404 (18)0.048 (2)0.0363 (16)0.0014 (16)0.0033 (13)0.0020 (15)
C90.0326 (15)0.0352 (16)0.0390 (15)0.0023 (14)0.0056 (13)0.0040 (14)
C100.0422 (17)0.0441 (18)0.0325 (16)0.0001 (15)0.0008 (12)0.0032 (15)
C110.0488 (18)0.0388 (17)0.0308 (14)0.0048 (16)0.0042 (13)0.0029 (14)
C120.0452 (19)0.0292 (15)0.0311 (15)0.0009 (15)0.0048 (13)0.0017 (13)
N10.0355 (13)0.0292 (12)0.0289 (12)0.0022 (10)0.0045 (10)0.0009 (10)
N20.0345 (13)0.0311 (13)0.0235 (11)0.0004 (11)0.0031 (10)0.0034 (11)
O10.0347 (11)0.0612 (14)0.0418 (12)0.0036 (11)0.0113 (10)0.0026 (11)
O20.0491 (14)0.0462 (13)0.0404 (11)0.0146 (12)0.0059 (10)0.0044 (11)
O30.0346 (11)0.0390 (12)0.0304 (10)0.0033 (10)0.0057 (8)0.0040 (9)
O40.0307 (10)0.0428 (11)0.0295 (10)0.0019 (9)0.0072 (8)0.0045 (9)
Geometric parameters (Å, º) top
C1—O31.432 (3)C6—H6A1.0000
C1—C21.509 (4)C7—H7A0.9800
C1—H1A0.9900C7—H7B0.9800
C1—H1B0.9900C7—H7C0.9800
C2—C31.472 (4)C8—H8C0.9800
C2—N11.495 (3)C8—H8B0.9800
C2—H2A1.0000C8—H8A0.9800
C3—N11.502 (4)C9—O11.219 (3)
C3—C41.504 (4)C9—N21.382 (4)
C3—H3A1.0000C9—C101.503 (4)
C4—O41.434 (3)C10—C111.528 (4)
C4—H4B0.9900C10—H10A0.9900
C4—H4A0.9900C10—H10B0.9900
C5—O31.417 (3)C11—C121.504 (4)
C5—O41.423 (3)C11—H11B0.9900
C5—C61.519 (4)C11—H11A0.9900
C5—H5A1.0000C12—O21.213 (3)
C6—C81.521 (4)C12—N21.385 (4)
C6—C71.529 (4)N1—N21.422 (3)
O3—C1—C2111.8 (2)C6—C7—H7B109.5
O3—C1—H1A109.3H7A—C7—H7B109.5
C2—C1—H1A109.3C6—C7—H7C109.5
O3—C1—H1B109.3H7A—C7—H7C109.5
C2—C1—H1B109.3H7B—C7—H7C109.5
H1A—C1—H1B107.9C6—C8—H8C109.5
C3—C2—N160.83 (18)C6—C8—H8B109.5
C3—C2—C1120.0 (2)H8C—C8—H8B109.5
N1—C2—C1113.4 (2)C6—C8—H8A109.5
C3—C2—H2A116.8H8C—C8—H8A109.5
N1—C2—H2A116.8H8B—C8—H8A109.5
C1—C2—H2A116.8O1—C9—N2124.7 (3)
C2—C3—N160.33 (17)O1—C9—C10127.5 (3)
C2—C3—C4119.8 (2)N2—C9—C10107.8 (2)
N1—C3—C4116.0 (2)C9—C10—C11104.9 (2)
C2—C3—H3A116.3C9—C10—H10A110.8
N1—C3—H3A116.3C11—C10—H10A110.8
C4—C3—H3A116.3C9—C10—H10B110.8
O4—C4—C3111.4 (2)C11—C10—H10B110.8
O4—C4—H4B109.3H10A—C10—H10B108.8
C3—C4—H4B109.3C12—C11—C10105.5 (2)
O4—C4—H4A109.3C12—C11—H11B110.7
C3—C4—H4A109.3C10—C11—H11B110.7
H4B—C4—H4A108.0C12—C11—H11A110.7
O3—C5—O4112.1 (2)C10—C11—H11A110.7
O3—C5—C6106.6 (2)H11B—C11—H11A108.8
O4—C5—C6108.6 (2)O2—C12—N2124.2 (3)
O3—C5—H5A109.8O2—C12—C11128.6 (3)
O4—C5—H5A109.8N2—C12—C11107.3 (3)
C6—C5—H5A109.8N2—N1—C2112.0 (2)
C5—C6—C8112.0 (2)N2—N1—C3111.9 (2)
C5—C6—C7109.6 (2)C2—N1—C358.84 (17)
C8—C6—C7110.7 (2)C9—N2—C12114.1 (2)
C5—C6—H6A108.2C9—N2—N1123.2 (2)
C8—C6—H6A108.2C12—N2—N1122.3 (2)
C7—C6—H6A108.2C5—O3—C1114.2 (2)
C6—C7—H7A109.5C5—O4—C4114.8 (2)
(II) exo- 1-(4-isopropyl-3,5-dioxa-8-azabicyclo[5.1.0]octan-8-yl)pyrrolidine-2,5-dione top
Crystal data top
C12H18N2O4F(000) = 1088
Mr = 254.28Dx = 1.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10318 reflections
a = 24.470 (3) Åθ = 1.7–25.6°
b = 8.8444 (8) ŵ = 0.10 mm1
c = 11.8252 (14) ÅT = 153 K
β = 97.119 (9)°Plate, colourless
V = 2539.6 (5) Å30.66 × 0.65 × 0.25 mm
Z = 8
Data collection top
Stoe IPDS 2
diffractometer
4465 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2623 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.7°
rotation scansh = 2929
Absorption correction: integration
X-RED32 (Stoe & Cie, 2004)
k = 1010
Tmin = 0.914, Tmax = 0.972l = 1314
18062 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
4465 reflectionsΔρmax = 0.21 e Å3
330 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (4)
Crystal data top
C12H18N2O4V = 2539.6 (5) Å3
Mr = 254.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 24.470 (3) ŵ = 0.10 mm1
b = 8.8444 (8) ÅT = 153 K
c = 11.8252 (14) Å0.66 × 0.65 × 0.25 mm
β = 97.119 (9)°
Data collection top
Stoe IPDS 2
diffractometer
4465 independent reflections
Absorption correction: integration
X-RED32 (Stoe & Cie, 2004)
2623 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.972Rint = 0.033
18062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.90Δρmax = 0.21 e Å3
4465 reflectionsΔρmin = 0.15 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13853 (6)0.1498 (2)0.37970 (13)0.0339 (4)
H1A0.13380.04950.34270.041*
H1B0.16040.21280.33270.041*
C20.08288 (6)0.22056 (18)0.37812 (14)0.0284 (4)
H2A0.06250.22970.29970.034*
C30.06445 (6)0.33025 (18)0.45939 (13)0.0269 (4)
H3A0.03430.39840.42480.032*
C40.09820 (6)0.39655 (18)0.56193 (13)0.0302 (4)
H4B0.11490.49180.53870.036*
H4A0.07320.42280.61860.036*
C50.18282 (6)0.26653 (17)0.54868 (13)0.0274 (4)
H5A0.18680.35020.49340.033*
C60.23653 (7)0.24463 (19)0.62595 (15)0.0335 (4)
H6A0.23130.16170.68110.040*
C70.28230 (7)0.1981 (2)0.55652 (17)0.0496 (5)
H7A0.28800.27820.50200.060*
H7B0.27190.10430.51520.060*
H7C0.31640.18180.60780.060*
C80.25272 (7)0.3879 (2)0.69348 (14)0.0403 (4)
H8A0.22290.41710.73720.048*
H8B0.25940.46960.64090.048*
H8C0.28630.36920.74580.048*
C90.02191 (7)0.04486 (18)0.32502 (13)0.0291 (4)
C100.08362 (6)0.04812 (19)0.29875 (14)0.0332 (4)
H10A0.09920.05430.30570.040*
H10B0.09480.08590.22050.040*
C110.10334 (7)0.15492 (19)0.38645 (14)0.0352 (4)
H11B0.12420.24040.34820.042*
H11A0.12740.10090.43440.042*
C120.05208 (7)0.21086 (18)0.45773 (14)0.0290 (4)
C130.40029 (6)0.88727 (18)0.43325 (13)0.0295 (4)
H13A0.38290.98260.45410.035*
H13B0.42600.91280.37760.035*
C140.43315 (6)0.82396 (18)0.53816 (13)0.0269 (4)
H14A0.46220.89440.57430.032*
C150.41454 (6)0.71207 (18)0.61837 (13)0.0277 (4)
H15A0.43390.72250.69750.033*
C160.35980 (6)0.6350 (2)0.61452 (12)0.0316 (4)
H16B0.36600.53310.64840.038*
H16A0.33720.69240.66360.038*
C170.31634 (7)0.75532 (17)0.44628 (13)0.0270 (4)
H17A0.31320.83840.50250.032*
C180.26201 (7)0.73858 (18)0.36962 (15)0.0322 (4)
H18A0.25770.82900.31850.039*
C190.26088 (7)0.5990 (2)0.29422 (14)0.0411 (4)
H19A0.26180.50800.34170.049*
H19B0.29300.59990.25220.049*
H19C0.22710.59930.24020.049*
C200.21412 (7)0.7386 (2)0.44041 (17)0.0441 (5)
H20C0.17940.73040.38980.053*
H20B0.21440.83290.48400.053*
H20A0.21780.65250.49300.053*
C210.55121 (7)0.71403 (18)0.54804 (14)0.0288 (4)
C220.60214 (7)0.6605 (2)0.62166 (15)0.0358 (4)
H22A0.62180.74670.66160.043*
H22B0.62740.60900.57490.043*
C230.58212 (6)0.55098 (19)0.70676 (14)0.0337 (4)
H23A0.59880.44990.70000.040*
H23B0.59190.58810.78570.040*
C240.52063 (6)0.54374 (18)0.67696 (13)0.0284 (4)
N10.04750 (5)0.16772 (14)0.46420 (10)0.0262 (3)
N20.00770 (5)0.14746 (14)0.41301 (10)0.0265 (3)
N30.45186 (5)0.66313 (14)0.53454 (10)0.0257 (3)
N40.50663 (5)0.64627 (14)0.58886 (10)0.0256 (3)
O10.01112 (5)0.02834 (13)0.27952 (9)0.0359 (3)
O20.04824 (5)0.29651 (13)0.53843 (10)0.0366 (3)
O30.16959 (4)0.13044 (12)0.48916 (8)0.0310 (3)
O40.14114 (4)0.30286 (12)0.61645 (8)0.0291 (3)
O50.54759 (5)0.80150 (13)0.46811 (10)0.0367 (3)
O60.48765 (4)0.46768 (13)0.72011 (9)0.0360 (3)
O70.35839 (4)0.79079 (12)0.37859 (8)0.0290 (3)
O80.32862 (4)0.61822 (12)0.50495 (8)0.0285 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0327 (9)0.0431 (11)0.0256 (8)0.0001 (8)0.0026 (7)0.0043 (7)
C20.0280 (9)0.0323 (9)0.0245 (8)0.0021 (7)0.0025 (7)0.0017 (7)
C30.0273 (9)0.0253 (8)0.0277 (8)0.0012 (7)0.0021 (7)0.0023 (7)
C40.0285 (8)0.0296 (9)0.0322 (9)0.0027 (8)0.0025 (7)0.0020 (7)
C50.0272 (8)0.0275 (9)0.0275 (9)0.0015 (7)0.0031 (7)0.0017 (7)
C60.0315 (9)0.0331 (10)0.0348 (10)0.0024 (7)0.0006 (7)0.0060 (7)
C70.0306 (10)0.0551 (13)0.0618 (13)0.0070 (9)0.0002 (9)0.0058 (10)
C80.0321 (8)0.0484 (11)0.0396 (9)0.0089 (8)0.0021 (7)0.0000 (8)
C90.0330 (9)0.0267 (9)0.0272 (9)0.0019 (8)0.0021 (7)0.0010 (7)
C100.0285 (9)0.0352 (10)0.0346 (9)0.0015 (8)0.0013 (7)0.0014 (7)
C110.0287 (9)0.0338 (10)0.0426 (10)0.0033 (8)0.0022 (7)0.0018 (7)
C120.0302 (9)0.0267 (9)0.0305 (9)0.0012 (7)0.0053 (7)0.0029 (7)
C130.0308 (9)0.0284 (9)0.0290 (8)0.0033 (8)0.0028 (7)0.0015 (7)
C140.0269 (9)0.0257 (9)0.0282 (9)0.0014 (7)0.0043 (7)0.0035 (7)
C150.0297 (9)0.0327 (9)0.0208 (8)0.0023 (7)0.0026 (7)0.0007 (7)
C160.0276 (8)0.0439 (11)0.0231 (8)0.0020 (7)0.0024 (6)0.0034 (7)
C170.0283 (9)0.0256 (9)0.0275 (9)0.0012 (7)0.0045 (7)0.0016 (6)
C180.0297 (9)0.0302 (10)0.0350 (10)0.0007 (7)0.0031 (7)0.0006 (7)
C190.0391 (9)0.0425 (10)0.0389 (9)0.0016 (8)0.0059 (7)0.0065 (8)
C200.0293 (9)0.0461 (12)0.0561 (12)0.0022 (8)0.0018 (8)0.0037 (8)
C210.0294 (9)0.0269 (9)0.0305 (9)0.0022 (7)0.0052 (7)0.0041 (7)
C220.0268 (9)0.0369 (10)0.0433 (10)0.0032 (8)0.0023 (7)0.0009 (8)
C230.0300 (9)0.0357 (10)0.0343 (9)0.0012 (8)0.0006 (7)0.0019 (7)
C240.0286 (9)0.0281 (9)0.0286 (9)0.0001 (7)0.0032 (7)0.0016 (7)
N10.0246 (7)0.0275 (7)0.0261 (7)0.0008 (6)0.0015 (5)0.0013 (5)
N20.0253 (7)0.0268 (8)0.0267 (7)0.0001 (6)0.0004 (5)0.0001 (5)
N30.0244 (7)0.0273 (7)0.0251 (7)0.0003 (6)0.0016 (5)0.0019 (5)
N40.0229 (7)0.0263 (8)0.0272 (7)0.0017 (6)0.0017 (5)0.0007 (5)
O10.0332 (7)0.0366 (7)0.0377 (7)0.0031 (6)0.0030 (5)0.0079 (5)
O20.0392 (7)0.0354 (7)0.0355 (7)0.0037 (6)0.0062 (5)0.0055 (5)
O30.0302 (6)0.0304 (6)0.0314 (6)0.0013 (5)0.0004 (5)0.0010 (5)
O40.0281 (6)0.0346 (6)0.0246 (6)0.0008 (5)0.0035 (5)0.0006 (5)
O50.0377 (7)0.0366 (7)0.0364 (7)0.0050 (6)0.0074 (5)0.0052 (6)
O60.0329 (7)0.0368 (7)0.0380 (7)0.0040 (6)0.0034 (5)0.0075 (5)
O70.0289 (6)0.0333 (6)0.0247 (6)0.0041 (5)0.0022 (5)0.0009 (5)
O80.0288 (6)0.0296 (6)0.0263 (6)0.0012 (5)0.0001 (4)0.0025 (5)
Geometric parameters (Å, º) top
C1—O31.4279 (18)C13—C141.501 (2)
C1—C21.497 (2)C13—H13A0.9900
C1—H1A0.9900C13—H13B0.9900
C1—H1B0.9900C14—C151.481 (2)
C2—C31.475 (2)C14—N31.497 (2)
C2—N11.4908 (19)C14—H14A1.0000
C2—H2A1.0000C15—N31.4928 (19)
C3—N11.499 (2)C15—C161.499 (2)
C3—C41.499 (2)C15—H15A1.0000
C3—H3A1.0000C16—O81.4276 (17)
C4—O41.4277 (18)C16—H16B0.9900
C4—H4B0.9900C16—H16A0.9900
C4—H4A0.9900C17—O81.4108 (18)
C5—O41.4101 (18)C17—O71.4149 (18)
C5—O31.4115 (18)C17—C181.521 (2)
C5—C61.517 (2)C17—H17A1.0000
C5—H5A1.0000C18—C191.521 (2)
C6—C81.524 (2)C18—C201.522 (2)
C6—C71.525 (2)C18—H18A1.0000
C6—H6A1.0000C19—H19A0.9800
C7—H7A0.9800C19—H19B0.9800
C7—H7B0.9800C19—H19C0.9800
C7—H7C0.9800C20—H20C0.9800
C8—H8A0.9800C20—H20B0.9800
C8—H8B0.9800C20—H20A0.9800
C8—H8C0.9800C21—O51.2161 (19)
C9—O11.2125 (18)C21—N41.383 (2)
C9—N21.392 (2)C21—C221.506 (2)
C9—C101.504 (2)C22—C231.521 (2)
C10—C111.525 (2)C22—H22A0.9900
C10—H10A0.9900C22—H22B0.9900
C10—H10B0.9900C23—C241.504 (2)
C11—C121.506 (2)C23—H23A0.9900
C11—H11B0.9900C23—H23B0.9900
C11—H11A0.9900C24—O61.2109 (18)
C12—O21.2129 (19)C24—N41.3915 (19)
C12—N21.384 (2)N1—N21.4215 (17)
C13—O71.4259 (18)N3—N41.4205 (17)
O3—C1—C2116.29 (13)N3—C14—C13117.74 (12)
O3—C1—H1A108.2C15—C14—H14A113.6
C2—C1—H1A108.2N3—C14—H14A113.6
O3—C1—H1B108.2C13—C14—H14A113.6
C2—C1—H1B108.2C14—C15—N360.43 (10)
H1A—C1—H1B107.4C14—C15—C16128.99 (13)
C3—C2—N160.72 (10)N3—C15—C16117.77 (13)
C3—C2—C1128.17 (14)C14—C15—H15A112.9
N1—C2—C1117.71 (13)N3—C15—H15A112.9
C3—C2—H2A113.2C16—C15—H15A112.9
N1—C2—H2A113.2O8—C16—C15116.74 (12)
C1—C2—H2A113.2O8—C16—H16B108.1
C2—C3—N160.16 (10)C15—C16—H16B108.1
C2—C3—C4127.00 (13)O8—C16—H16A108.1
N1—C3—C4118.14 (12)C15—C16—H16A108.1
C2—C3—H3A113.6H16B—C16—H16A107.3
N1—C3—H3A113.6O8—C17—O7110.08 (12)
C4—C3—H3A113.6O8—C17—C18109.06 (13)
O4—C4—C3116.04 (13)O7—C17—C18109.13 (13)
O4—C4—H4B108.3O8—C17—H17A109.5
C3—C4—H4B108.3O7—C17—H17A109.5
O4—C4—H4A108.3C18—C17—H17A109.5
C3—C4—H4A108.3C17—C18—C19112.30 (13)
H4B—C4—H4A107.4C17—C18—C20110.36 (14)
O4—C5—O3109.90 (12)C19—C18—C20111.29 (14)
O4—C5—C6108.69 (13)C17—C18—H18A107.6
O3—C5—C6108.63 (13)C19—C18—H18A107.6
O4—C5—H5A109.9C20—C18—H18A107.6
O3—C5—H5A109.9C18—C19—H19A109.5
C6—C5—H5A109.9C18—C19—H19B109.5
C5—C6—C8111.03 (14)H19A—C19—H19B109.5
C5—C6—C7110.45 (14)C18—C19—H19C109.5
C8—C6—C7110.25 (15)H19A—C19—H19C109.5
C5—C6—H6A108.3H19B—C19—H19C109.5
C8—C6—H6A108.3C18—C20—H20C109.5
C7—C6—H6A108.3C18—C20—H20B109.5
C6—C7—H7A109.5H20C—C20—H20B109.5
C6—C7—H7B109.5C18—C20—H20A109.5
H7A—C7—H7B109.5H20C—C20—H20A109.5
C6—C7—H7C109.5H20B—C20—H20A109.5
H7A—C7—H7C109.5O5—C21—N4124.22 (15)
H7B—C7—H7C109.5O5—C21—C22128.67 (16)
C6—C8—H8A109.5N4—C21—C22107.11 (13)
C6—C8—H8B109.5C21—C22—C23105.75 (13)
H8A—C8—H8B109.5C21—C22—H22A110.6
C6—C8—H8C109.5C23—C22—H22A110.6
H8A—C8—H8C109.5C21—C22—H22B110.6
H8B—C8—H8C109.5C23—C22—H22B110.6
O1—C9—N2124.16 (15)H22A—C22—H22B108.7
O1—C9—C10128.77 (15)C24—C23—C22105.49 (13)
N2—C9—C10107.06 (14)C24—C23—H23A110.6
C9—C10—C11105.41 (13)C22—C23—H23A110.6
C9—C10—H10A110.7C24—C23—H23B110.6
C11—C10—H10A110.7C22—C23—H23B110.6
C9—C10—H10B110.7H23A—C23—H23B108.8
C11—C10—H10B110.7O6—C24—N4124.22 (14)
H10A—C10—H10B108.8O6—C24—C23128.66 (15)
C12—C11—C10105.81 (13)N4—C24—C23107.10 (13)
C12—C11—H11B110.6N2—N1—C2110.51 (12)
C10—C11—H11B110.6N2—N1—C3110.94 (11)
C12—C11—H11A110.6C2—N1—C359.12 (10)
C10—C11—H11A110.6C12—N2—C9114.50 (13)
H11B—C11—H11A108.7C12—N2—N1122.38 (12)
O2—C12—N2124.45 (15)C9—N2—N1122.46 (13)
O2—C12—C11128.59 (15)N4—N3—C15110.54 (11)
N2—C12—C11106.96 (13)N4—N3—C14111.20 (11)
O7—C13—C14115.66 (13)C15—N3—C1459.40 (9)
O7—C13—H13A108.4C21—N4—C24114.33 (13)
C14—C13—H13A108.4C21—N4—N3122.52 (12)
O7—C13—H13B108.4C24—N4—N3122.54 (12)
C14—C13—H13B108.4C5—O3—C1114.39 (12)
H13A—C13—H13B107.4C5—O4—C4114.79 (11)
C15—C14—N360.17 (10)C17—O7—C13114.12 (12)
C15—C14—C13127.08 (13)C17—O8—C16114.48 (12)

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H18N2O4C12H18N2O4
Mr254.28254.28
Crystal system, space groupMonoclinic, P21Monoclinic, P21/c
Temperature (K)153153
a, b, c (Å)6.1449 (11), 7.8343 (10), 13.080 (3)24.470 (3), 8.8444 (8), 11.8252 (14)
β (°) 100.250 (15) 97.119 (9)
V3)619.6 (2)2539.6 (5)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.47 × 0.41 × 0.050.66 × 0.65 × 0.25
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
X-RED32 (Stoe & Cie, 2004)
Integration
X-RED32 (Stoe & Cie, 2004)
Tmin, Tmax0.954, 0.9950.914, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8393, 1244, 998 18062, 4465, 2623
Rint0.0570.033
(sin θ/λ)max1)0.6050.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.076, 1.02 0.031, 0.084, 0.90
No. of reflections12444465
No. of parameters165330
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.210.21, 0.15

Computer programs: Please provide missing details, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds