Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108017691/gd3220sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017691/gd3220IIIsup2.hkl |
CCDC reference: 697567
1,4,5,8-Naphthalenetetracarboxylic acid and lanthanum nitrate hexahydrate were purchased commercially and used without further purification. The tetrasodium salt of the acid was prepared according to the reported method (Fitzgerald et al., 1991). A mixture of La(NO3)3.6H2O (0.044 g, 0.1 mmol) and tetrasodium naphthalene-1,4,5,8-tetracarboxylate (0.055 g, 0.1 mmol) was dissolved in water (15 ml). The mixture was allowed to stand in a capped vial for 10 d at room temperature. Needle-shaped crystals of (III) were deposited. They were collected by filtration, washed with water and air-dried. The product is insoluble in water and in common organic solvents. IR (KBr, cm-1): 3454 and 3260 (water stretching vibrations), 1718 (COOH), 1608 and 1566 (COO- asymmetric stretching), 1434 and 1391 (COO- symmetric stretching). The solid IR spectrum confirms the presence of both carboxylic acid and carboxylate groups in the structure. Formation of the anhydrated species (II) from (I) has occurred during the crystallization process.
H atoms bound to C atoms were located in calculated positions and were constrained to ride on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). All H atoms bound to O atoms were located in a difference Fourier map. The corresponding O—H distances were modified and constrained [restrained?] to be near 0.90 Å, with Uiso(H) = 1.2Ueq(O).
Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[La(C14H4O7)(H2O)7](C14H6O8)0.5·2H2O | Z = 2 |
Mr = 736.32 | F(000) = 736 |
Triclinic, P1 | Dx = 1.925 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6222 (2) Å | Cell parameters from 4123 reflections |
b = 9.4831 (2) Å | θ = 1.0–27.8° |
c = 20.5543 (7) Å | µ = 1.78 mm−1 |
α = 91.3625 (9)° | T = 110 K |
β = 98.9233 (12)° | Needle, colourless |
γ = 94.5506 (14)° | 0.30 × 0.15 × 0.10 mm |
V = 1270.29 (6) Å3 |
Nonius KappaCCD diffractometer | 5821 independent reflections |
Radiation source: fine-focus sealed tube | 5404 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 12.8 pixels mm-1 | θmax = 27.8°, θmin = 1.0° |
1° ϕ and ω scans | h = −8→8 |
Absorption correction: multi-scan (Blessing, 1995) | k = −12→12 |
Tmin = 0.617, Tmax = 0.842 | l = −26→26 |
12656 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0101P)2 + 2.3943P] where P = (Fo2 + 2Fc2)/3 |
5821 reflections | (Δ/σ)max = 0.001 |
379 parameters | Δρmax = 1.34 e Å−3 |
0 restraints | Δρmin = −1.27 e Å−3 |
[La(C14H4O7)(H2O)7](C14H6O8)0.5·2H2O | γ = 94.5506 (14)° |
Mr = 736.32 | V = 1270.29 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.6222 (2) Å | Mo Kα radiation |
b = 9.4831 (2) Å | µ = 1.78 mm−1 |
c = 20.5543 (7) Å | T = 110 K |
α = 91.3625 (9)° | 0.30 × 0.15 × 0.10 mm |
β = 98.9233 (12)° |
Nonius KappaCCD diffractometer | 5821 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 5404 reflections with I > 2σ(I) |
Tmin = 0.617, Tmax = 0.842 | Rint = 0.031 |
12656 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.058 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.34 e Å−3 |
5821 reflections | Δρmin = −1.27 e Å−3 |
379 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.350060 (19) | 0.626183 (13) | 0.260635 (6) | 0.00822 (5) | |
O2 | 0.0077 (3) | 0.46884 (18) | 0.26311 (9) | 0.0137 (3) | |
H2A | −0.0852 | 0.4652 | 0.2261 | 0.016* | |
H2B | 0.0051 | 0.3803 | 0.2775 | 0.016* | |
O3 | 0.2021 (3) | 0.53923 (18) | 0.13794 (8) | 0.0128 (3) | |
H3A | 0.2204 | 0.6059 | 0.1086 | 0.015* | |
H3B | 0.0658 | 0.5181 | 0.1330 | 0.015* | |
O4 | 0.7149 (3) | 0.62057 (18) | 0.33006 (9) | 0.0144 (4) | |
H4A | 0.7390 | 0.6036 | 0.3733 | 0.017* | |
H4B | 0.8015 | 0.5759 | 0.3089 | 0.017* | |
O5 | 0.3574 (3) | 0.48964 (18) | 0.36443 (8) | 0.0131 (3) | |
H5A | 0.2509 | 0.4613 | 0.3846 | 0.016* | |
H5B | 0.4528 | 0.4317 | 0.3801 | 0.016* | |
O6 | 0.5018 (3) | 0.87634 (19) | 0.27588 (10) | 0.0192 (4) | |
H6A | 0.6348 | 0.8892 | 0.2714 | 0.023* | |
H6B | 0.4537 | 0.9618 | 0.2795 | 0.023* | |
O7 | 0.1858 (3) | 0.75198 (19) | 0.35132 (9) | 0.0158 (4) | |
H7A | 0.1665 | 0.7284 | 0.3922 | 0.019* | |
H7B | 0.0829 | 0.8045 | 0.3361 | 0.019* | |
O8 | 0.4731 (3) | 0.38597 (19) | 0.23513 (9) | 0.0182 (4) | |
H8A | 0.4338 | 0.2984 | 0.2466 | 0.022* | |
H8B | 0.5322 | 0.3783 | 0.1988 | 0.022* | |
O9 | 0.6125 (3) | 0.66463 (18) | 0.18586 (8) | 0.0124 (3) | |
O10 | 0.7754 (3) | 0.48980 (17) | 0.14696 (8) | 0.0137 (3) | |
C11 | 0.7121 (3) | 0.6128 (2) | 0.14540 (12) | 0.0102 (4) | |
C12 | 0.7458 (3) | 0.7009 (2) | 0.08698 (12) | 0.0104 (4) | |
C13 | 0.7107 (4) | 0.6315 (3) | 0.02621 (12) | 0.0133 (5) | |
H13 | 0.6983 | 0.5310 | 0.0238 | 0.016* | |
C14 | 0.6929 (4) | 0.7062 (3) | −0.03237 (12) | 0.0137 (5) | |
H14 | 0.6697 | 0.6568 | −0.0739 | 0.016* | |
C15 | 0.7093 (4) | 0.8519 (3) | −0.02874 (12) | 0.0128 (5) | |
C16 | 0.6766 (4) | 0.9289 (3) | −0.09014 (12) | 0.0152 (5) | |
O17 | 0.6291 (3) | 0.8781 (2) | −0.14444 (9) | 0.0241 (4) | |
O18 | 0.7046 (3) | 1.07743 (19) | −0.08489 (9) | 0.0166 (4) | |
C19 | 0.7532 (4) | 1.1547 (3) | −0.02622 (12) | 0.0143 (5) | |
O20 | 0.7687 (3) | 1.28135 (19) | −0.02948 (9) | 0.0182 (4) | |
C21 | 0.7817 (4) | 1.0772 (3) | 0.03547 (12) | 0.0116 (5) | |
C22 | 0.8325 (4) | 1.1514 (3) | 0.09482 (12) | 0.0135 (5) | |
H22 | 0.8393 | 1.2519 | 0.0963 | 0.016* | |
C23 | 0.8742 (4) | 1.0775 (3) | 0.15338 (12) | 0.0134 (5) | |
H23 | 0.9133 | 1.1293 | 0.1941 | 0.016* | |
C24 | 0.8593 (3) | 0.9311 (2) | 0.15282 (12) | 0.0106 (4) | |
C25 | 0.7879 (3) | 0.8512 (2) | 0.09261 (12) | 0.0100 (4) | |
C26 | 0.7595 (3) | 0.9268 (2) | 0.03309 (12) | 0.0105 (5) | |
C27 | 0.9505 (3) | 0.8630 (2) | 0.21573 (12) | 0.0093 (4) | |
O28 | 1.0630 (3) | 0.76474 (17) | 0.20851 (8) | 0.0118 (3) | |
O29 | 0.9187 (3) | 0.91326 (17) | 0.27005 (8) | 0.0121 (3) | |
O30 | 0.2382 (3) | 0.42421 (17) | 0.52858 (8) | 0.0123 (3) | |
H30 | 0.2370 | 0.5091 | 0.5099 | 0.015* | |
O31 | 0.0753 (2) | 0.34637 (17) | 0.42930 (8) | 0.0112 (3) | |
C32 | 0.1451 (3) | 0.3257 (2) | 0.48718 (12) | 0.0097 (4) | |
C33 | 0.1465 (3) | 0.1795 (2) | 0.51287 (11) | 0.0090 (4) | |
C34 | 0.3282 (4) | 0.1463 (2) | 0.54886 (12) | 0.0104 (4) | |
H34 | 0.4300 | 0.2197 | 0.5658 | 0.013* | |
C35 | 0.3643 (4) | 0.0049 (2) | 0.56082 (12) | 0.0106 (4) | |
H35 | 0.4907 | −0.0164 | 0.5857 | 0.013* | |
C36 | 0.2195 (3) | −0.1034 (2) | 0.53711 (11) | 0.0093 (4) | |
C37 | 0.0188 (3) | −0.0722 (2) | 0.50627 (11) | 0.0088 (4) | |
C38 | 0.2885 (3) | −0.2507 (2) | 0.53914 (12) | 0.0099 (4) | |
O39 | 0.2324 (2) | −0.33054 (17) | 0.48753 (8) | 0.0110 (3) | |
O40 | 0.4019 (3) | −0.28492 (18) | 0.58944 (9) | 0.0161 (4) | |
O41 | −0.0066 (3) | 0.19469 (19) | 0.31360 (9) | 0.0189 (4) | |
H41A | −0.0614 | 0.1053 | 0.3047 | 0.023* | |
H41B | −0.0046 | 0.2160 | 0.3565 | 0.023* | |
O42 | 0.3950 (3) | 0.14493 (19) | 0.29958 (9) | 0.0192 (4) | |
H42A | 0.4738 | 0.1758 | 0.3376 | 0.023* | |
H42B | 0.2649 | 0.1544 | 0.3052 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00824 (7) | 0.00834 (7) | 0.00851 (7) | 0.00145 (5) | 0.00211 (5) | 0.00176 (5) |
O2 | 0.0122 (8) | 0.0130 (8) | 0.0145 (9) | −0.0008 (6) | −0.0015 (7) | 0.0048 (7) |
O3 | 0.0134 (8) | 0.0146 (8) | 0.0105 (8) | 0.0018 (7) | 0.0017 (7) | 0.0027 (6) |
O4 | 0.0113 (8) | 0.0205 (9) | 0.0119 (8) | 0.0037 (7) | 0.0020 (7) | 0.0012 (7) |
O5 | 0.0118 (8) | 0.0134 (8) | 0.0157 (9) | 0.0049 (6) | 0.0037 (7) | 0.0081 (7) |
O6 | 0.0133 (9) | 0.0120 (9) | 0.0337 (11) | −0.0004 (7) | 0.0094 (8) | −0.0027 (8) |
O7 | 0.0172 (9) | 0.0220 (9) | 0.0103 (8) | 0.0099 (7) | 0.0043 (7) | 0.0047 (7) |
O8 | 0.0271 (10) | 0.0124 (9) | 0.0171 (9) | 0.0053 (7) | 0.0072 (8) | 0.0021 (7) |
O9 | 0.0116 (8) | 0.0145 (8) | 0.0124 (8) | 0.0012 (6) | 0.0055 (7) | 0.0004 (7) |
O10 | 0.0175 (9) | 0.0101 (8) | 0.0134 (8) | 0.0017 (7) | 0.0020 (7) | 0.0012 (6) |
C11 | 0.0092 (11) | 0.0096 (11) | 0.0110 (11) | −0.0017 (8) | 0.0003 (9) | 0.0006 (8) |
C12 | 0.0076 (10) | 0.0134 (11) | 0.0103 (11) | 0.0027 (9) | 0.0013 (9) | 0.0005 (9) |
C13 | 0.0124 (11) | 0.0128 (11) | 0.0144 (12) | 0.0012 (9) | 0.0017 (9) | −0.0005 (9) |
C14 | 0.0134 (12) | 0.0179 (12) | 0.0099 (11) | 0.0017 (9) | 0.0024 (9) | −0.0005 (9) |
C15 | 0.0108 (11) | 0.0185 (12) | 0.0095 (11) | 0.0013 (9) | 0.0025 (9) | 0.0010 (9) |
C16 | 0.0140 (12) | 0.0197 (13) | 0.0124 (12) | 0.0030 (10) | 0.0025 (9) | 0.0022 (10) |
O17 | 0.0338 (11) | 0.0273 (11) | 0.0105 (9) | 0.0020 (9) | 0.0013 (8) | 0.0001 (8) |
O18 | 0.0200 (9) | 0.0193 (9) | 0.0106 (8) | 0.0030 (7) | 0.0021 (7) | 0.0038 (7) |
C19 | 0.0106 (11) | 0.0197 (13) | 0.0136 (12) | 0.0040 (9) | 0.0027 (9) | 0.0028 (10) |
O20 | 0.0234 (10) | 0.0156 (9) | 0.0168 (9) | 0.0034 (7) | 0.0048 (8) | 0.0083 (7) |
C21 | 0.0103 (11) | 0.0133 (11) | 0.0118 (11) | 0.0031 (9) | 0.0018 (9) | 0.0036 (9) |
C22 | 0.0155 (12) | 0.0107 (11) | 0.0146 (12) | 0.0027 (9) | 0.0023 (9) | 0.0026 (9) |
C23 | 0.0160 (12) | 0.0117 (11) | 0.0128 (12) | 0.0033 (9) | 0.0020 (9) | 0.0001 (9) |
C24 | 0.0086 (11) | 0.0128 (11) | 0.0109 (11) | 0.0028 (9) | 0.0021 (9) | 0.0017 (9) |
C25 | 0.0077 (10) | 0.0130 (11) | 0.0104 (11) | 0.0034 (8) | 0.0037 (8) | 0.0011 (9) |
C26 | 0.0069 (10) | 0.0134 (11) | 0.0115 (11) | 0.0016 (9) | 0.0015 (9) | −0.0001 (9) |
C27 | 0.0071 (10) | 0.0085 (10) | 0.0118 (11) | −0.0003 (8) | 0.0005 (9) | 0.0019 (8) |
O28 | 0.0125 (8) | 0.0111 (8) | 0.0122 (8) | 0.0045 (6) | 0.0017 (6) | 0.0012 (6) |
O29 | 0.0134 (8) | 0.0134 (8) | 0.0096 (8) | 0.0024 (6) | 0.0013 (6) | 0.0006 (6) |
O30 | 0.0164 (8) | 0.0050 (7) | 0.0139 (8) | −0.0016 (6) | −0.0012 (7) | 0.0022 (6) |
O31 | 0.0115 (8) | 0.0110 (8) | 0.0111 (8) | 0.0002 (6) | 0.0019 (6) | 0.0035 (6) |
C32 | 0.0067 (10) | 0.0096 (11) | 0.0140 (12) | 0.0027 (8) | 0.0040 (9) | 0.0013 (9) |
C33 | 0.0110 (11) | 0.0078 (10) | 0.0087 (11) | 0.0000 (8) | 0.0032 (9) | 0.0003 (8) |
C34 | 0.0098 (11) | 0.0092 (11) | 0.0119 (11) | −0.0016 (8) | 0.0017 (9) | 0.0008 (9) |
C35 | 0.0099 (11) | 0.0114 (11) | 0.0103 (11) | 0.0012 (9) | 0.0005 (9) | 0.0008 (9) |
C36 | 0.0105 (11) | 0.0085 (10) | 0.0093 (11) | 0.0012 (8) | 0.0022 (9) | 0.0022 (8) |
C37 | 0.0112 (11) | 0.0082 (11) | 0.0074 (11) | 0.0016 (8) | 0.0028 (9) | 0.0013 (8) |
C38 | 0.0085 (10) | 0.0093 (11) | 0.0122 (11) | 0.0000 (8) | 0.0026 (9) | 0.0014 (9) |
O39 | 0.0125 (8) | 0.0082 (8) | 0.0122 (8) | 0.0005 (6) | 0.0013 (6) | 0.0010 (6) |
O40 | 0.0180 (9) | 0.0104 (8) | 0.0180 (9) | 0.0045 (7) | −0.0053 (7) | 0.0002 (7) |
O41 | 0.0294 (10) | 0.0129 (9) | 0.0136 (9) | −0.0027 (7) | 0.0033 (8) | −0.0007 (7) |
O42 | 0.0213 (10) | 0.0151 (9) | 0.0198 (10) | 0.0021 (7) | −0.0008 (8) | −0.0014 (7) |
La1—O6 | 2.4948 (17) | O18—C19 | 1.377 (3) |
La1—O9 | 2.5039 (16) | C19—O20 | 1.201 (3) |
La1—O28i | 2.5138 (16) | C19—C21 | 1.475 (3) |
La1—O5 | 2.5180 (17) | C21—C22 | 1.375 (3) |
La1—O8 | 2.5491 (18) | C21—C26 | 1.421 (3) |
La1—O7 | 2.6094 (17) | C22—C23 | 1.409 (3) |
La1—O4 | 2.6136 (17) | C22—H22 | 0.9500 |
La1—O2 | 2.6212 (16) | C23—C24 | 1.384 (3) |
La1—O3 | 2.6470 (17) | C23—H23 | 0.9500 |
O2—H2A | 0.8990 | C24—C25 | 1.430 (3) |
O2—H2B | 0.8969 | C24—C27 | 1.521 (3) |
O3—H3A | 0.8984 | C25—C26 | 1.427 (3) |
O3—H3B | 0.8981 | C27—O29 | 1.258 (3) |
O4—H4A | 0.8982 | C27—O28 | 1.258 (3) |
O4—H4B | 0.8976 | O28—La1ii | 2.5138 (16) |
O5—H5A | 0.8983 | O30—C32 | 1.298 (3) |
O5—H5B | 0.8978 | O30—H30 | 0.9005 |
O6—H6A | 0.8995 | O31—C32 | 1.234 (3) |
O6—H6B | 0.8991 | C32—C33 | 1.496 (3) |
O7—H7A | 0.8993 | C33—C34 | 1.374 (3) |
O7—H7B | 0.8977 | C33—C37iii | 1.435 (3) |
O8—H8A | 0.8982 | C34—C35 | 1.402 (3) |
O8—H8B | 0.8989 | C34—H34 | 0.9500 |
O9—C11 | 1.253 (3) | C35—C36 | 1.373 (3) |
O10—C11 | 1.270 (3) | C35—H35 | 0.9500 |
C11—C12 | 1.513 (3) | C36—C37 | 1.437 (3) |
C12—C13 | 1.376 (3) | C36—C38 | 1.504 (3) |
C12—C25 | 1.430 (3) | C37—C37iii | 1.433 (4) |
C13—C14 | 1.406 (3) | C37—C33iii | 1.435 (3) |
C13—H13 | 0.9500 | C38—O40 | 1.246 (3) |
C14—C15 | 1.376 (4) | C38—O39 | 1.277 (3) |
C14—H14 | 0.9500 | O41—H41A | 0.8983 |
C15—C26 | 1.421 (3) | O41—H41B | 0.8983 |
C15—C16 | 1.469 (3) | O42—H42A | 0.8982 |
C16—O17 | 1.191 (3) | O42—H42B | 0.8979 |
C16—O18 | 1.406 (3) | ||
O6—La1—O9 | 71.21 (6) | C25—C12—C11 | 122.3 (2) |
O6—La1—O28i | 76.77 (6) | C12—C13—C14 | 121.4 (2) |
O9—La1—O28i | 102.95 (5) | C12—C13—H13 | 119.3 |
O6—La1—O5 | 115.52 (6) | C14—C13—H13 | 119.3 |
O9—La1—O5 | 130.79 (6) | C15—C14—C13 | 119.2 (2) |
O28i—La1—O5 | 126.24 (5) | C15—C14—H14 | 120.4 |
O6—La1—O8 | 136.76 (6) | C13—C14—H14 | 120.4 |
O9—La1—O8 | 72.32 (6) | C14—C15—C26 | 120.8 (2) |
O28i—La1—O8 | 134.23 (6) | C14—C15—C16 | 118.8 (2) |
O5—La1—O8 | 73.74 (6) | C26—C15—C16 | 120.4 (2) |
O6—La1—O7 | 71.37 (6) | O17—C16—O18 | 116.2 (2) |
O9—La1—O7 | 142.55 (6) | O17—C16—C15 | 126.5 (2) |
O28i—La1—O7 | 69.73 (5) | O18—C16—C15 | 117.3 (2) |
O5—La1—O7 | 66.64 (5) | C19—O18—C16 | 124.4 (2) |
O8—La1—O7 | 139.56 (6) | O20—C19—O18 | 116.8 (2) |
O6—La1—O4 | 73.26 (6) | O20—C19—C21 | 125.0 (2) |
O9—La1—O4 | 71.28 (5) | O18—C19—C21 | 118.2 (2) |
O28i—La1—O4 | 149.74 (5) | C22—C21—C26 | 120.6 (2) |
O5—La1—O4 | 65.63 (5) | C22—C21—C19 | 119.5 (2) |
O8—La1—O4 | 73.66 (6) | C26—C21—C19 | 119.9 (2) |
O7—La1—O4 | 96.40 (5) | C21—C22—C23 | 119.6 (2) |
O6—La1—O2 | 141.89 (6) | C21—C22—H22 | 120.2 |
O9—La1—O2 | 138.29 (5) | C23—C22—H22 | 120.2 |
O28i—La1—O2 | 73.20 (5) | C24—C23—C22 | 121.4 (2) |
O5—La1—O2 | 67.45 (5) | C24—C23—H23 | 119.3 |
O8—La1—O2 | 81.35 (6) | C22—C23—H23 | 119.3 |
O7—La1—O2 | 76.52 (6) | C23—C24—C25 | 120.1 (2) |
O4—La1—O2 | 131.23 (5) | C23—C24—C27 | 116.7 (2) |
O6—La1—O3 | 115.97 (6) | C25—C24—C27 | 122.5 (2) |
O9—La1—O3 | 68.28 (5) | C26—C25—C12 | 117.1 (2) |
O28i—La1—O3 | 66.90 (5) | C26—C25—C24 | 117.7 (2) |
O5—La1—O3 | 128.51 (5) | C12—C25—C24 | 125.2 (2) |
O8—La1—O3 | 69.43 (6) | C15—C26—C21 | 119.8 (2) |
O7—La1—O3 | 132.11 (5) | C15—C26—C25 | 120.1 (2) |
O4—La1—O3 | 131.47 (5) | C21—C26—C25 | 120.1 (2) |
O2—La1—O3 | 72.45 (5) | O29—C27—O28 | 125.5 (2) |
La1—O2—H2A | 116.2 | O29—C27—C24 | 118.6 (2) |
La1—O2—H2B | 122.7 | O28—C27—C24 | 115.8 (2) |
H2A—O2—H2B | 105.5 | C27—O28—La1ii | 146.54 (15) |
La1—O3—H3A | 112.7 | C32—O30—H30 | 110.6 |
La1—O3—H3B | 110.9 | O31—C32—O30 | 123.9 (2) |
H3A—O3—H3B | 105.2 | O31—C32—C33 | 121.2 (2) |
La1—O4—H4A | 124.5 | O30—C32—C33 | 114.6 (2) |
La1—O4—H4B | 113.1 | C34—C33—C37iii | 120.6 (2) |
H4A—O4—H4B | 110.0 | C34—C33—C32 | 116.0 (2) |
La1—O5—H5A | 127.7 | C37iii—C33—C32 | 122.8 (2) |
La1—O5—H5B | 125.9 | C33—C34—C35 | 120.5 (2) |
H5A—O5—H5B | 102.8 | C33—C34—H34 | 119.7 |
La1—O6—H6A | 114.9 | C35—C34—H34 | 119.7 |
La1—O6—H6B | 136.0 | C36—C35—C34 | 121.0 (2) |
H6A—O6—H6B | 108.4 | C36—C35—H35 | 119.5 |
La1—O7—H7A | 132.8 | C34—C35—H35 | 119.5 |
La1—O7—H7B | 115.0 | C35—C36—C37 | 120.0 (2) |
H7A—O7—H7B | 106.0 | C35—C36—C38 | 116.8 (2) |
La1—O8—H8A | 131.4 | C37—C36—C38 | 122.9 (2) |
La1—O8—H8B | 116.9 | C37iii—C37—C33iii | 118.2 (3) |
H8A—O8—H8B | 108.1 | C37iii—C37—C36 | 118.9 (3) |
C11—O9—La1 | 148.13 (15) | C33iii—C37—C36 | 122.9 (2) |
O9—C11—O10 | 125.7 (2) | O40—C38—O39 | 124.5 (2) |
O9—C11—C12 | 116.8 (2) | O40—C38—C36 | 118.4 (2) |
O10—C11—C12 | 117.4 (2) | O39—C38—C36 | 117.1 (2) |
C13—C12—C25 | 120.7 (2) | H41A—O41—H41B | 108.9 |
C13—C12—C11 | 116.6 (2) | H42A—O42—H42B | 106.1 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O41 | 0.90 | 1.93 | 2.822 (2) | 176 |
O2—H2A···O10i | 0.90 | 1.77 | 2.653 (2) | 166 |
O3—H3A···O20iv | 0.90 | 1.97 | 2.857 (2) | 167 |
O3—H3B···O10i | 0.90 | 1.99 | 2.862 (2) | 165 |
O4—H4A···O30v | 0.90 | 2.02 | 2.919 (2) | 173 |
O4—H4B···O2ii | 0.90 | 2.09 | 2.984 (2) | 178 |
O5—H5A···O31 | 0.90 | 1.89 | 2.751 (2) | 161 |
O5—H5B···O40vi | 0.90 | 1.82 | 2.705 (2) | 167 |
O6—H6A···O29 | 0.90 | 1.88 | 2.777 (2) | 175 |
O6—H6B···O42vii | 0.90 | 1.86 | 2.749 (3) | 169 |
O7—H7A···O39vii | 0.90 | 2.04 | 2.902 (2) | 160 |
O7—H7B···O29i | 0.90 | 1.97 | 2.810 (2) | 155 |
O8—H8A···O42 | 0.90 | 1.86 | 2.723 (3) | 160 |
O8—H8B···O10 | 0.90 | 2.27 | 3.027 (3) | 141 |
O30—H30···O39vii | 0.90 | 1.60 | 2.494 (2) | 171 |
O41—H41A···O29viii | 0.90 | 1.93 | 2.776 (2) | 157 |
O41—H41B···O31 | 0.90 | 1.90 | 2.708 (2) | 149 |
O42—H42A···O40vi | 0.90 | 1.85 | 2.720 (3) | 164 |
O42—H42B···O41 | 0.90 | 1.90 | 2.795 (3) | 174 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iv) −x+1, −y+2, −z; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y, −z+1; (vii) x, y+1, z; (viii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [La(C14H4O7)(H2O)7](C14H6O8)0.5·2H2O |
Mr | 736.32 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 110 |
a, b, c (Å) | 6.6222 (2), 9.4831 (2), 20.5543 (7) |
α, β, γ (°) | 91.3625 (9), 98.9233 (12), 94.5506 (14) |
V (Å3) | 1270.29 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.78 |
Crystal size (mm) | 0.30 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.617, 0.842 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12656, 5821, 5404 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.657 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.058, 1.03 |
No. of reflections | 5821 |
No. of parameters | 379 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.34, −1.27 |
Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).
La1—O6 | 2.4948 (17) | La1—O7 | 2.6094 (17) |
La1—O9 | 2.5039 (16) | La1—O4 | 2.6136 (17) |
La1—O28i | 2.5138 (16) | La1—O2 | 2.6212 (16) |
La1—O5 | 2.5180 (17) | La1—O3 | 2.6470 (17) |
La1—O8 | 2.5491 (18) |
Symmetry code: (i) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O41 | 0.90 | 1.93 | 2.822 (2) | 176.3 |
O2—H2A···O10i | 0.90 | 1.77 | 2.653 (2) | 165.8 |
O3—H3A···O20ii | 0.90 | 1.97 | 2.857 (2) | 167.0 |
O3—H3B···O10i | 0.90 | 1.99 | 2.862 (2) | 164.7 |
O4—H4A···O30iii | 0.90 | 2.02 | 2.919 (2) | 173.2 |
O4—H4B···O2iv | 0.90 | 2.09 | 2.984 (2) | 177.8 |
O5—H5A···O31 | 0.90 | 1.89 | 2.751 (2) | 160.7 |
O5—H5B···O40v | 0.90 | 1.82 | 2.705 (2) | 167.3 |
O6—H6A···O29 | 0.90 | 1.88 | 2.777 (2) | 174.9 |
O6—H6B···O42vi | 0.90 | 1.86 | 2.749 (3) | 169.3 |
O7—H7A···O39vi | 0.90 | 2.04 | 2.902 (2) | 159.5 |
O7—H7B···O29i | 0.90 | 1.97 | 2.810 (2) | 155.4 |
O8—H8A···O42 | 0.90 | 1.86 | 2.723 (3) | 159.5 |
O8—H8B···O10 | 0.90 | 2.27 | 3.027 (3) | 141.2 |
O30—H30···O39vi | 0.90 | 1.60 | 2.494 (2) | 171.3 |
O41—H41A···O29vii | 0.90 | 1.93 | 2.776 (2) | 157.1 |
O41—H41B···O31 | 0.90 | 1.90 | 2.708 (2) | 148.7 |
O42—H42A···O40v | 0.90 | 1.85 | 2.720 (3) | 163.7 |
O42—H42B···O41 | 0.90 | 1.90 | 2.795 (3) | 173.7 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z; (v) −x+1, −y, −z+1; (vi) x, y+1, z; (vii) x−1, y−1, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Naphthalene-1,4,5,8-tetracarboxylic acid, (I), and its anhydrated derivative, naphthalene-1,4,5,8-tetracarboxylic acid 1,8-anhydrate, (II), are attractive ligands for the formulation of coordination polymers with metal ions and functional metal–organic complexes. They bear multiple functional groups and have a rigid molecular framework, allowing for simultaneous coordination of several metal ions in different directions. Usually, the metal–ligand interaction is associated with deprotonation of the carboxylic acid functions, and thus it is strengthened by electrostatic attraction. Not surprisingly, therefore, (I) and (II) have been the subject of considerable attention in this context in recent years. However, only a small number of extended coordination polymeric structures with rare earth and transition metal ions have been reported to date (Senkovska, 2006; Surble et al., 2006; Chen et al., 2005; Xu, Yuan, Wu et al., 2005; Zhao & Tao, 2004), as the reactions of (I) and (II) with metal ions are often terminated with the formation of discrete complexes (Wang et al., 2005; Fitzgerald & Gerkin, 1994; Fitzgerald et al., 1993). The coordination features of these ligands with lanthanide ions have not been explored until now. The crystal structure of the free ligand, (II), has been reported only recently (Xu, Yuan, Zhou et al., 2005). As part of our ongoing investigation of coordination polymers that involve organic carboxylic ligands and lanthanide ions (George et al., 2006; Muniappan et al., 2007; Lipstman et al., 2007), we report here the title compound, (III), a new material and the first coordination polymer of (II) with a lanthanum ion La3+, which co-crystallized with (I).
The molecular structure of (III) is shown in Fig. 1. In the crystal structure, the metal ion is heptahydrated. The asymmetric unit consists of one La(H2O)7 moiety, one doubly deprotonated ligand (II), one half of a doubly deprotonated ligand (I) which resides on an inversion at (0, 0, 1/2), and two additional water molecules of hydration. The lanthanide ion bridges by coordination [to atoms O9 and O28 at (x - 1, y, z)] between the carboxylate groups of two adjacent ligands, revealing a total coordination number of 9 (which is common for La3+ ions). Its coordination geometry can be best described as a tricapped trigonal prism. Similarly, each ligand moiety links to two different metal ions at (x, y, z) and (x + 1, y, z), leading to the formation of linear one-dimensional coordination polymers that extend parallel to the a axis of the crystal structure (Fig. 2). All the La—O coordination distances are within 2.495–2.647 (2) Å (Table 1). As the two carboxylate functions available for bonding are located on the same side of the ligand moiety, the polymeric arrays adopt a comb shape, with the planes of the ligands oriented nearly perpendicular to (and on the same side of) the propagation axis of the polymer. Moreover, the proximity of the two carboxylate groups and optimization of the polymeric coordination are associated with a slight deformation of the naphthalene backbone from planarity and a marked twist of the carboxylates in opposite directions with respect to the naphthalene ring. Thus, the dihedral angle between the two aryl rings (C12–C15/C25/C26 and C21–C26) is 4.84 (2)°, while the C11—C12···C24—C26 torsion angle is 29.16 (18)°.
A similar comb-type arrangement has only been observed before in the photoluminescent polymeric structure of (II) with Cd(1,10-phenanthroline)2+ ions (Xu, Yuan, Wu et al., 2005). In that case, the Cd-bound phenanthroline (phen) ligand is inserted between neighbouring moieties of (II) along the polymer, stabilizing the polymeric arrangement by stacking interactions. The reported distance between the phen and naphthalene planes is 3.739 Å. The situation is somewhat different in the present study. There are no aromatic fragments in the analysed compound other than (II), and an additional negative ion is needed to balance the 3+ charge of the lanthanide ion. Nature solved the first problem by sn interpenetrating arrangement of inversion-related polymeric chains, where the ligand fragments of one polymeric chain penetrate between the ligands of another polymer (Fig. 2) as in a zip fastener. The distance between the mean planes of the overlapping fragments is 3.279 (2) Å (this value refers to the interplanar distance of the flat antiparallel fragments C15–C21 at (x, y, z) and (1 - x, 2 - y, -z). The charge-balance issue is resolved by the inclusion in the crystal of a doubly deprotonated ligand (I), not coordinated to the metal ions, which is located on an inversion (Fig. 3). These species are arranged in planes which interface between the coupled polymeric chains. Further stabilization of the observed structure is provided by the very extensive array of cross-linking O—H···O hydrogen bonds, which involves the nine water molecules in the asymmetric unit, along with the carboxylic and carboxylate groups (Table 2 lists 19 unique hydrogen-bonding interactions). The rigidity of the resulting structure is well reflected in the negligible solubility of this solid in water and common organic solvents.
In summary, we have demonstrated that the naphthalene carboxylic acid ligand can form coordination polymers not only with transition metals but also with lanthanide ions. This first example represents a double-chain one-dimensional polymer, and further studies are underway to construct similar polymers with two- and three-dimensional architectures. Such materials may reveal features of microporosity (e.g. for gas sorption) and photoluminescence (e.g. for photophysical applications) (Xu, Yuan, Wu et al., 2005; Surble et al., 2006) and have considerable potential significance.