Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107067741/gg3130sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107067741/gg3130Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107067741/gg3130IIsup3.hkl |
CCDC references: 681557; 681558
For related literature, see: Allen et al. (1987); Dimmock et al. (2001); Gallagher et al. (2001); Jia et al. (1988); Nesterov et al. (2003, 2007a, 2007b); Nesterov, 2004; Nesterov & Nesterov, 2004; Rowland & Taylor (1996); Sarkisov et al. (2005)
The title compounds were synthesized from literature procedures (Jia et al., 1988; Nesterov et al., 2003). The precipitates were isolated and recrystallized from tetrahydrofuran [m.p. 471 K, yield 83% for (I), and m.p. 454 K, yield 87% for (II)]. Crystals were obtained by isothermic evaporation of ethanol solutions of (I) and (II).
Compounds (I) and (II) were investigated in terms of their possible fluorescence and use as TPA materials. Compound (I) demonstrated single-photon excited fluorescence (SPEF) of a red color while pumped with a UV lamp and pulsed green (532 nm) and UV (337 nm) lasers. In the case of 532 nm pumping, the SPEF was approximately 60% of that produced by reference dye Rhodamine 6 G (Sarkisov et al., 2005). Compound (I) also produced relatively strong red TPEF, while being pumped with pulsed IR radiation at 876 nm. The TPA coefficient and molecular cross section for (I) are 7.0 cm GW-1 and 2650 cm4 s photon-1 molecule-1, and is twice that of [is this refering to one or both of the preceding values?] the benchmark reference dye Rhodamine B (Sarkisov et al., 2005). The intensity of TPEF was 37% of that produced by Rhodamine B. Compound (II) produced a weak orange SPEF (0.2% of that produced by Rhodamine 6 G) while pumped only with a UV lamp or pulsed UV laser. There was no SPEF in the case of green pumping. This can be partially explained by the fact that the energy of green photons (2.2 eV) is way below the optical absorption band of the compound (between 2.7 and 3.4 eV). No TPEF was produced during pumping with a pulsed IR laser at 876 nm, despite the fact that the double energy of the IR photon (2.85 eV) is well inside the absorption band.
The absolute structure for (II) was not determined reliably; thus, for (II), Friedel pairs were merged before refinement. In (II), the two H atoms of the N-methyl group were located from difference Fourier maps and were refined with isotropic parameters [the molecule occupies a special position in the crystal (the plane passes through atoms O1, N1, C4 and H1B); C1—H1A = 0.99 (3) Å and C1—H1B = 0.98 (5) Å]. All H atoms in (I) and the remaining H atoms in (II) were placed in calculated positions (C—H = 0.95–0.99 Å) and refined in a rigid-group model [Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for aromatic and methyl (AFIX 137) H atoms, respectively].
For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXTL (Bruker, 2005); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2005).
C28H33N3O | F(000) = 920 |
Mr = 427.57 | Dx = 1.210 Mg m−3 |
Monoclinic, P21/n | Melting point: 471 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 15.5459 (16) Å | Cell parameters from 2979 reflections |
b = 6.1017 (6) Å | θ = 3–23° |
c = 25.163 (3) Å | µ = 0.07 mm−1 |
β = 100.539 (2)° | T = 173 K |
V = 2346.6 (4) Å3 | Plate, red |
Z = 4 | 0.34 × 0.14 × 0.06 mm |
Bruker SMART APEX CCD area-detector diffractometer | 4641 independent reflections |
Radiation source: fine-focus sealed tube | 3393 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 26.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | h = −19→19 |
Tmin = 0.905, Tmax = 0.996 | k = −7→7 |
23500 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0504P)2 + 0.77P] where P = (Fo2 + 2Fc2)/3 |
4641 reflections | (Δ/σ)max = 0.001 |
294 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C28H33N3O | V = 2346.6 (4) Å3 |
Mr = 427.57 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.5459 (16) Å | µ = 0.07 mm−1 |
b = 6.1017 (6) Å | T = 173 K |
c = 25.163 (3) Å | 0.34 × 0.14 × 0.06 mm |
β = 100.539 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 4641 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | 3393 reflections with I > 2σ(I) |
Tmin = 0.905, Tmax = 0.996 | Rint = 0.045 |
23500 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.21 e Å−3 |
4641 reflections | Δρmin = −0.17 e Å−3 |
294 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.47448 (8) | 0.10738 (19) | 0.71223 (5) | 0.0383 (3) | |
N1 | 0.63284 (9) | 0.6230 (2) | 0.75048 (5) | 0.0314 (3) | |
N2 | 0.34341 (12) | 0.7444 (3) | 1.08654 (7) | 0.0596 (5) | |
N3 | 0.67719 (11) | 0.4831 (2) | 0.33889 (6) | 0.0401 (4) | |
C1 | 0.68723 (12) | 0.8177 (3) | 0.76319 (8) | 0.0407 (5) | |
H1A | 0.7120 | 0.8195 | 0.8019 | 0.061* | |
H1B | 0.6515 | 0.9492 | 0.7538 | 0.061* | |
H1C | 0.7347 | 0.8153 | 0.7424 | 0.061* | |
C2 | 0.55952 (11) | 0.6251 (3) | 0.77920 (7) | 0.0313 (4) | |
H2A | 0.5208 | 0.7507 | 0.7666 | 0.038* | |
H2B | 0.5817 | 0.6440 | 0.8184 | 0.038* | |
C3 | 0.50783 (10) | 0.4149 (3) | 0.76986 (6) | 0.0282 (4) | |
C4 | 0.51027 (11) | 0.2885 (3) | 0.71974 (7) | 0.0291 (4) | |
C5 | 0.55556 (11) | 0.3896 (3) | 0.67918 (6) | 0.0295 (4) | |
C6 | 0.59930 (12) | 0.6078 (3) | 0.69252 (7) | 0.0356 (4) | |
H6A | 0.6480 | 0.6249 | 0.6725 | 0.043* | |
H6B | 0.5567 | 0.7272 | 0.6813 | 0.043* | |
C7 | 0.45826 (11) | 0.3426 (3) | 0.80506 (6) | 0.0320 (4) | |
H7A | 0.4283 | 0.2076 | 0.7969 | 0.038* | |
C8 | 0.44699 (11) | 0.4524 (3) | 0.85370 (6) | 0.0331 (4) | |
H8A | 0.4758 | 0.5889 | 0.8618 | 0.040* | |
C9 | 0.39848 (11) | 0.3752 (3) | 0.88863 (7) | 0.0340 (4) | |
H9A | 0.3701 | 0.2388 | 0.8796 | 0.041* | |
C10 | 0.38433 (11) | 0.4761 (3) | 0.93852 (7) | 0.0323 (4) | |
C11 | 0.33181 (11) | 0.3736 (3) | 0.97027 (7) | 0.0366 (4) | |
H11A | 0.3055 | 0.2372 | 0.9586 | 0.044* | |
C12 | 0.31641 (12) | 0.4623 (3) | 1.01810 (7) | 0.0409 (5) | |
H12A | 0.2789 | 0.3880 | 1.0380 | 0.049* | |
C13 | 0.35509 (12) | 0.6590 (3) | 1.03753 (7) | 0.0393 (5) | |
C14 | 0.40751 (13) | 0.7663 (3) | 1.00571 (8) | 0.0437 (5) | |
H14A | 0.4338 | 0.9027 | 1.0174 | 0.052* | |
C15 | 0.42130 (12) | 0.6768 (3) | 0.95786 (7) | 0.0400 (5) | |
H15A | 0.4571 | 0.7534 | 0.9372 | 0.048* | |
C16 | 0.28310 (15) | 0.6442 (4) | 1.11632 (8) | 0.0652 (7) | |
H16A | 0.2946 | 0.4864 | 1.1195 | 0.098* | |
H16B | 0.2230 | 0.6687 | 1.0973 | 0.098* | |
H16C | 0.2906 | 0.7092 | 1.1525 | 0.098* | |
C17 | 0.3813 (2) | 0.9533 (4) | 1.10508 (9) | 0.0765 (8) | |
H17A | 0.4441 | 0.9514 | 1.1045 | 0.115* | |
H17B | 0.3722 | 0.9802 | 1.1420 | 0.115* | |
H17C | 0.3532 | 1.0699 | 1.0813 | 0.115* | |
C18 | 0.55512 (11) | 0.2867 (3) | 0.63163 (7) | 0.0316 (4) | |
H18A | 0.5303 | 0.1440 | 0.6281 | 0.038* | |
C19 | 0.58822 (11) | 0.3697 (3) | 0.58584 (7) | 0.0338 (4) | |
H19A | 0.6128 | 0.5127 | 0.5879 | 0.041* | |
C20 | 0.58586 (11) | 0.2540 (3) | 0.54022 (7) | 0.0337 (4) | |
H20A | 0.5652 | 0.1077 | 0.5412 | 0.040* | |
C21 | 0.61039 (11) | 0.3205 (3) | 0.48959 (7) | 0.0309 (4) | |
C22 | 0.59848 (11) | 0.1750 (3) | 0.44612 (7) | 0.0323 (4) | |
H22A | 0.5750 | 0.0341 | 0.4509 | 0.039* | |
C23 | 0.61921 (11) | 0.2259 (3) | 0.39665 (7) | 0.0317 (4) | |
H23A | 0.6088 | 0.1217 | 0.3681 | 0.038* | |
C24 | 0.65555 (11) | 0.4306 (3) | 0.38801 (7) | 0.0310 (4) | |
C25 | 0.66843 (12) | 0.5794 (3) | 0.43171 (7) | 0.0342 (4) | |
H25A | 0.6929 | 0.7194 | 0.4273 | 0.041* | |
C26 | 0.64614 (11) | 0.5257 (3) | 0.48061 (7) | 0.0340 (4) | |
H26A | 0.6552 | 0.6302 | 0.5091 | 0.041* | |
C27 | 0.67946 (13) | 0.3158 (3) | 0.29825 (7) | 0.0383 (4) | |
H27A | 0.6254 | 0.2296 | 0.2935 | 0.057* | |
H27B | 0.7298 | 0.2193 | 0.3099 | 0.057* | |
H27C | 0.6847 | 0.3855 | 0.2639 | 0.057* | |
C28 | 0.72492 (15) | 0.6832 (3) | 0.33276 (8) | 0.0511 (6) | |
H28A | 0.6933 | 0.8087 | 0.3441 | 0.077* | |
H28B | 0.7304 | 0.7009 | 0.2948 | 0.077* | |
H28C | 0.7833 | 0.6750 | 0.3553 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0542 (8) | 0.0292 (7) | 0.0333 (7) | −0.0080 (6) | 0.0132 (6) | −0.0043 (5) |
N1 | 0.0335 (8) | 0.0329 (8) | 0.0296 (8) | −0.0046 (6) | 0.0110 (6) | −0.0077 (6) |
N2 | 0.0671 (12) | 0.0772 (14) | 0.0406 (10) | 0.0047 (11) | 0.0263 (9) | −0.0147 (10) |
N3 | 0.0636 (11) | 0.0309 (8) | 0.0308 (8) | −0.0020 (8) | 0.0219 (8) | 0.0006 (7) |
C1 | 0.0399 (10) | 0.0411 (11) | 0.0433 (11) | −0.0104 (9) | 0.0134 (9) | −0.0121 (9) |
C2 | 0.0342 (9) | 0.0339 (10) | 0.0276 (9) | −0.0017 (8) | 0.0106 (7) | −0.0063 (7) |
C3 | 0.0304 (9) | 0.0281 (9) | 0.0258 (9) | 0.0016 (7) | 0.0048 (7) | −0.0012 (7) |
C4 | 0.0338 (9) | 0.0266 (9) | 0.0273 (9) | 0.0016 (7) | 0.0061 (7) | −0.0005 (7) |
C5 | 0.0334 (9) | 0.0301 (9) | 0.0255 (9) | 0.0019 (7) | 0.0066 (7) | −0.0007 (7) |
C6 | 0.0449 (11) | 0.0348 (10) | 0.0299 (9) | −0.0045 (8) | 0.0138 (8) | −0.0021 (8) |
C7 | 0.0356 (10) | 0.0330 (10) | 0.0276 (9) | −0.0020 (8) | 0.0060 (7) | −0.0012 (7) |
C8 | 0.0374 (10) | 0.0366 (10) | 0.0267 (9) | −0.0022 (8) | 0.0094 (8) | −0.0023 (8) |
C9 | 0.0356 (10) | 0.0373 (10) | 0.0291 (9) | −0.0047 (8) | 0.0062 (7) | −0.0033 (8) |
C10 | 0.0306 (9) | 0.0404 (10) | 0.0273 (9) | −0.0001 (8) | 0.0086 (7) | −0.0009 (8) |
C11 | 0.0339 (10) | 0.0448 (11) | 0.0319 (10) | −0.0059 (8) | 0.0078 (8) | 0.0015 (8) |
C12 | 0.0357 (10) | 0.0576 (13) | 0.0321 (10) | 0.0001 (9) | 0.0130 (8) | 0.0071 (9) |
C13 | 0.0379 (10) | 0.0525 (12) | 0.0288 (10) | 0.0085 (9) | 0.0095 (8) | −0.0036 (9) |
C14 | 0.0514 (12) | 0.0434 (11) | 0.0390 (11) | −0.0040 (10) | 0.0154 (9) | −0.0097 (9) |
C15 | 0.0454 (11) | 0.0442 (11) | 0.0336 (10) | −0.0078 (9) | 0.0156 (9) | −0.0036 (9) |
C16 | 0.0681 (15) | 0.098 (2) | 0.0346 (11) | 0.0301 (14) | 0.0241 (11) | 0.0078 (12) |
C17 | 0.135 (2) | 0.0547 (15) | 0.0432 (13) | 0.0216 (16) | 0.0260 (15) | −0.0123 (12) |
C18 | 0.0362 (10) | 0.0311 (10) | 0.0283 (9) | −0.0007 (8) | 0.0080 (7) | −0.0016 (7) |
C19 | 0.0404 (10) | 0.0355 (10) | 0.0266 (9) | −0.0032 (8) | 0.0091 (8) | −0.0027 (8) |
C20 | 0.0372 (10) | 0.0350 (10) | 0.0299 (9) | −0.0044 (8) | 0.0090 (8) | −0.0041 (8) |
C21 | 0.0339 (9) | 0.0335 (10) | 0.0260 (9) | 0.0006 (8) | 0.0076 (7) | −0.0026 (7) |
C22 | 0.0377 (10) | 0.0304 (10) | 0.0299 (9) | −0.0063 (8) | 0.0094 (8) | −0.0032 (7) |
C23 | 0.0393 (10) | 0.0306 (9) | 0.0264 (9) | −0.0006 (8) | 0.0091 (7) | −0.0059 (7) |
C24 | 0.0363 (9) | 0.0299 (9) | 0.0280 (9) | 0.0043 (8) | 0.0094 (7) | 0.0007 (7) |
C25 | 0.0439 (10) | 0.0262 (9) | 0.0342 (10) | −0.0002 (8) | 0.0116 (8) | −0.0015 (8) |
C26 | 0.0419 (10) | 0.0311 (10) | 0.0300 (9) | −0.0003 (8) | 0.0094 (8) | −0.0078 (8) |
C27 | 0.0481 (11) | 0.0409 (11) | 0.0277 (9) | 0.0042 (9) | 0.0117 (8) | −0.0008 (8) |
C28 | 0.0776 (15) | 0.0396 (12) | 0.0417 (12) | −0.0087 (11) | 0.0254 (11) | 0.0019 (9) |
O1—C4 | 1.236 (2) | C12—H12A | 0.9500 |
N1—C2 | 1.457 (2) | C13—C14 | 1.404 (3) |
N1—C6 | 1.459 (2) | C14—C15 | 1.374 (2) |
N1—C1 | 1.460 (2) | C14—H14A | 0.9500 |
N2—C13 | 1.381 (2) | C15—H15A | 0.9500 |
N2—C16 | 1.439 (3) | C16—H16A | 0.9800 |
N2—C17 | 1.445 (3) | C16—H16B | 0.9800 |
N3—C24 | 1.377 (2) | C16—H16C | 0.9800 |
N3—C27 | 1.450 (2) | C17—H17A | 0.9800 |
N3—C28 | 1.451 (2) | C17—H17B | 0.9800 |
C1—H1A | 0.9800 | C17—H17C | 0.9800 |
C1—H1B | 0.9800 | C18—C19 | 1.437 (2) |
C1—H1C | 0.9800 | C18—H18A | 0.9500 |
C2—C3 | 1.509 (2) | C19—C20 | 1.343 (2) |
C2—H2A | 0.9900 | C19—H19A | 0.9500 |
C2—H2B | 0.9900 | C20—C21 | 1.453 (2) |
C3—C7 | 1.350 (2) | C20—H20A | 0.9500 |
C3—C4 | 1.484 (2) | C21—C22 | 1.395 (2) |
C4—C5 | 1.477 (2) | C21—C26 | 1.404 (2) |
C5—C18 | 1.350 (2) | C22—C23 | 1.377 (2) |
C5—C6 | 1.505 (2) | C22—H22A | 0.9500 |
C6—H6A | 0.9900 | C23—C24 | 1.404 (2) |
C6—H6B | 0.9900 | C23—H23A | 0.9500 |
C7—C8 | 1.434 (2) | C24—C25 | 1.412 (2) |
C7—H7A | 0.9500 | C25—C26 | 1.378 (2) |
C8—C9 | 1.344 (2) | C25—H25A | 0.9500 |
C8—H8A | 0.9500 | C26—H26A | 0.9500 |
C9—C10 | 1.451 (2) | C27—H27A | 0.9800 |
C9—H9A | 0.9500 | C27—H27B | 0.9800 |
C10—C11 | 1.391 (2) | C27—H27C | 0.9800 |
C10—C15 | 1.402 (3) | C28—H28A | 0.9800 |
C11—C12 | 1.380 (2) | C28—H28B | 0.9800 |
C11—H11A | 0.9500 | C28—H28C | 0.9800 |
C12—C13 | 1.391 (3) | ||
C2—N1—C6 | 109.10 (13) | C15—C14—C13 | 120.93 (19) |
C2—N1—C1 | 111.01 (13) | C15—C14—H14A | 119.5 |
C6—N1—C1 | 110.94 (14) | C13—C14—H14A | 119.5 |
C13—N2—C16 | 120.6 (2) | C14—C15—C10 | 122.12 (18) |
C13—N2—C17 | 120.59 (19) | C14—C15—H15A | 118.9 |
C16—N2—C17 | 118.19 (18) | C10—C15—H15A | 118.9 |
C24—N3—C27 | 120.70 (15) | N2—C16—H16A | 109.5 |
C24—N3—C28 | 120.32 (15) | N2—C16—H16B | 109.5 |
C27—N3—C28 | 116.01 (14) | H16A—C16—H16B | 109.5 |
N1—C1—H1A | 109.5 | N2—C16—H16C | 109.5 |
N1—C1—H1B | 109.5 | H16A—C16—H16C | 109.5 |
H1A—C1—H1B | 109.5 | H16B—C16—H16C | 109.5 |
N1—C1—H1C | 109.5 | N2—C17—H17A | 109.5 |
H1A—C1—H1C | 109.5 | N2—C17—H17B | 109.5 |
H1B—C1—H1C | 109.5 | H17A—C17—H17B | 109.5 |
N1—C2—C3 | 110.97 (13) | N2—C17—H17C | 109.5 |
N1—C2—H2A | 109.4 | H17A—C17—H17C | 109.5 |
C3—C2—H2A | 109.4 | H17B—C17—H17C | 109.5 |
N1—C2—H2B | 109.4 | C5—C18—C19 | 127.00 (17) |
C3—C2—H2B | 109.4 | C5—C18—H18A | 116.5 |
H2A—C2—H2B | 108.0 | C19—C18—H18A | 116.5 |
C7—C3—C4 | 119.61 (15) | C20—C19—C18 | 122.82 (17) |
C7—C3—C2 | 121.81 (15) | C20—C19—H19A | 118.6 |
C4—C3—C2 | 118.56 (14) | C18—C19—H19A | 118.6 |
O1—C4—C5 | 121.73 (15) | C19—C20—C21 | 129.20 (17) |
O1—C4—C3 | 120.89 (15) | C19—C20—H20A | 115.4 |
C5—C4—C3 | 117.37 (15) | C21—C20—H20A | 115.4 |
C18—C5—C4 | 119.50 (16) | C22—C21—C26 | 116.18 (15) |
C18—C5—C6 | 122.55 (15) | C22—C21—C20 | 119.41 (16) |
C4—C5—C6 | 117.94 (14) | C26—C21—C20 | 124.42 (15) |
N1—C6—C5 | 110.08 (14) | C23—C22—C21 | 123.07 (16) |
N1—C6—H6A | 109.6 | C23—C22—H22A | 118.5 |
C5—C6—H6A | 109.6 | C21—C22—H22A | 118.5 |
N1—C6—H6B | 109.6 | C22—C23—C24 | 120.53 (16) |
C5—C6—H6B | 109.6 | C22—C23—H23A | 119.7 |
H6A—C6—H6B | 108.2 | C24—C23—H23A | 119.7 |
C3—C7—C8 | 125.53 (16) | N3—C24—C23 | 121.17 (15) |
C3—C7—H7A | 117.2 | N3—C24—C25 | 121.75 (16) |
C8—C7—H7A | 117.2 | C23—C24—C25 | 117.09 (15) |
C9—C8—C7 | 124.45 (17) | C26—C25—C24 | 121.29 (16) |
C9—C8—H8A | 117.8 | C26—C25—H25A | 119.4 |
C7—C8—H8A | 117.8 | C24—C25—H25A | 119.4 |
C8—C9—C10 | 127.57 (17) | C25—C26—C21 | 121.83 (16) |
C8—C9—H9A | 116.2 | C25—C26—H26A | 119.1 |
C10—C9—H9A | 116.2 | C21—C26—H26A | 119.1 |
C11—C10—C15 | 116.11 (16) | N3—C27—H27A | 109.5 |
C11—C10—C9 | 120.27 (17) | N3—C27—H27B | 109.5 |
C15—C10—C9 | 123.61 (16) | H27A—C27—H27B | 109.5 |
C12—C11—C10 | 122.56 (18) | N3—C27—H27C | 109.5 |
C12—C11—H11A | 118.7 | H27A—C27—H27C | 109.5 |
C10—C11—H11A | 118.7 | H27B—C27—H27C | 109.5 |
C11—C12—C13 | 120.82 (17) | N3—C28—H28A | 109.5 |
C11—C12—H12A | 119.6 | N3—C28—H28B | 109.5 |
C13—C12—H12A | 119.6 | H28A—C28—H28B | 109.5 |
N2—C13—C12 | 121.37 (18) | N3—C28—H28C | 109.5 |
N2—C13—C14 | 121.19 (19) | H28A—C28—H28C | 109.5 |
C12—C13—C14 | 117.43 (16) | H28B—C28—H28C | 109.5 |
C6—N1—C2—C3 | 62.35 (18) | C17—N2—C13—C14 | 3.3 (3) |
C1—N1—C2—C3 | −175.09 (14) | C11—C12—C13—N2 | −177.01 (18) |
N1—C2—C3—C7 | 156.21 (16) | C11—C12—C13—C14 | 2.2 (3) |
N1—C2—C3—C4 | −25.4 (2) | N2—C13—C14—C15 | 177.76 (19) |
C7—C3—C4—O1 | −7.1 (2) | C12—C13—C14—C15 | −1.4 (3) |
C2—C3—C4—O1 | 174.47 (15) | C13—C14—C15—C10 | 0.0 (3) |
C7—C3—C4—C5 | 171.84 (15) | C11—C10—C15—C14 | 0.8 (3) |
C2—C3—C4—C5 | −6.6 (2) | C9—C10—C15—C14 | −179.09 (18) |
O1—C4—C5—C18 | 2.8 (3) | C4—C5—C18—C19 | 173.60 (16) |
C3—C4—C5—C18 | −176.18 (15) | C6—C5—C18—C19 | −5.2 (3) |
O1—C4—C5—C6 | −178.38 (16) | C5—C18—C19—C20 | 179.20 (18) |
C3—C4—C5—C6 | 2.7 (2) | C18—C19—C20—C21 | 174.93 (17) |
C2—N1—C6—C5 | −66.31 (18) | C19—C20—C21—C22 | −176.90 (18) |
C1—N1—C6—C5 | 171.08 (14) | C19—C20—C21—C26 | 3.1 (3) |
C18—C5—C6—N1 | −148.28 (16) | C26—C21—C22—C23 | −0.6 (3) |
C4—C5—C6—N1 | 32.9 (2) | C20—C21—C22—C23 | 179.36 (16) |
C4—C3—C7—C8 | −177.30 (15) | C21—C22—C23—C24 | 1.1 (3) |
C2—C3—C7—C8 | 1.1 (3) | C27—N3—C24—C23 | −12.3 (3) |
C3—C7—C8—C9 | −178.77 (18) | C28—N3—C24—C23 | −171.99 (18) |
C7—C8—C9—C10 | 179.75 (17) | C27—N3—C24—C25 | 168.01 (17) |
C8—C9—C10—C11 | −179.98 (18) | C28—N3—C24—C25 | 8.3 (3) |
C8—C9—C10—C15 | −0.1 (3) | C22—C23—C24—N3 | 179.52 (16) |
C15—C10—C11—C12 | 0.0 (3) | C22—C23—C24—C25 | −0.8 (3) |
C9—C10—C11—C12 | 179.86 (17) | N3—C24—C25—C26 | 179.66 (16) |
C10—C11—C12—C13 | −1.5 (3) | C23—C24—C25—C26 | −0.1 (3) |
C16—N2—C13—C12 | −6.7 (3) | C24—C25—C26—C21 | 0.6 (3) |
C17—N2—C13—C12 | −177.5 (2) | C22—C21—C26—C25 | −0.2 (3) |
C16—N2—C13—C14 | 174.09 (19) | C20—C21—C26—C25 | 179.80 (17) |
C26H27NO3 | Dx = 1.245 Mg m−3 |
Mr = 401.49 | Melting point: 454 K |
Orthorhombic, Cmc21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c -2 | Cell parameters from 1276 reflections |
a = 25.786 (2) Å | θ = 4–27° |
b = 10.0852 (8) Å | µ = 0.08 mm−1 |
c = 8.2389 (7) Å | T = 173 K |
V = 2142.6 (3) Å3 | Plate, yellow |
Z = 4 | 0.28 × 0.08 × 0.02 mm |
F(000) = 856 |
Bruker SMART APEX CCD area-detector diffractometer | 1632 independent reflections |
Radiation source: fine-focus sealed tube | 1315 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 29.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | h = −35→35 |
Tmin = 0.908, Tmax = 0.998 | k = −14→14 |
15636 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.52P] where P = (Fo2 + 2Fc2)/3 |
1632 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.16 e Å−3 |
C26H27NO3 | V = 2142.6 (3) Å3 |
Mr = 401.49 | Z = 4 |
Orthorhombic, Cmc21 | Mo Kα radiation |
a = 25.786 (2) Å | µ = 0.08 mm−1 |
b = 10.0852 (8) Å | T = 173 K |
c = 8.2389 (7) Å | 0.28 × 0.08 × 0.02 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1632 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) | 1315 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 0.998 | Rint = 0.042 |
15636 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.15 e Å−3 |
1632 reflections | Δρmin = −0.16 e Å−3 |
151 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5000 | 0.2539 (3) | 0.1129 (3) | 0.0692 (8) | |
O2 | 0.10040 (5) | 0.11630 (17) | 0.3567 (2) | 0.0630 (5) | |
N1 | 0.5000 | 0.0768 (3) | 0.5560 (3) | 0.0459 (6) | |
C1 | 0.5000 | 0.2090 (4) | 0.6277 (5) | 0.0616 (9) | |
C2 | 0.45385 (7) | 0.0515 (2) | 0.4582 (3) | 0.0479 (5) | |
H2A | 0.4228 | 0.0686 | 0.5256 | 0.057* | |
H2B | 0.4534 | −0.0433 | 0.4272 | 0.057* | |
C3 | 0.45038 (7) | 0.1347 (2) | 0.3059 (3) | 0.0430 (5) | |
C4 | 0.5000 | 0.1803 (3) | 0.2309 (4) | 0.0479 (7) | |
C5 | 0.40577 (7) | 0.1682 (2) | 0.2331 (3) | 0.0439 (5) | |
H5A | 0.4085 | 0.2223 | 0.1391 | 0.053* | |
C6 | 0.35380 (7) | 0.1309 (2) | 0.2821 (3) | 0.0449 (5) | |
H6A | 0.3495 | 0.0717 | 0.3708 | 0.054* | |
C7 | 0.31173 (7) | 0.1771 (2) | 0.2063 (3) | 0.0459 (5) | |
H7A | 0.3179 | 0.2330 | 0.1155 | 0.055* | |
C8 | 0.25727 (7) | 0.1523 (2) | 0.2461 (3) | 0.0407 (4) | |
C9 | 0.21971 (7) | 0.2388 (2) | 0.1855 (3) | 0.0478 (5) | |
H9A | 0.2299 | 0.3093 | 0.1159 | 0.057* | |
C10 | 0.16795 (8) | 0.2240 (2) | 0.2249 (3) | 0.0523 (5) | |
H10A | 0.1431 | 0.2848 | 0.1838 | 0.063* | |
C11 | 0.15230 (7) | 0.1210 (2) | 0.3240 (3) | 0.0447 (5) | |
C12 | 0.18862 (7) | 0.0318 (2) | 0.3823 (3) | 0.0465 (5) | |
H12A | 0.1780 | −0.0405 | 0.4482 | 0.056* | |
C13 | 0.24049 (8) | 0.04859 (19) | 0.3441 (3) | 0.0450 (5) | |
H13A | 0.2652 | −0.0123 | 0.3860 | 0.054* | |
C14 | 0.08131 (9) | 0.0116 (4) | 0.4551 (5) | 0.0780 (9) | |
H14A | 0.0440 | 0.0237 | 0.4730 | 0.117* | |
H14B | 0.0994 | 0.0122 | 0.5597 | 0.117* | |
H14C | 0.0873 | −0.0733 | 0.4005 | 0.117* | |
H1A | 0.4677 (9) | 0.218 (2) | 0.691 (4) | 0.069 (8)* | |
H1B | 0.5000 | 0.286 (4) | 0.556 (6) | 0.073 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0409 (12) | 0.0873 (19) | 0.0795 (19) | 0.000 | 0.000 | 0.0403 (16) |
O2 | 0.0359 (7) | 0.0801 (11) | 0.0730 (12) | 0.0018 (7) | 0.0051 (8) | 0.0083 (11) |
N1 | 0.0350 (11) | 0.0578 (14) | 0.0449 (14) | 0.000 | 0.000 | 0.0008 (12) |
C1 | 0.059 (2) | 0.067 (2) | 0.059 (2) | 0.000 | 0.000 | −0.0083 (19) |
C2 | 0.0324 (9) | 0.0606 (13) | 0.0505 (12) | −0.0020 (9) | 0.0001 (9) | 0.0063 (11) |
C3 | 0.0342 (9) | 0.0478 (11) | 0.0469 (12) | 0.0008 (8) | 0.0016 (9) | 0.0004 (9) |
C4 | 0.0347 (14) | 0.0553 (17) | 0.0539 (18) | 0.000 | 0.000 | 0.0064 (17) |
C5 | 0.0349 (9) | 0.0496 (11) | 0.0472 (11) | 0.0019 (8) | 0.0012 (9) | 0.0013 (10) |
C6 | 0.0346 (9) | 0.0538 (11) | 0.0463 (12) | 0.0007 (8) | −0.0011 (9) | −0.0002 (10) |
C7 | 0.0370 (10) | 0.0553 (12) | 0.0454 (12) | −0.0012 (9) | 0.0005 (9) | 0.0036 (10) |
C8 | 0.0331 (9) | 0.0493 (11) | 0.0397 (10) | −0.0007 (8) | −0.0028 (8) | −0.0015 (9) |
C9 | 0.0409 (10) | 0.0545 (12) | 0.0480 (12) | 0.0000 (9) | −0.0041 (10) | 0.0115 (10) |
C10 | 0.0376 (10) | 0.0620 (12) | 0.0574 (13) | 0.0080 (9) | −0.0070 (10) | 0.0121 (12) |
C11 | 0.0326 (9) | 0.0551 (11) | 0.0463 (12) | −0.0015 (8) | −0.0008 (9) | −0.0028 (10) |
C12 | 0.0441 (10) | 0.0459 (11) | 0.0495 (12) | −0.0029 (8) | 0.0005 (10) | 0.0025 (10) |
C13 | 0.0393 (10) | 0.0465 (11) | 0.0493 (12) | 0.0044 (8) | −0.0051 (9) | 0.0026 (10) |
C14 | 0.0511 (12) | 0.0774 (17) | 0.106 (2) | −0.0058 (15) | 0.0254 (16) | 0.0077 (18) |
O1—C4 | 1.223 (4) | C6—H6A | 0.9500 |
O2—C11 | 1.366 (2) | C7—C8 | 1.464 (3) |
O2—C14 | 1.419 (4) | C7—H7A | 0.9500 |
N1—C2 | 1.459 (3) | C8—C13 | 1.391 (3) |
N1—C2i | 1.459 (3) | C8—C9 | 1.396 (3) |
N1—C1 | 1.458 (5) | C9—C10 | 1.382 (3) |
C1—H1A | 0.99 (3) | C9—H9A | 0.9500 |
C1—H1B | 0.98 (5) | C10—C11 | 1.381 (3) |
C2—C3 | 1.512 (3) | C10—H10A | 0.9500 |
C2—H2A | 0.9900 | C11—C12 | 1.384 (3) |
C2—H2B | 0.9900 | C12—C13 | 1.384 (3) |
C3—C5 | 1.340 (3) | C12—H12A | 0.9500 |
C3—C4 | 1.493 (3) | C13—H13A | 0.9500 |
C4—C3i | 1.494 (3) | C14—H14A | 0.9800 |
C5—C6 | 1.449 (3) | C14—H14B | 0.9800 |
C5—H5A | 0.9500 | C14—H14C | 0.9800 |
C6—C7 | 1.336 (3) | ||
C11—O2—C14 | 118.56 (18) | C6—C7—H7A | 116.0 |
C2—N1—C2i | 109.3 (3) | C8—C7—H7A | 116.0 |
C2—N1—C1 | 112.53 (17) | C13—C8—C9 | 117.52 (17) |
C2i—N1—C1 | 112.53 (17) | C13—C8—C7 | 123.86 (18) |
N1—C1—H1A | 107.5 (15) | C9—C8—C7 | 118.60 (19) |
N1—C1—H1B | 119 (3) | C10—C9—C8 | 121.2 (2) |
H1A—C1—H1B | 104 (2) | C10—C9—H9A | 119.4 |
N1—C2—C3 | 114.17 (19) | C8—C9—H9A | 119.4 |
N1—C2—H2A | 108.7 | C11—C10—C9 | 120.15 (19) |
C3—C2—H2A | 108.7 | C11—C10—H10A | 119.9 |
N1—C2—H2B | 108.7 | C9—C10—H10A | 119.9 |
C3—C2—H2B | 108.7 | O2—C11—C10 | 115.37 (18) |
H2A—C2—H2B | 107.6 | O2—C11—C12 | 124.89 (19) |
C5—C3—C4 | 118.2 (2) | C10—C11—C12 | 119.74 (18) |
C5—C3—C2 | 124.18 (19) | C11—C12—C13 | 119.70 (19) |
C4—C3—C2 | 117.61 (18) | C11—C12—H12A | 120.1 |
O1—C4—C3 | 121.05 (14) | C13—C12—H12A | 120.1 |
O1—C4—C3i | 121.05 (14) | C12—C13—C8 | 121.62 (18) |
C3—C4—C3i | 117.9 (3) | C12—C13—H13A | 119.2 |
C3—C5—C6 | 127.1 (2) | C8—C13—H13A | 119.2 |
C3—C5—H5A | 116.4 | O2—C14—H14A | 109.5 |
C6—C5—H5A | 116.4 | O2—C14—H14B | 109.5 |
C7—C6—C5 | 122.0 (2) | H14A—C14—H14B | 109.5 |
C7—C6—H6A | 119.0 | O2—C14—H14C | 109.5 |
C5—C6—H6A | 119.0 | H14A—C14—H14C | 109.5 |
C6—C7—C8 | 127.9 (2) | H14B—C14—H14C | 109.5 |
C2i—N1—C2—C3 | −58.7 (3) | C6—C7—C8—C9 | 161.0 (2) |
C1—N1—C2—C3 | 67.1 (3) | C13—C8—C9—C10 | 1.6 (3) |
N1—C2—C3—C5 | −153.0 (2) | C7—C8—C9—C10 | −177.1 (2) |
N1—C2—C3—C4 | 28.0 (3) | C8—C9—C10—C11 | −1.0 (4) |
C5—C3—C4—O1 | 5.1 (4) | C14—O2—C11—C10 | 178.8 (3) |
C2—C3—C4—O1 | −175.9 (3) | C14—O2—C11—C12 | −1.2 (4) |
C5—C3—C4—C3i | −175.76 (18) | C9—C10—C11—O2 | 179.3 (2) |
C2—C3—C4—C3i | 3.3 (4) | C9—C10—C11—C12 | −0.7 (3) |
C4—C3—C5—C6 | 177.8 (2) | O2—C11—C12—C13 | −178.4 (2) |
C2—C3—C5—C6 | −1.2 (4) | C10—C11—C12—C13 | 1.6 (3) |
C3—C5—C6—C7 | 175.6 (2) | C11—C12—C13—C8 | −0.9 (3) |
C5—C6—C7—C8 | −177.4 (2) | C9—C8—C13—C12 | −0.7 (3) |
C6—C7—C8—C13 | −17.6 (4) | C7—C8—C13—C12 | 177.9 (2) |
Symmetry code: (i) −x+1, y, z. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C28H33N3O | C26H27NO3 |
Mr | 427.57 | 401.49 |
Crystal system, space group | Monoclinic, P21/n | Orthorhombic, Cmc21 |
Temperature (K) | 173 | 173 |
a, b, c (Å) | 15.5459 (16), 6.1017 (6), 25.163 (3) | 25.786 (2), 10.0852 (8), 8.2389 (7) |
α, β, γ (°) | 90, 100.539 (2), 90 | 90, 90, 90 |
V (Å3) | 2346.6 (4) | 2142.6 (3) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.07 | 0.08 |
Crystal size (mm) | 0.34 × 0.14 × 0.06 | 0.28 × 0.08 × 0.02 |
Data collection | ||
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1995) | Multi-scan (SADABS; Sheldrick, 1995) |
Tmin, Tmax | 0.905, 0.996 | 0.908, 0.998 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23500, 4641, 3393 | 15636, 1632, 1315 |
Rint | 0.045 | 0.042 |
(sin θ/λ)max (Å−1) | 0.617 | 0.694 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.122, 1.01 | 0.040, 0.097, 1.03 |
No. of reflections | 4641 | 1632 |
No. of parameters | 294 | 151 |
No. of restraints | 0 | 1 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.17 | 0.15, −0.16 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Bruker, 2005).
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
There is on-going interest in organic compounds that exhibit two-photon absorption (TPA) and two-photon excited fluorescence (TPEF). Such compounds can produce visible light when excited with IR radiation and allow penetration deep into biological tissue without absorption or causing damage. Such compounds find application as fluorescent molecular probes/markers and visualization agents in high-resolution two-photon microscopy in biomedical research and diagnostics (So et al., 2003).
Continuing our investigations of these organic compounds (Nesterov, 2004; Nesterov & Nesterov, 2004; Nesterov et al., 2003, 2007a,b; Sarkisov et al., 2005), two compounds, (I) and (II), with the general structure D–π–A–π–D were synthesized and their structures, TPA properties and fluorescence activities have been characterized (D = donor and A = acceptor). Comparison of the two structures with 3,5-diarylidene-4-piperidone systems has shown that (I) and (II) are similar to piperidones used as anticancer agents (Jia et al., 1988; Dimmock et al., 2001). Combination of two such properties opens the possibility of their application as agents for localization of the cancer cells with two-photon exited fluorescence and as potential agents for photodynamic treatment of cancer (PDT).
Compounds (I) and (II) (Figs. 1 and 2) contain two dimethylaminophenyl or methoxyphenyl donor groups connected with the central acceptor 1-methyl-4-piperidone ring via a conjugated bridge. In both molecules the central heterocycle adopts a flattened boat conformation; atoms N1 and C4 lie 0.714 (1) and 0.055 (1) Å, respectively, out of the C2/C3/C5/C6 plane in (I) and 0.659 (1) and 0.039 (1) Å from the C2/C3/C3A/C2A plane in (II) [the suffix A denotes the symmetry-related positions; the maximum deviations of one of the four atoms that make up the plane from that plane are 0.023 (1) Å for (I) and 0.0 Å for (II)].
Both molecules can be formally divided into three almost planar fragments, viz. the planar part of the heterocycle (A), and the planar fragments that consist of a Ph ring and the bridging atoms (B and C) (see scheme). In (I), the dihedral angles between A/B and A/C are 5.8 (1) and 10.2 (1)°, respectively, with similar angles in (II) of 20.0 (1)° (A/B). In (I), the Me2N– groups form different dihedral angles with the phenyl rings [that between N2/C16/C17 and C10–C15 is 6.0 (1)°, and that between N3/C27/C28 and C21–C26 is 16.7 (1)°]. In (II), the MeO– group lies in the plane of the aromatic ring [C10—C11—O2—C14 = 178.8 (3)°] and its geometric parameters are in good agreement with literature data (Gallagher et al., 2001). The nonplanarity of both compounds is caused by short intramolecular contacts [H2B···H8A = 2.16 Å, H8A···H15A = 2.21 Å, H6A···H19A = 2.21 Å and H19A···H26A = 2.32 Å in (I), and H2A···H6A = 2.28 Å and H6A···H13A = 2.34 Å in (II)] that are comparable to the sum of the van der Waals radii of the H atoms (Rowland & Taylor, 1996).
In both structures, atom N1 (in the piperidone ring) has pyramidal coordination, the sum of bond angles being 331.0 (2)° in (I) and 334.3 (2)° in (II). In (I), the methyl group on atom N1 occupies an equatorial position, while in (II) it is positioned axially. Such an unfavorable orientation of atom C1 in (II) is a reason for the presence of an intramolecular steric contact [C1···C4 = 3.282 (3) Å] equal to the sum of the van der Waals radii of both atoms (Rowland & Taylor, 1996). The bond-length distributions in the π-conjugated bridges definitely show an alternation of single and double C—C bond lengths [especially in (I) with strong N(CH3)2 donor groups]. with values close to the standard conjugated values (Allen et al., 1987).
In (I), intermolecular C11—H11A···π(arene) interactions [H11A···C24i = 2.85 Å and H11A···C25i = 2.87 Å; symmetry code [please check]: (i) x - 1/2, -y + 1/2, 1/2 + z + 1/2; Fig. 3] and weak intermolecular steric contacts [C27—H27A···O1ii; H27A···O1ii= 2.57 Å; symmetry code: (ii) - x + 1, -y, -z + 1] link molecules along the a axis. In (II), molecules form stacks along the b axis. Such packing is a reason for the existence of intermolecular steric contacts [N1···C4iii = 2.967 (3) Å; symmetry code: (iii) please provide] that are shorter than the sum of the van der Waals radii of the two atoms (Rowland & Taylor, 1996).
The strong TPEF observed in (I), as opposed to a lack of TPEF in (II), is associated with the electron donor properties of the pendant group. Thus, the –N(CH3)2 group in (I) is a much stronger electron donor than the –OCH3 group in (II). In general, strong TPEF can be expected in compounds with strong electron acceptor properties of the core, strong electron donor properties of the pendant groups, and long π-conjugated electron bridges between the core and the pendant groups. A detailed discussion of the connection between the molecular structure and TPEF was presented by Sarkisov et al. (2005). These results indicate that (I) can potentially be used as a two-photon fluorescent marker/molecular probe in two-photon fluorescent microscopy for biomedical research.