Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the four dipeptides L-seryl-L-aspara­gine monohydrate, C7H13N3O5·H2O, L-seryl-L-tyrosine monohydrate, C12H16N2O5·H2O, L-tryptophanyl-L-serine monohydrate, C14H17N3O4·H2O, and L-tyrosyl-L-tryptophan mono­hydrate, C20H21N3O4·H2O, are dominated by extensive hy­drogen-bonding networks that include cocrystallized solvent water mol­ecules. Side-chain conformations are discussed on the basis of previous observations in dipeptides. These four dipeptide structures greatly expand our knowledge on dipeptides incorporating polar residues such as serine, asparagine, threonine, tyrosine and tryptophan.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004228/gg3137sup1.cif
Contains datablocks SN, SY, WS, YW, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004228/gg3137SNsup2.hkl
Contains datablock SN

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004228/gg3137SYsup3.hkl
Contains datablock SY

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004228/gg3137WSsup4.hkl
Contains datablock WS

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004228/gg3137YWsup5.hkl
Contains datablock YW

CCDC references: 682834; 682835; 682836; 682837

Comment top

A total of 36 dipeptides can be constructed from the six polar residues Asn, Gln, Ser, Thr, Tyr and Trp, but the structure of only one, Tyr–Tyr hydrate (Cotrait et al., 1984), has been investigated previously by single-crystal X-ray diffraction. The title molecules, Ser–Asn hydrate (SN), Ser–Tyr hydrate (SY), Trp–Ser hydrate (WS) and Tyr–Trp hydrate (YW), were studied as part of an effort to increase our knowledge of such dipeptides. The asymmetric units of the four dipeptides are shown in Fig. 1, while essential torsion angles are listed in Tables 1, 3, 5 and 7. The molecules occur in unconstrained, extended conformations with close to planar peptide bonds and deviations from a perfectly staggered orientation of the amine group reaching a maximum value of 25° for YW.

The side-chain conformations for the title compounds were compared with those of related dipeptides in the Cambridge Structural Database (CSD; Version 5.29 of November 2007; Allen 2002). It is noted that the side chains of N-terminal Ser residues in the CSD are always in a gauche- orientation (the gauche+/trans/gauche- distribution is 0:0:5), while C-terminal Ser on the other hand displays a 7:5:1 distribution. An opposite trend is found for Trp, with distributions of 3:0:0 and 1:0:5 for N-terminal and C-terminal residues, respectively. Tyr has the same preference as Trp for gauche+ at the N-terminus (5:2:1), but uniquely has trans as the most favoured C-terminal orientation (1:3:1). There are only two other dipeptides with a C-terminal Asn residue in the CSD, one each in a gauche+ and gauche- orientation. The side-chain conformations found for the four title dipeptides (Tables 1, 3, 5 and 7) agree with the CSD statistics; only for the Tyr residue of SY do we find a conformation (gauche+) that is not also the most frequently observed among dipeptides in the CSD (trans).

It is noteworthy that all four polar dipeptides have been obtained as hydrates. This observation is of particular interest for WS and YW, as all seven dipeptides with a Trp residue in the CSD are also hydrates, indicating a very high propensity for cocrystallization with water molecules for this particular residue. In contrast, SN is the first Ser–Xaa (Xaa = any amino acid) dipeptide to crystallize as a hydrate.

Among the four dipeptides studied, SN has the smallest hydrophobic units in the side chains, which generate inconspicuous hydrophobic columns along the short (4.75 Å) a axis (Fig. 2). Accordingly, the hydrogen-bonding network is three-dimensional, and as in all N-terminal Ser-residue dipeptide crystal structures, the hydroxy H atom hydrogen bonds to a carboxylate acceptor (Table 2). This group also accepts two of the amino H atoms, but the third amino H atom, which is usually donated to the Ser hydroxy group, is instead accepted by the cocrystallized water molecule that acts as a bridge between the two groups.

Unlike SN, the crystal packing of SY (Fig. 3) is clearly divided into layers. There is, however, only one head-to-tail chain involving the charged N– and C-terminal groups (Table 4). The remaining two amine H atoms are accepted by the hydroxy groups of the Ser and Tyr side chains. Adding to the three-dimensional hydrogen-bonding pattern, the hydroxy groups also act as donors and span the main chain layers by interacting with the carboxylate groups in a direct fashion for the Tyr OH group and in an indirect fashion, using the cocrystallized water as a bridging molecule, for the Ser OH group sitting on a shorter side chain. The extra OH group of Tyr compared with Phe means that SY has a completely different structure from Ser–Phe (Helle et al., 2004). Glu–Glu (Eggleston & Hodgson, 1982), on the other hand, shows some of the same traits, with the N-terminal Glu replacing the Ser residue as well as the cocrystallized water molecule in SY.

The structure of WS adds to a series of structures of dipeptides with a C-terminal Ser residue studied previously, including Gly–Ser (Görbitz, 1999), Leu–Ser (Görbitz et al., 2005), Val–Ser trihydrate (Johansen et al., 2005), Val–Ser trifluoroethanol solvate (Görbitz, 2005), Ile–Ser hydrate, Met–Ser hydrate and Phe–Ser (Görbitz et al., 2006), Ala–Ser hydrate (Jones et al., 1978), Arg–Ser acetate hydrate (Verdaguer et al., 1991), and His–Ser in complex with Gly–Glu (Suresh & Vijayan, 1985). In this group, Ile–Ser and Met–Ser have rather similar structures, while all other compounds have individually unique crystal packing arrangements. This is also true for WS, shown in Fig. 4, which, as expected from a dipeptide with large hydrophobic entities, is clearly divided into layers. The hydrogen-bonding pattern (Table 6) is nevertheless completely different even from that of its presumably closest relative Phe–Ser (Görbitz et al., 2006). The most unusual feature is the amine H atom that is not involved in a strong hydrogen bond to an O-atom acceptor, but instead is squeezed in between two Trp side chains where it acts as a donor in weak inter- and intramolecular interactions with C-atom acceptors (Desiraju & Steiner, 1999; Fig. 5).

The structure of YW (Fig. 6) has a `Big Mac' construction, with two different types of hydrophobic layers, one generated from Tyr side chains and one from Trp side chains, separated by the same type of hydrophilic layers constituted by the peptide main chains. The same pattern was found for the related compounds Tyr–Val (Ramakrishnan et al., 1984), Tyr–Leu (Ramakrishnan & Viswamitra, 1988) and Tyr–Phe (Murali & Subramanian, 1987). It follows that the NεH donor of the Trp side chain is involved only in a comparatively weak interaction, with the C atom (C14) of a neighbouring Trp side chain as the acceptor (Table 8). The hydrogen-bonding pattern of this group of dipeptides is furthermore interesting in that, as for WS, one of the amine H atoms does not participate in a strong N—H···O interaction. Instead it is sandwiched between two aromatic rings, where it is involved in weaker intermolecular and intramolecular N—H···C contacts (Fig. 7). The complete absence of direct head-to-tail interactions between the charged N-terminal and C-terminal groups in YW is a very rare phenomenon for dipeptide structures.

In summary, all four dipeptides display extensive hydrogen-bonding networks, but the gradual increase in the size of hydrophobic units in the side chains from SN through SY and WS to YW shifts the hydrophobic aggregation pattern from columns to layers and the dimensionality of the hydrogen-bonding pattern from three- to two-dimensional when only strong N—H···O and O—H···O interactions are considered. The presence of a large number of hydrogen-bonding donors and acceptors, including those present in cocrystallized water molecules, makes it possible for polar dipeptides to fulfil their hydrogen-bonding requirements while retaining peptide main chains and side chains in unconstrained conformations, but in both dipeptides with a Trp residue, WS and YW, unusual (amine)N—H···C(π) interactions are observed.

Related literature top

For related literature, see: Allen (2002); Cotrait et al. (1984); Desiraju & Steiner (1999); Eggleston & Hodgson (1982); Görbitz (1999, 2005); Görbitz et al. (2006); Görbitz, Nilsen, Szeto & Tangen (2005); Helle et al. (2004); Johansen et al. (2005); Jones et al. (1978); Murali & Subramanian (1987); Ramakrishnan & Viswamitra (1988); Ramakrishnan et al. (1984); Suresh & Vijayan (1985); Verdaguer et al. (1991).

Experimental top

The title compounds were obtained from Bachem. Crystals were obtained by slow diffusion of acetonitrile into 30 µl of an aqueous solution containing about 0.2–2.0 mg of the peptide depending on the solubility.

Refinement top

Positional parameters were refined for all H atoms of SN. For the three other structures, positional parameters were refined only for H atoms involved in short hydrogen bonds. Other H atoms were positioned with idealized geometry and fixed C—H distances in the range 0.95–1.00 Å. Uiso values were set at 1.2Ueq of the carrier atom, or 1.5Ueq for the amine and hydroxy groups as well as for cocrystallized water molecules. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

For all compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Version 6.10; Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Version 6.10; Sheldrick, 2008); molecular graphics: SHELXTL (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 6.10; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of SN (top, left), SY (top, right), WS (bottom, left) and YW (bottom, right). Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. : The crystal packing arrangement of SN viewed approximately along the a axis, with hydrophobic parts of the Ser and Asn side chains (in yellow in the online version of the journal). In Figs. 2, 3, 4 and 6, non-essential H atoms have been omitted for clarity, while short hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. : The crystal packing arrangement of SY viewed approximately along the c axis, with hydrophobic parts of the Ser and Tyr side chains (in yellow online).
[Figure 4] Fig. 4. : The crystal packing arrangement WS viewed along the a axis.
[Figure 5] Fig. 5. : A structural detail showing amineN—H···C interactions in WS, with H···C distances in Å.
[Figure 6] Fig. 6. : The crystal packing arrangement viewed along the a axis for YW (top) and for Tyr–Leu (Ramakrishnan & Viswamitra, 1988) (bottom).
[Figure 7] Fig. 7. : A structural detail showing amineN—H···C interactions in YW, with H···C distances in Å.
(SN) L-Seryl-L-asparagine monohydrate top
Crystal data top
C7H13N3O5·H2OZ = 1
Mr = 237.22F(000) = 126
Triclinic, P1Dx = 1.493 Mg m3
a = 4.7547 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5121 (2) ÅCell parameters from 2419 reflections
c = 8.5626 (2) Åθ = 2.7–28.3°
α = 115.691 (1)°µ = 0.13 mm1
β = 90.266 (1)°T = 105 K
γ = 104.957 (1)°Block, colourless
V = 263.87 (1) Å30.30 × 0.25 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
1289 independent reflections
Radiation source: fine-focus sealed tube1281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3 pixels mm-1θmax = 28.3°, θmin = 2.7°
Sets of exposures each taken over 0.3° ω rotation scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 910
Tmin = 0.838, Tmax = 0.974l = 1111
2522 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067Only H-atom coordinates refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.0335P]
where P = (Fo2 + 2Fc2)/3
1289 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C7H13N3O5·H2Oγ = 104.957 (1)°
Mr = 237.22V = 263.87 (1) Å3
Triclinic, P1Z = 1
a = 4.7547 (1) ÅMo Kα radiation
b = 7.5121 (2) ŵ = 0.13 mm1
c = 8.5626 (2) ÅT = 105 K
α = 115.691 (1)°0.30 × 0.25 × 0.20 mm
β = 90.266 (1)°
Data collection top
Siemens SMART CCD
diffractometer
1289 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1281 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.974Rint = 0.017
2522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0253 restraints
wR(F2) = 0.067Only H-atom coordinates refined
S = 1.09Δρmax = 0.29 e Å3
1289 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8448 (3)1.22469 (17)0.81811 (16)0.0235 (3)
H50.928 (7)1.258 (5)0.915 (4)0.035*
O20.9515 (2)0.61709 (17)0.57196 (15)0.0203 (3)
O30.6661 (3)0.06442 (18)0.25320 (16)0.0209 (2)
O40.1441 (3)0.35031 (18)0.12595 (15)0.0227 (3)
O50.3046 (2)0.07138 (16)0.01594 (14)0.0159 (2)
N10.7140 (3)0.86205 (18)0.87460 (15)0.0124 (2)
H10.642 (5)0.742 (4)0.873 (3)0.019*
H20.618 (5)0.948 (4)0.949 (3)0.019*
H30.889 (6)0.908 (4)0.906 (3)0.019*
N20.4876 (3)0.52295 (18)0.43487 (15)0.0126 (2)
H40.322 (5)0.552 (3)0.446 (3)0.015*
N30.1800 (3)0.2081 (2)0.2418 (2)0.0210 (3)
H60.197 (6)0.326 (5)0.200 (4)0.025*
H70.007 (6)0.193 (4)0.248 (3)0.025*
C10.6593 (3)0.8486 (2)0.69714 (18)0.0123 (3)
H110.454 (5)0.844 (4)0.680 (3)0.015*
C20.8700 (3)1.0348 (2)0.68728 (19)0.0165 (3)
H211.071 (5)1.034 (4)0.705 (3)0.020*
H220.829 (5)1.025 (4)0.575 (3)0.020*
C30.7128 (3)0.6494 (2)0.56081 (18)0.0124 (3)
C40.4933 (3)0.3171 (2)0.30937 (17)0.0114 (3)
H410.685 (5)0.320 (3)0.288 (3)0.014*
C50.3727 (3)0.1646 (2)0.38577 (19)0.0148 (3)
H510.473 (5)0.216 (4)0.494 (3)0.018*
H520.163 (5)0.152 (4)0.394 (3)0.018*
C60.4173 (3)0.0465 (2)0.28399 (18)0.0147 (3)
C70.3016 (3)0.2442 (2)0.13613 (18)0.0131 (3)
O1W0.4833 (3)0.4668 (2)0.8323 (2)0.0290 (3)
H1W0.585 (8)0.384 (5)0.831 (5)0.044*
H2W0.317 (8)0.425 (5)0.842 (5)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (7)0.0113 (5)0.0161 (5)0.0064 (5)0.0041 (5)0.0036 (4)
O20.0120 (5)0.0189 (5)0.0203 (5)0.0066 (4)0.0009 (4)0.0010 (5)
O30.0167 (5)0.0198 (5)0.0249 (6)0.0083 (4)0.0014 (4)0.0072 (5)
O40.0278 (6)0.0184 (6)0.0173 (5)0.0123 (5)0.0065 (4)0.0008 (4)
O50.0158 (5)0.0141 (5)0.0126 (4)0.0060 (4)0.0004 (4)0.0004 (4)
N10.0122 (5)0.0108 (5)0.0119 (5)0.0023 (4)0.0018 (4)0.0036 (4)
N20.0109 (5)0.0108 (5)0.0121 (5)0.0042 (4)0.0000 (4)0.0010 (5)
N30.0189 (7)0.0128 (6)0.0297 (7)0.0051 (5)0.0033 (5)0.0080 (5)
C10.0120 (6)0.0106 (6)0.0105 (6)0.0026 (5)0.0001 (5)0.0019 (5)
C20.0223 (7)0.0118 (6)0.0122 (6)0.0018 (5)0.0001 (5)0.0043 (5)
C30.0111 (6)0.0116 (6)0.0115 (6)0.0027 (5)0.0017 (5)0.0028 (5)
C40.0111 (6)0.0088 (6)0.0107 (6)0.0028 (4)0.0001 (5)0.0012 (5)
C50.0177 (7)0.0124 (6)0.0128 (6)0.0042 (5)0.0030 (5)0.0044 (5)
C60.0172 (7)0.0140 (6)0.0129 (6)0.0057 (5)0.0003 (5)0.0056 (5)
C70.0118 (6)0.0126 (6)0.0114 (6)0.0025 (5)0.0004 (5)0.0027 (5)
O1W0.0294 (7)0.0166 (6)0.0409 (8)0.0049 (5)0.0140 (6)0.0137 (5)
Geometric parameters (Å, º) top
O1—C21.4170 (19)N3—H70.86 (3)
O1—H50.82 (3)C1—C21.5320 (19)
O2—C31.2315 (18)C1—C31.5336 (19)
O3—C61.2413 (19)C1—H110.98 (2)
O4—C71.2539 (19)C2—H210.97 (3)
O5—C71.2631 (17)C2—H220.94 (3)
N1—C11.4955 (18)C4—C71.5349 (19)
N1—H10.87 (3)C4—C51.5436 (19)
N1—H20.91 (3)C4—H410.93 (2)
N1—H30.81 (3)C5—C61.516 (2)
N2—C31.3372 (18)C5—H510.91 (3)
N2—C41.4587 (16)C5—H520.98 (2)
N2—H40.86 (2)O1W—H1W0.88 (4)
N3—C61.336 (2)O1W—H2W0.79 (4)
N3—H60.83 (3)
C2—O1—H5114 (2)H21—C2—H22110 (2)
C1—N1—H1110.8 (16)O2—C3—N2125.02 (13)
C1—N1—H2108.5 (15)O2—C3—C1119.83 (12)
H1—N1—H2107 (2)N2—C3—C1115.15 (12)
C1—N1—H3108.0 (17)N2—C4—C7111.01 (11)
H1—N1—H3112 (2)N2—C4—C5109.02 (11)
H2—N1—H3110 (2)C7—C4—C5108.53 (12)
C3—N2—C4121.07 (12)N2—C4—H41109.2 (14)
C3—N2—H4117.7 (15)C7—C4—H41109.1 (14)
C4—N2—H4119.2 (15)C5—C4—H41110.0 (14)
C6—N3—H6120.1 (19)C6—C5—C4114.41 (12)
C6—N3—H7121.1 (18)C6—C5—H51105.3 (15)
H6—N3—H7119 (3)C4—C5—H51108.2 (15)
N1—C1—C2109.67 (11)C6—C5—H52110.2 (14)
N1—C1—C3108.51 (12)C4—C5—H52108.7 (14)
C2—C1—C3109.56 (11)H51—C5—H52110 (2)
N1—C1—H11106.7 (13)O3—C6—N3123.02 (14)
C2—C1—H11112.0 (13)O3—C6—C5120.62 (13)
C3—C1—H11110.3 (14)N3—C6—C5116.19 (13)
O1—C2—C1112.28 (12)O4—C7—O5124.91 (13)
O1—C2—H21107.0 (14)O4—C7—C4119.34 (12)
C1—C2—H21109.6 (14)O5—C7—C4115.62 (12)
O1—C2—H22109.8 (15)H1W—O1W—H2W112 (3)
C1—C2—H22108.5 (15)
N1—C1—C3—N2124.40 (13)C4—N2—C3—O28.5 (2)
C1—C3—N2—C4172.27 (12)N1—C1—C3—O256.29 (18)
C3—N2—C4—C7153.03 (13)C2—C1—C3—O263.42 (17)
N2—C4—C7—O47.36 (19)C2—C1—C3—N2115.88 (14)
N1—C1—C2—O157.08 (15)C3—N2—C4—C587.47 (15)
N2—C4—C5—C6169.42 (11)C7—C4—C5—C669.55 (15)
C4—C5—C6—O354.70 (19)C5—C4—C7—O4112.43 (15)
C4—C5—C6—N3129.80 (14)N2—C4—C7—O5176.54 (12)
C3—C1—C2—O1176.08 (12)C5—C4—C7—O563.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.88 (3)1.88 (3)2.7446 (18)171 (2)
N1—H2···O5i0.91 (3)1.92 (3)2.7712 (16)156 (2)
N1—H3···O5ii0.81 (3)2.03 (3)2.8037 (17)169 (2)
N2—H4···O2iii0.86 (2)2.12 (2)2.9349 (16)156 (2)
O1—H5···O4ii0.81 (3)1.82 (3)2.6418 (16)174 (3)
C1—H11···O2iii0.98 (2)2.45 (2)3.2908 (18)144.5 (18)
N3—H6···O4iv0.82 (3)2.17 (3)2.9784 (18)165 (3)
N3—H7···O3iii0.86 (2)2.08 (3)2.9014 (19)160 (3)
C5—H52···O3iii0.98 (2)2.44 (2)3.2899 (19)144.2 (19)
O1W—H1W···O1iv0.88 (4)1.90 (4)2.775 (2)173 (3)
O1W—H2W···O1v0.78 (4)2.31 (4)3.081 (2)165 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x1, y1, z.
(SY) L-Seryl-L-tyrosine monohydrate top
Crystal data top
C12H16N2O5·H2ODx = 1.452 Mg m3
Mr = 286.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 8269 reflections
a = 15.3480 (9) Åθ = 1.8–28.4°
b = 17.8805 (11) ŵ = 0.12 mm1
c = 4.7728 (3) ÅT = 105 K
V = 1309.80 (14) Å3Block, colourless
Z = 40.80 × 0.50 × 0.20 mm
F(000) = 608
Data collection top
Siemens SMART CCD
diffractometer
1932 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3 pixels mm-1θmax = 28.4°, θmin = 1.8°
Sets of exposures each taken over 0.3° ω rotation scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2323
Tmin = 0.814, Tmax = 0.976l = 66
14151 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.6547P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1932 reflectionsΔρmax = 0.24 e Å3
206 parametersΔρmin = 0.24 e Å3
3 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (3)
Crystal data top
C12H16N2O5·H2OV = 1309.80 (14) Å3
Mr = 286.28Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 15.3480 (9) ŵ = 0.12 mm1
b = 17.8805 (11) ÅT = 105 K
c = 4.7728 (3) Å0.80 × 0.50 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
1932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1655 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.976Rint = 0.040
14151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.24 e Å3
1932 reflectionsΔρmin = 0.24 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09778 (12)0.52864 (10)0.1718 (4)0.0313 (4)
H40.048 (2)0.5513 (18)0.090 (8)0.047*
O20.27723 (13)0.58953 (11)0.9110 (4)0.0322 (5)
O30.70144 (12)0.61764 (11)0.0543 (5)0.0393 (5)
H60.735 (2)0.655 (2)0.104 (9)0.059*
O40.30283 (12)0.77640 (10)0.2429 (4)0.0299 (4)
O50.38375 (11)0.84101 (9)0.5464 (4)0.0274 (4)
N10.19134 (15)0.47846 (12)0.6692 (5)0.0249 (4)
H10.154 (2)0.4957 (18)0.825 (7)0.037*
H20.159 (2)0.4404 (17)0.560 (7)0.037*
H30.241 (2)0.4547 (17)0.748 (7)0.037*
N20.31198 (14)0.64926 (12)0.5087 (4)0.0236 (4)
H50.3047 (18)0.6492 (17)0.337 (7)0.028*
C10.21854 (15)0.54057 (13)0.4828 (5)0.0227 (5)
H110.25490.52010.32680.027*
C20.13860 (16)0.57872 (13)0.3612 (6)0.0260 (5)
H210.09770.59230.51330.031*
H220.15590.62500.26210.031*
C30.27301 (16)0.59550 (14)0.6552 (5)0.0231 (5)
C40.35316 (16)0.71277 (13)0.6492 (5)0.0225 (5)
H410.31730.72350.81940.027*
C50.44587 (15)0.69475 (13)0.7543 (6)0.0240 (5)
H510.46790.73860.85920.029*
H520.44210.65250.88780.029*
C60.51152 (15)0.67495 (13)0.5316 (5)0.0234 (5)
C70.52259 (16)0.60151 (13)0.4421 (6)0.0278 (5)
H710.48660.56340.51830.033*
C80.58528 (16)0.58270 (14)0.2429 (7)0.0311 (6)
H810.59140.53240.18210.037*
C90.63865 (16)0.63806 (14)0.1344 (6)0.0273 (5)
C100.62790 (15)0.71177 (14)0.2176 (6)0.0274 (5)
H1010.66330.75000.13960.033*
C110.56504 (15)0.72919 (14)0.4154 (6)0.0260 (5)
H1110.55840.77970.47310.031*
C120.34644 (15)0.78185 (13)0.4617 (5)0.0235 (5)
O1W0.47158 (13)0.88314 (12)1.0312 (4)0.0365 (5)
H1W0.452 (2)0.865 (2)1.181 (5)0.055*
H2W0.436 (2)0.868 (2)0.902 (5)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (9)0.0286 (9)0.0375 (11)0.0001 (7)0.0083 (8)0.0052 (8)
O20.0424 (10)0.0338 (10)0.0204 (9)0.0107 (9)0.0011 (8)0.0022 (8)
O30.0364 (10)0.0276 (9)0.0539 (13)0.0026 (8)0.0198 (10)0.0065 (10)
O40.0378 (9)0.0303 (9)0.0217 (8)0.0038 (8)0.0059 (8)0.0004 (8)
O50.0317 (9)0.0229 (8)0.0276 (9)0.0036 (7)0.0024 (8)0.0014 (8)
N10.0270 (10)0.0234 (10)0.0243 (10)0.0020 (9)0.0030 (9)0.0010 (9)
N20.0285 (10)0.0262 (9)0.0162 (9)0.0054 (8)0.0016 (9)0.0007 (9)
C10.0246 (10)0.0221 (10)0.0214 (11)0.0029 (9)0.0007 (10)0.0003 (9)
C20.0274 (12)0.0227 (11)0.0279 (12)0.0024 (10)0.0026 (10)0.0020 (10)
C30.0219 (11)0.0256 (11)0.0219 (10)0.0010 (10)0.0002 (9)0.0003 (10)
C40.0244 (11)0.0239 (11)0.0193 (10)0.0027 (9)0.0001 (9)0.0006 (10)
C50.0253 (11)0.0252 (11)0.0214 (10)0.0003 (9)0.0025 (10)0.0006 (10)
C60.0214 (10)0.0240 (11)0.0247 (11)0.0019 (9)0.0011 (10)0.0002 (10)
C70.0274 (12)0.0227 (11)0.0332 (13)0.0028 (9)0.0030 (11)0.0002 (11)
C80.0304 (12)0.0241 (11)0.0388 (14)0.0012 (10)0.0049 (12)0.0028 (12)
C90.0231 (11)0.0269 (12)0.0319 (13)0.0018 (9)0.0030 (10)0.0023 (11)
C100.0223 (11)0.0246 (11)0.0352 (14)0.0032 (9)0.0013 (11)0.0002 (11)
C110.0241 (11)0.0232 (11)0.0306 (13)0.0017 (9)0.0000 (11)0.0019 (10)
C120.0234 (11)0.0244 (11)0.0226 (11)0.0011 (9)0.0016 (10)0.0027 (10)
O1W0.0410 (11)0.0398 (11)0.0288 (10)0.0130 (9)0.0016 (9)0.0059 (9)
Geometric parameters (Å, º) top
O1—C21.418 (3)C4—C121.529 (3)
O1—H40.95 (3)C4—C51.543 (3)
O2—C31.227 (3)C4—H411.0000
O3—C91.369 (3)C5—C61.507 (3)
O3—H60.87 (4)C5—H510.9900
O4—C121.244 (3)C5—H520.9900
O5—C121.269 (3)C6—C111.387 (3)
N1—C11.483 (3)C6—C71.391 (3)
N1—H10.99 (3)C7—C81.394 (4)
N1—H20.99 (3)C7—H710.9500
N1—H30.95 (3)C8—C91.385 (4)
N2—C31.331 (3)C8—H810.9500
N2—C41.462 (3)C9—C101.386 (3)
N2—H50.82 (3)C10—C111.385 (4)
C1—C21.519 (3)C10—H1010.9500
C1—C31.530 (3)C11—H1110.9500
C1—H111.0000O1W—H1W0.846 (18)
C2—H210.9900O1W—H2W0.864 (17)
C2—H220.9900
C2—O1—H4110 (2)C12—C4—H41106.5
C9—O3—H6113 (3)C5—C4—H41106.5
C1—N1—H1112.4 (19)C6—C5—C4115.9 (2)
C1—N1—H2110.0 (19)C6—C5—H51108.3
H1—N1—H2109 (2)C4—C5—H51108.3
C1—N1—H3110.2 (19)C6—C5—H52108.3
H1—N1—H3108 (3)C4—C5—H52108.3
H2—N1—H3108 (2)H51—C5—H52107.4
C3—N2—C4120.9 (2)C11—C6—C7117.7 (2)
C3—N2—H5117 (2)C11—C6—C5120.9 (2)
C4—N2—H5121 (2)C7—C6—C5121.3 (2)
N1—C1—C2109.77 (19)C6—C7—C8121.4 (2)
N1—C1—C3108.2 (2)C6—C7—H71119.3
C2—C1—C3111.01 (19)C8—C7—H71119.3
N1—C1—H11109.3C9—C8—C7119.4 (2)
C2—C1—H11109.3C9—C8—H81120.3
C3—C1—H11109.3C7—C8—H81120.3
O1—C2—C1108.47 (19)O3—C9—C8118.1 (2)
O1—C2—H21110.0O3—C9—C10121.7 (2)
C1—C2—H21110.0C8—C9—C10120.1 (2)
O1—C2—H22110.0C11—C10—C9119.5 (2)
C1—C2—H22110.0C11—C10—H101120.3
H21—C2—H22108.4C9—C10—H101120.3
O2—C3—N2124.2 (2)C10—C11—C6121.9 (2)
O2—C3—C1120.5 (2)C10—C11—H111119.1
N2—C3—C1115.3 (2)C6—C11—H111119.1
N2—C4—C12109.3 (2)O4—C12—O5125.1 (2)
N2—C4—C5112.7 (2)O4—C12—C4117.7 (2)
C12—C4—C5114.92 (19)O5—C12—C4117.1 (2)
N2—C4—H41106.5H1W—O1W—H2W105 (2)
N1—C1—C3—N2171.4 (2)C4—C5—C6—C1193.4 (3)
C1—C3—N2—C4169.2 (2)C11—C6—C7—C80.1 (4)
C3—N2—C4—C12148.6 (2)C5—C6—C7—C8177.8 (2)
N2—C4—C12—O46.1 (3)C6—C7—C8—C90.9 (4)
N1—C1—C2—O168.9 (3)C7—C8—C9—O3178.0 (3)
N2—C4—C5—C662.4 (3)C7—C8—C9—C101.9 (4)
C4—C5—C6—C788.7 (3)O3—C9—C10—C11178.1 (2)
C3—C1—C2—O1171.6 (2)C8—C9—C10—C111.8 (4)
C4—N2—C3—O29.2 (4)C9—C10—C11—C60.7 (4)
N1—C1—C3—O210.1 (3)C7—C6—C11—C100.2 (4)
C2—C1—C3—O2110.4 (3)C5—C6—C11—C10177.7 (2)
C2—C1—C3—N268.1 (3)C5—C4—C12—O4133.9 (2)
C3—N2—C4—C582.3 (3)N2—C4—C12—O5176.0 (2)
C12—C4—C5—C663.7 (3)C5—C4—C12—O548.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.99 (3)1.96 (3)2.936 (3)171 (3)
N1—H2···O5ii0.99 (3)1.96 (3)2.903 (3)158 (3)
N1—H3···O3iii0.95 (3)1.83 (3)2.721 (3)155 (3)
O1—H4···O1Wiv0.95 (3)1.76 (3)2.679 (3)163 (3)
N2—H5···O2v0.82 (3)2.34 (3)3.092 (3)153 (3)
O3—H6···O4vi0.87 (4)1.74 (4)2.612 (3)173 (4)
C1—H11···O2v1.002.373.004 (3)121
O1W—H1W···O5i0.85 (2)2.07 (2)2.904 (3)167 (4)
O1W—H2W···O50.85 (2)1.94 (2)2.782 (3)164 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z+1; (v) x, y, z1; (vi) x+1/2, y+3/2, z.
(WS) L-Tryptophanyl-L-serine monohydrate top
Crystal data top
C14H17N3O4·H2OF(000) = 328
Mr = 309.32Dx = 1.399 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.5613 (5) ÅCell parameters from 3410 reflections
b = 9.1474 (7) Åθ = 1.7–27.9°
c = 12.5052 (9) ŵ = 0.11 mm1
β = 101.973 (1)°T = 105 K
V = 734.22 (10) Å3Plate, colourless
Z = 20.40 × 0.25 × 0.08 mm
Data collection top
Siemens SMART CCD
diffractometer
1827 independent reflections
Radiation source: fine-focus sealed tube1623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 8.3 pixels mm-1θmax = 27.9°, θmin = 1.7°
Sets of exposures each taken over 0.3° ω rotation scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 712
Tmin = 0.893, Tmax = 0.991l = 1416
4829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0424P]
where P = (Fo2 + 2Fc2)/3
1827 reflections(Δ/σ)max = 0.004
225 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C14H17N3O4·H2OV = 734.22 (10) Å3
Mr = 309.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5613 (5) ŵ = 0.11 mm1
b = 9.1474 (7) ÅT = 105 K
c = 12.5052 (9) Å0.40 × 0.25 × 0.08 mm
β = 101.973 (1)°
Data collection top
Siemens SMART CCD
diffractometer
1827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1623 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.991Rint = 0.073
4829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
1827 reflectionsΔρmin = 0.25 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4006 (3)0.57631 (17)0.26300 (12)0.0216 (4)
O20.0728 (3)0.78297 (18)0.01045 (13)0.0229 (4)
H60.166 (5)0.713 (3)0.021 (2)0.034*
O30.3112 (3)0.56471 (17)0.07650 (14)0.0228 (4)
O40.3174 (3)0.80483 (17)0.10278 (13)0.0230 (4)
N10.5801 (3)0.3416 (2)0.19792 (16)0.0195 (4)
H10.625 (5)0.351 (3)0.271 (2)0.029*
H20.630 (5)0.410 (3)0.162 (2)0.029*
H30.634 (5)0.253 (4)0.177 (2)0.029*
N20.4865 (4)0.2155 (2)0.53366 (17)0.0290 (5)
H40.563 (5)0.171 (4)0.590 (3)0.035*
N30.0926 (3)0.53940 (19)0.14458 (15)0.0167 (4)
H50.018 (5)0.481 (3)0.101 (2)0.020*
C10.3489 (3)0.3458 (2)0.17062 (16)0.0165 (4)
H110.29910.32600.09080.020*
C20.2631 (4)0.2273 (2)0.23731 (18)0.0195 (5)
H210.10920.22700.21540.023*
H220.31320.13070.21810.023*
C30.3227 (4)0.2460 (2)0.35877 (18)0.0202 (5)
C40.4870 (4)0.1794 (3)0.42754 (19)0.0254 (5)
H410.58620.11750.40480.030*
C50.2135 (4)0.3274 (2)0.42683 (18)0.0201 (4)
C60.3178 (4)0.3028 (2)0.53607 (19)0.0242 (5)
C70.2445 (5)0.3570 (3)0.6254 (2)0.0329 (6)
H710.31540.33800.69830.039*
C80.0648 (5)0.4393 (3)0.6031 (2)0.0386 (7)
H810.00960.47640.66210.046*
C90.0384 (5)0.4696 (3)0.4960 (3)0.0371 (7)
H910.16050.52820.48360.044*
C100.0348 (4)0.4153 (3)0.4078 (2)0.0270 (6)
H1010.03520.43750.33530.032*
C110.2825 (4)0.4997 (2)0.19674 (16)0.0162 (4)
C120.0082 (4)0.6832 (2)0.15927 (17)0.0182 (5)
H1210.02990.70430.23930.022*
C130.1183 (4)0.8015 (2)0.10535 (18)0.0207 (5)
H1310.07120.89930.12400.025*
H1320.27070.79510.13340.025*
C140.2266 (4)0.6854 (2)0.10997 (17)0.0176 (4)
O1W0.6546 (3)0.09657 (19)0.08266 (15)0.0237 (4)
H1W0.684 (6)0.009 (5)0.099 (3)0.050 (11)*
H2W0.545 (6)0.096 (4)0.030 (3)0.048 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (9)0.0180 (8)0.0197 (7)0.0008 (7)0.0009 (6)0.0045 (6)
O20.0251 (9)0.0205 (8)0.0229 (8)0.0047 (7)0.0047 (7)0.0066 (6)
O30.0208 (9)0.0166 (8)0.0295 (8)0.0021 (7)0.0018 (7)0.0002 (6)
O40.0243 (9)0.0161 (8)0.0283 (8)0.0054 (7)0.0047 (7)0.0024 (6)
N10.0206 (10)0.0150 (9)0.0229 (9)0.0014 (8)0.0042 (8)0.0001 (8)
N20.0296 (13)0.0306 (12)0.0241 (10)0.0023 (10)0.0007 (9)0.0121 (9)
N30.0192 (10)0.0118 (9)0.0179 (9)0.0002 (7)0.0010 (7)0.0004 (7)
C10.0195 (11)0.0124 (9)0.0164 (9)0.0011 (9)0.0004 (8)0.0002 (8)
C20.0226 (12)0.0140 (10)0.0215 (10)0.0007 (9)0.0033 (9)0.0010 (8)
C30.0225 (12)0.0147 (10)0.0232 (11)0.0000 (9)0.0046 (9)0.0060 (9)
C40.0254 (13)0.0237 (11)0.0276 (12)0.0058 (11)0.0067 (10)0.0082 (10)
C50.0229 (11)0.0150 (9)0.0223 (10)0.0027 (9)0.0047 (9)0.0018 (8)
C60.0308 (13)0.0186 (11)0.0230 (11)0.0069 (10)0.0051 (10)0.0038 (8)
C70.0519 (18)0.0265 (13)0.0223 (11)0.0105 (13)0.0126 (11)0.0002 (10)
C80.059 (2)0.0255 (13)0.0400 (16)0.0023 (14)0.0305 (14)0.0032 (11)
C90.0411 (17)0.0257 (14)0.0514 (16)0.0069 (12)0.0256 (14)0.0030 (12)
C100.0281 (14)0.0224 (12)0.0317 (13)0.0011 (10)0.0091 (10)0.0052 (10)
C110.0210 (11)0.0131 (10)0.0142 (9)0.0001 (9)0.0027 (8)0.0007 (8)
C120.0224 (12)0.0126 (9)0.0187 (10)0.0015 (9)0.0017 (9)0.0001 (8)
C130.0205 (11)0.0136 (10)0.0265 (11)0.0008 (9)0.0014 (9)0.0005 (8)
C140.0204 (11)0.0152 (9)0.0176 (10)0.0011 (9)0.0047 (8)0.0024 (8)
O1W0.0258 (10)0.0156 (8)0.0284 (9)0.0019 (7)0.0025 (8)0.0011 (7)
Geometric parameters (Å, º) top
O1—C111.229 (3)C3—C41.374 (3)
O2—C131.427 (3)C3—C51.430 (3)
O2—H60.91 (3)C4—H410.9500
O3—C141.268 (3)C5—C101.401 (4)
O4—C141.238 (3)C5—C61.413 (3)
N1—C11.485 (3)C6—C71.395 (4)
N1—H10.90 (3)C7—C81.378 (5)
N1—H20.87 (3)C7—H710.9500
N1—H30.94 (4)C8—C91.397 (4)
N2—C41.368 (3)C8—H810.9500
N2—C61.370 (3)C9—C101.383 (4)
N2—H40.87 (3)C9—H910.9500
N3—C111.331 (3)C10—H1010.9500
N3—C121.454 (3)C12—C131.532 (3)
N3—H50.84 (3)C12—C141.536 (3)
C1—C111.529 (3)C12—H1211.0000
C1—C21.543 (3)C13—H1310.9900
C1—H111.0000C13—H1320.9900
C2—C31.497 (3)O1W—H1W0.84 (4)
C2—H210.9900O1W—H2W0.87 (4)
C2—H220.9900
C13—O2—H6103.2 (19)N2—C6—C7129.7 (2)
C1—N1—H1109.5 (19)N2—C6—C5107.6 (2)
C1—N1—H2110 (2)C7—C6—C5122.6 (2)
H1—N1—H2112 (3)C8—C7—C6117.1 (2)
C1—N1—H3112.4 (19)C8—C7—H71121.5
H1—N1—H3107 (3)C6—C7—H71121.5
H2—N1—H3106 (2)C7—C8—C9121.7 (3)
C4—N2—C6109.0 (2)C7—C8—H81119.1
C4—N2—H4123 (2)C9—C8—H81119.1
C6—N2—H4126 (2)C10—C9—C8120.9 (3)
C11—N3—C12121.82 (19)C10—C9—H91119.5
C11—N3—H5120.2 (19)C8—C9—H91119.5
C12—N3—H5117.9 (19)C9—C10—C5119.2 (2)
N1—C1—C11107.31 (18)C9—C10—H101120.4
N1—C1—C2109.11 (17)C5—C10—H101120.4
C11—C1—C2112.27 (18)O1—C11—N3124.7 (2)
N1—C1—H11109.4O1—C11—C1120.07 (19)
C11—C1—H11109.4N3—C11—C1115.18 (18)
C2—C1—H11109.4N3—C12—C13110.88 (19)
C3—C2—C1114.85 (18)N3—C12—C14109.74 (18)
C3—C2—H21108.6C13—C12—C14109.83 (17)
C1—C2—H21108.6N3—C12—H121108.8
C3—C2—H22108.6C13—C12—H121108.8
C1—C2—H22108.6C14—C12—H121108.8
H21—C2—H22107.5O2—C13—C12110.14 (17)
C4—C3—C5106.4 (2)O2—C13—H131109.6
C4—C3—C2126.2 (2)C12—C13—H131109.6
C5—C3—C2127.2 (2)O2—C13—H132109.6
N2—C4—C3109.9 (2)C12—C13—H132109.6
N2—C4—H41125.0H131—C13—H132108.1
C3—C4—H41125.0O4—C14—O3125.0 (2)
C10—C5—C6118.4 (2)O4—C14—C12117.9 (2)
C10—C5—C3134.7 (2)O3—C14—C12117.1 (2)
C6—C5—C3106.9 (2)H1W—O1W—H2W107 (3)
N1—C1—C11—N3157.96 (19)C3—C5—C6—N22.3 (3)
C1—C11—N3—C12178.97 (19)C10—C5—C6—C73.0 (4)
C11—N3—C12—C14167.49 (19)C3—C5—C6—C7175.2 (2)
N3—C12—C14—O37.1 (3)N2—C6—C7—C8177.9 (3)
N1—C1—C2—C361.6 (3)C5—C6—C7—C81.1 (4)
C1—C2—C3—C495.8 (3)C6—C7—C8—C91.0 (4)
N3—C12—C13—O266.3 (2)C7—C8—C9—C101.2 (5)
C11—C1—C2—C357.2 (3)C8—C9—C10—C50.8 (4)
C1—C2—C3—C588.9 (3)C6—C5—C10—C92.8 (4)
C6—N2—C4—C31.8 (3)C3—C5—C10—C9174.7 (3)
C5—C3—C4—N20.4 (3)C12—N3—C11—O12.1 (3)
C2—C3—C4—N2176.5 (2)N1—C1—C11—O123.0 (3)
C4—C3—C5—C10178.9 (3)C2—C1—C11—O196.9 (2)
C2—C3—C5—C102.8 (4)C2—C1—C11—N382.2 (2)
C4—C3—C5—C61.2 (3)C11—N3—C12—C1371.0 (3)
C2—C3—C5—C6174.9 (2)C14—C12—C13—O255.2 (2)
C4—N2—C6—C7174.6 (2)N3—C12—C14—O4170.76 (19)
C4—N2—C6—C52.5 (3)C13—C12—C14—O448.6 (3)
C10—C5—C6—N2179.6 (2)C13—C12—C14—O3129.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···C30.90 (3)2.64 (3)3.012 (3)106 (2)
N1—H2···O3i0.87 (3)1.86 (3)2.726 (3)170 (3)
N1—H3···O1W0.94 (4)1.88 (3)2.762 (3)156 (3)
N2—H4···O1ii0.87 (3)2.01 (3)2.802 (3)151 (3)
N3—H5···O2iii0.84 (3)2.16 (3)2.956 (2)159 (3)
O2—H6···O1Wiv0.91 (3)1.87 (3)2.756 (3)164 (3)
C1—H11···O2iii1.002.473.114 (3)122
C1—H11···O4iii1.002.463.403 (3)158
C9—H91···C6v0.952.713.537 (4)146
O1W—H1W···O4vi0.84 (4)1.87 (4)2.683 (2)164 (4)
O1W—H2W···O3iii0.87 (4)1.83 (4)2.694 (2)171 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x+1, y+1/2, z; (v) x, y+1/2, z+1; (vi) x+1, y1, z.
(YW) L-tyrosyl-L-tryptophane monohydrate top
Crystal data top
C20H21N3O4·H2OF(000) = 408
Mr = 385.41Dx = 1.428 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.7309 (3) ÅCell parameters from 3908 reflections
b = 8.1960 (4) Åθ = 2.1–27.9°
c = 19.0952 (9) ŵ = 0.10 mm1
β = 91.694 (1)°T = 105 K
V = 896.52 (8) Å3Block, yellow
Z = 20.36 × 0.20 × 0.14 mm
Data collection top
Siemens SMART CCD
diffractometer
2245 independent reflections
Radiation source: fine-focus sealed tube2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.3 pixels mm-1θmax = 27.9°, θmin = 2.1°
Sets of exposures each taken over 0.3° ω rotation scansh = 67
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 610
Tmin = 0.882, Tmax = 0.986l = 2522
5858 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1067P]
where P = (Fo2 + 2Fc2)/3
2245 reflections(Δ/σ)max = 0.002
284 parametersΔρmax = 0.22 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H21N3O4·H2OV = 896.52 (8) Å3
Mr = 385.41Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.7309 (3) ŵ = 0.10 mm1
b = 8.1960 (4) ÅT = 105 K
c = 19.0952 (9) Å0.36 × 0.20 × 0.14 mm
β = 91.694 (1)°
Data collection top
Siemens SMART CCD
diffractometer
2245 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2089 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.986Rint = 0.045
5858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
2245 reflectionsΔρmin = 0.17 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4999 (3)0.4479 (2)0.38676 (8)0.0250 (3)
H40.451 (5)0.513 (4)0.3542 (14)0.038*
O20.4612 (2)0.60015 (18)0.70704 (7)0.0198 (3)
O30.8189 (2)0.25717 (19)0.77450 (7)0.0194 (3)
O40.5038 (2)0.17317 (19)0.71301 (7)0.0199 (3)
N10.0973 (3)0.7550 (2)0.65267 (9)0.0196 (3)
H10.256 (5)0.760 (4)0.6403 (13)0.029*
H20.084 (5)0.847 (4)0.6856 (13)0.029*
H30.015 (4)0.771 (4)0.6140 (14)0.029*
N20.2481 (3)0.4263 (2)0.77238 (8)0.0147 (3)
H50.114 (4)0.379 (3)0.7782 (11)0.018*
N30.0105 (3)0.4665 (2)0.99236 (9)0.0246 (4)
H60.134 (5)0.527 (4)0.9999 (13)0.030*
C10.0442 (3)0.5953 (2)0.68609 (9)0.0157 (3)
H110.07780.61180.72180.019*
C20.0460 (3)0.4717 (2)0.63084 (9)0.0175 (4)
H210.04930.36200.65250.021*
H220.20830.50080.61670.021*
C30.0991 (3)0.4636 (2)0.56578 (9)0.0154 (4)
C40.3102 (3)0.3784 (2)0.56479 (9)0.0168 (4)
H410.36480.32270.60570.020*
C50.4418 (3)0.3741 (2)0.50454 (10)0.0183 (4)
H510.58410.31460.50440.022*
C60.3644 (3)0.4572 (2)0.44429 (9)0.0174 (4)
C70.1542 (3)0.5420 (2)0.44429 (9)0.0177 (4)
H710.10010.59820.40350.021*
C80.0235 (3)0.5438 (2)0.50473 (10)0.0175 (4)
H810.12070.60100.50430.021*
C90.2728 (3)0.5405 (2)0.72320 (9)0.0146 (3)
C100.4526 (3)0.3582 (2)0.80947 (9)0.0150 (4)
H1010.54930.44990.82910.018*
C110.3781 (3)0.2478 (3)0.87026 (9)0.0174 (4)
H1110.528 (4)0.198 (3)0.8893 (12)0.021*
H1120.285 (4)0.158 (4)0.8493 (13)0.026 (6)*
C120.2526 (3)0.3307 (2)0.92882 (9)0.0181 (4)
C130.0498 (3)0.4194 (3)0.92593 (10)0.0233 (4)
H1310.03690.44480.88420.028*
C140.3228 (3)0.3214 (2)1.00197 (9)0.0169 (4)
C150.5110 (3)0.2497 (3)1.03895 (10)0.0205 (4)
H1510.62870.19291.01480.025*
C160.5227 (4)0.2632 (3)1.11160 (10)0.0244 (4)
H1610.65120.21651.13700.029*
C170.3480 (4)0.3444 (3)1.14817 (10)0.0259 (4)
H1710.35890.34961.19790.031*
C180.1606 (4)0.4170 (3)1.11315 (10)0.0241 (4)
H1810.04270.47231.13780.029*
C190.1514 (3)0.4058 (2)1.04015 (10)0.0194 (4)
C200.6037 (3)0.2555 (2)0.76074 (9)0.0147 (3)
O1W0.0885 (3)0.0181 (2)0.72966 (9)0.0277 (3)
H1W0.215 (3)0.070 (4)0.7244 (15)0.042*
H2W0.011 (4)0.090 (3)0.7413 (15)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (8)0.0244 (8)0.0191 (7)0.0070 (7)0.0115 (6)0.0060 (6)
O20.0167 (6)0.0223 (7)0.0206 (7)0.0022 (6)0.0023 (5)0.0017 (6)
O30.0144 (6)0.0213 (6)0.0226 (6)0.0009 (6)0.0024 (5)0.0008 (6)
O40.0192 (6)0.0242 (7)0.0163 (6)0.0000 (6)0.0011 (5)0.0046 (6)
N10.0240 (8)0.0179 (8)0.0168 (7)0.0015 (8)0.0002 (6)0.0008 (7)
N20.0128 (7)0.0158 (7)0.0156 (7)0.0001 (6)0.0007 (5)0.0007 (6)
N30.0209 (8)0.0332 (10)0.0201 (8)0.0072 (8)0.0047 (6)0.0018 (8)
C10.0160 (8)0.0176 (8)0.0136 (8)0.0015 (7)0.0022 (6)0.0007 (7)
C20.0165 (8)0.0206 (9)0.0154 (8)0.0029 (7)0.0015 (7)0.0005 (8)
C30.0168 (8)0.0155 (8)0.0139 (8)0.0023 (7)0.0001 (6)0.0020 (7)
C40.0192 (8)0.0171 (9)0.0139 (8)0.0015 (8)0.0013 (7)0.0013 (7)
C50.0182 (9)0.0165 (8)0.0202 (9)0.0010 (7)0.0015 (7)0.0008 (7)
C60.0212 (9)0.0150 (8)0.0162 (8)0.0029 (7)0.0041 (7)0.0011 (7)
C70.0224 (9)0.0173 (9)0.0132 (8)0.0004 (7)0.0011 (7)0.0018 (7)
C80.0168 (8)0.0173 (9)0.0182 (8)0.0001 (7)0.0016 (7)0.0010 (8)
C90.0165 (8)0.0151 (8)0.0123 (8)0.0011 (7)0.0017 (6)0.0033 (7)
C100.0145 (8)0.0161 (9)0.0144 (8)0.0005 (7)0.0009 (6)0.0013 (7)
C110.0203 (8)0.0196 (9)0.0125 (8)0.0013 (8)0.0021 (6)0.0009 (8)
C120.0198 (9)0.0188 (9)0.0160 (8)0.0012 (8)0.0033 (7)0.0009 (8)
C130.0209 (9)0.0323 (11)0.0166 (9)0.0040 (9)0.0014 (7)0.0025 (8)
C140.0205 (9)0.0156 (8)0.0150 (8)0.0033 (7)0.0047 (7)0.0002 (7)
C150.0243 (9)0.0167 (8)0.0207 (9)0.0019 (9)0.0029 (7)0.0020 (8)
C160.0298 (10)0.0233 (9)0.0198 (9)0.0020 (9)0.0026 (8)0.0030 (8)
C170.0379 (12)0.0260 (11)0.0140 (9)0.0038 (10)0.0027 (8)0.0003 (8)
C180.0297 (10)0.0237 (10)0.0192 (9)0.0001 (9)0.0067 (8)0.0030 (8)
C190.0205 (9)0.0189 (9)0.0189 (9)0.0004 (8)0.0037 (7)0.0004 (7)
C200.0156 (8)0.0154 (8)0.0130 (8)0.0008 (8)0.0027 (6)0.0025 (7)
O1W0.0216 (7)0.0275 (8)0.0345 (8)0.0031 (6)0.0074 (6)0.0126 (7)
Geometric parameters (Å, º) top
O1—C61.366 (2)C5—H510.9500
O1—H40.86 (3)C6—C71.391 (3)
O2—C91.233 (2)C7—C81.394 (3)
O3—C201.253 (2)C7—H710.9500
O4—C201.258 (2)C8—H810.9500
N1—C11.492 (3)C10—C201.540 (2)
N1—H10.95 (3)C10—C111.542 (2)
N1—H20.99 (3)C10—H1011.0000
N1—H30.87 (3)C11—C121.509 (3)
N2—C91.337 (2)C11—H1111.01 (2)
N2—C101.462 (2)C11—H1120.99 (3)
N2—H50.87 (3)C12—C131.371 (3)
N3—C191.375 (3)C12—C141.444 (3)
N3—C131.380 (3)C13—H1310.9500
N3—H60.88 (3)C14—C151.401 (3)
C1—C91.538 (2)C14—C191.420 (3)
C1—C21.541 (3)C15—C161.391 (3)
C1—H111.0000C15—H1510.9500
C2—C31.517 (2)C16—C171.405 (3)
C2—H210.9900C16—H1610.9500
C2—H220.9900C17—C181.383 (3)
C3—C81.396 (3)C17—H1710.9500
C3—C41.398 (3)C18—C191.396 (3)
C4—C51.395 (2)C18—H1810.9500
C4—H410.9500O1W—H1W0.850 (18)
C5—C61.398 (3)O1W—H2W0.857 (18)
C6—O1—H4111.7 (18)O2—C9—N2124.43 (17)
C1—N1—H1110.7 (18)O2—C9—C1120.62 (17)
C1—N1—H2112.3 (15)N2—C9—C1114.95 (15)
H1—N1—H2103 (2)N2—C10—C20111.90 (14)
C1—N1—H3112 (2)N2—C10—C11110.67 (14)
H1—N1—H3106 (2)C20—C10—C11107.91 (15)
H2—N1—H3112 (3)N2—C10—H101108.8
C9—N2—C10120.51 (15)C20—C10—H101108.8
C9—N2—H5120.8 (16)C11—C10—H101108.8
C10—N2—H5117.9 (16)C12—C11—C10116.26 (17)
C19—N3—C13109.06 (17)C12—C11—H111109.5 (14)
C19—N3—H6128.7 (16)C10—C11—H111104.9 (14)
C13—N3—H6122.3 (17)C12—C11—H112111.9 (14)
N1—C1—C9105.76 (15)C10—C11—H112106.9 (15)
N1—C1—C2110.65 (14)H111—C11—H112107 (2)
C9—C1—C2112.77 (16)C13—C12—C14106.15 (17)
N1—C1—H11109.2C13—C12—C11129.14 (18)
C9—C1—H11109.2C14—C12—C11124.62 (17)
C2—C1—H11109.2C12—C13—N3110.28 (18)
C3—C2—C1114.12 (15)C12—C13—H131124.9
C3—C2—H21108.7N3—C13—H131124.9
C1—C2—H21108.7C15—C14—C19118.66 (17)
C3—C2—H22108.7C15—C14—C12134.25 (18)
C1—C2—H22108.7C19—C14—C12107.09 (17)
H21—C2—H22107.6C16—C15—C14118.88 (18)
C8—C3—C4118.13 (16)C16—C15—H151120.6
C8—C3—C2119.97 (16)C14—C15—H151120.6
C4—C3—C2121.91 (17)C15—C16—C17121.27 (19)
C5—C4—C3120.88 (17)C15—C16—H161119.4
C5—C4—H41119.6C17—C16—H161119.4
C3—C4—H41119.6C18—C17—C16121.21 (18)
C4—C5—C6120.04 (17)C18—C17—H171119.4
C4—C5—H51120.0C16—C17—H171119.4
C6—C5—H51120.0C17—C18—C19117.42 (19)
O1—C6—C7122.73 (17)C17—C18—H181121.3
O1—C6—C5117.45 (17)C19—C18—H181121.3
C7—C6—C5119.80 (16)N3—C19—C18130.07 (18)
C6—C7—C8119.47 (17)N3—C19—C14107.39 (16)
C6—C7—H71120.3C18—C19—C14122.54 (18)
C8—C7—H71120.3O3—C20—O4125.55 (17)
C7—C8—C3121.67 (17)O3—C20—C10115.78 (16)
C7—C8—H81119.2O4—C20—C10118.60 (15)
C3—C8—H81119.2H1W—O1W—H2W105 (2)
N1—C1—C9—N2161.60 (15)C20—C10—C11—C12172.80 (16)
C1—C9—N2—C10177.26 (15)C10—C11—C12—C14125.9 (2)
C9—N2—C10—C2067.6 (2)C14—C12—C13—N30.2 (2)
N2—C10—C20—O3147.54 (16)C11—C12—C13—N3176.8 (2)
N1—C1—C2—C347.2 (2)C19—N3—C13—C121.2 (3)
C1—C2—C3—C478.8 (2)C13—C12—C14—C15179.8 (2)
N2—C10—C11—C1264.5 (2)C11—C12—C14—C153.4 (4)
C10—C11—C12—C1358.1 (3)C13—C12—C14—C190.8 (2)
C9—C1—C2—C371.0 (2)C11—C12—C14—C19176.03 (18)
C1—C2—C3—C8100.8 (2)C19—C14—C15—C160.3 (3)
C8—C3—C4—C50.2 (3)C12—C14—C15—C16179.1 (2)
C2—C3—C4—C5179.36 (18)C14—C15—C16—C171.1 (3)
C3—C4—C5—C60.7 (3)C15—C16—C17—C181.4 (3)
C4—C5—C6—O1179.68 (18)C16—C17—C18—C190.2 (3)
C4—C5—C6—C71.0 (3)C13—N3—C19—C18177.9 (2)
O1—C6—C7—C8178.95 (19)C13—N3—C19—C141.7 (2)
C5—C6—C7—C80.3 (3)C17—C18—C19—N3179.4 (2)
C6—C7—C8—C30.6 (3)C17—C18—C19—C141.2 (3)
C4—C3—C8—C70.9 (3)C15—C14—C19—N3179.01 (18)
C2—C3—C8—C7178.70 (17)C12—C14—C19—N31.5 (2)
C10—N2—C9—O22.5 (3)C15—C14—C19—C181.4 (3)
N1—C1—C9—O218.6 (2)C12—C14—C19—C18178.07 (19)
C2—C1—C9—O2102.4 (2)C11—C10—C20—O390.47 (19)
C2—C1—C9—N277.34 (19)N2—C10—C20—O435.2 (2)
C9—N2—C10—C11172.00 (16)C11—C10—C20—O486.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.95 (3)2.16 (3)2.915 (2)137 (2)
N1—H2···O1Wii0.99 (3)1.63 (3)2.611 (2)170 (2)
N1—H3···C7iii0.87 (3)2.66 (3)3.298 (3)131 (2)
O1—H4···O4i0.86 (3)1.86 (3)2.653 (2)153 (3)
N2—H5···O3iv0.87 (3)1.96 (3)2.825 (2)170 (2)
N3—H6···C14v0.88 (3)2.65 (3)3.419 (3)147 (2)
O1W—H1W···O40.85 (2)1.88 (2)2.725 (2)177 (3)
O1W—H2W···O3iv0.86 (2)1.81 (2)2.653 (2)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+1; (iv) x1, y, z; (v) x, y+1/2, z+2.

Experimental details

(SN)(SY)(WS)(YW)
Crystal data
Chemical formulaC7H13N3O5·H2OC12H16N2O5·H2OC14H17N3O4·H2OC20H21N3O4·H2O
Mr237.22286.28309.32385.41
Crystal system, space groupTriclinic, P1Orthorhombic, P21212Monoclinic, P21Monoclinic, P21
Temperature (K)105105105105
a, b, c (Å)4.7547 (1), 7.5121 (2), 8.5626 (2)15.3480 (9), 17.8805 (11), 4.7728 (3)6.5613 (5), 9.1474 (7), 12.5052 (9)5.7309 (3), 8.1960 (4), 19.0952 (9)
α, β, γ (°)115.691 (1), 90.266 (1), 104.957 (1)90, 90, 9090, 101.973 (1), 9090, 91.694 (1), 90
V3)263.87 (1)1309.80 (14)734.22 (10)896.52 (8)
Z1422
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.130.120.110.10
Crystal size (mm)0.30 × 0.25 × 0.200.80 × 0.50 × 0.200.40 × 0.25 × 0.080.36 × 0.20 × 0.14
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Siemens SMART CCD
diffractometer
Siemens SMART CCD
diffractometer
Siemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.838, 0.9740.814, 0.9760.893, 0.9910.882, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
2522, 1289, 1281 14151, 1932, 1655 4829, 1827, 1623 5858, 2245, 2089
Rint0.0170.0400.0730.045
(sin θ/λ)max1)0.6670.6690.6580.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.09 0.038, 0.102, 1.14 0.036, 0.091, 1.04 0.031, 0.080, 1.02
No. of reflections1289193218272245
No. of parameters190206225284
No. of restraints3314
H-atom treatmentOnly H-atom coordinates refinedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.210.24, 0.240.21, 0.250.22, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2001), SHELXTL (Version 6.10; Sheldrick, 2008).

Selected torsion angles (º) for (SN) top
N1—C1—C3—N2124.40 (13)N1—C1—C2—O157.08 (15)
C1—C3—N2—C4172.27 (12)N2—C4—C5—C6169.42 (11)
C3—N2—C4—C7153.03 (13)C4—C5—C6—O354.70 (19)
N2—C4—C7—O47.36 (19)C4—C5—C6—N3129.80 (14)
Hydrogen-bond geometry (Å, º) for (SN) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.88 (3)1.88 (3)2.7446 (18)171 (2)
N1—H2···O5i0.91 (3)1.92 (3)2.7712 (16)156 (2)
N1—H3···O5ii0.81 (3)2.03 (3)2.8037 (17)169 (2)
N2—H4···O2iii0.86 (2)2.12 (2)2.9349 (16)156 (2)
O1—H5···O4ii0.81 (3)1.82 (3)2.6418 (16)174 (3)
C1—H11···O2iii0.98 (2)2.45 (2)3.2908 (18)144.5 (18)
N3—H6···O4iv0.82 (3)2.17 (3)2.9784 (18)165 (3)
N3—H7···O3iii0.86 (2)2.08 (3)2.9014 (19)160 (3)
C5—H52···O3iii0.98 (2)2.44 (2)3.2899 (19)144.2 (19)
O1W—H1W···O1iv0.88 (4)1.90 (4)2.7750 (21)173 (3)
O1W—H2W···O1v0.78 (4)2.31 (4)3.0814 (20)165 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y1, z; (v) x1, y1, z.
Selected torsion angles (º) for (SY) top
N1—C1—C3—N2171.4 (2)N1—C1—C2—O168.9 (3)
C1—C3—N2—C4169.2 (2)N2—C4—C5—C662.4 (3)
C3—N2—C4—C12148.6 (2)C4—C5—C6—C788.7 (3)
N2—C4—C12—O46.1 (3)
Hydrogen-bond geometry (Å, º) for (SY) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.99 (3)1.96 (3)2.936 (3)171 (3)
N1—H2···O5ii0.99 (3)1.96 (3)2.903 (3)158 (3)
N1—H3···O3iii0.95 (3)1.83 (3)2.721 (3)155 (3)
O1—H4···O1Wiv0.95 (3)1.76 (3)2.679 (3)163 (3)
N2—H5···O2v0.82 (3)2.34 (3)3.092 (3)153 (3)
O3—H6···O4vi0.87 (4)1.74 (4)2.612 (3)173 (4)
C1—H11···O2v1.002.373.004 (3)121
O1W—H1W···O5i0.846 (17)2.07 (2)2.904 (3)167 (4)
O1W—H2W···O50.846 (17)1.940 (18)2.782 (3)164 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+1, y+1, z+1; (iv) x1/2, y+3/2, z+1; (v) x, y, z1; (vi) x+1/2, y+3/2, z.
Selected torsion angles (º) for (WS) top
N1—C1—C11—N3157.96 (19)N1—C1—C2—C361.6 (3)
C1—C11—N3—C12178.97 (19)C1—C2—C3—C495.8 (3)
C11—N3—C12—C14167.49 (19)N3—C12—C13—O266.3 (2)
N3—C12—C14—O37.1 (3)
Hydrogen-bond geometry (Å, º) for (WS) top
D—H···AD—HH···AD···AD—H···A
N1—H1···C30.90 (3)2.64 (3)3.012 (3)106 (2)
N1—H2···O3i0.87 (3)1.86 (3)2.726 (3)170 (3)
N1—H3···O1W0.94 (4)1.88 (3)2.762 (3)156 (3)
N2—H4···O1ii0.87 (3)2.01 (3)2.802 (3)151 (3)
N3—H5···O2iii0.84 (3)2.16 (3)2.956 (2)159 (3)
O2—H6···O1Wiv0.91 (3)1.87 (3)2.756 (3)164 (3)
C1—H11···O2iii1.002.473.114 (3)122
C1—H11···O4iii1.002.463.403 (3)158
C9—H91···C6v0.952.713.537 (4)146
O1W—H1W···O4vi0.84 (4)1.87 (4)2.683 (2)164 (4)
O1W—H2W···O3iii0.87 (4)1.83 (4)2.694 (2)171 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y1/2, z; (iv) x+1, y+1/2, z; (v) x, y+1/2, z+1; (vi) x+1, y1, z.
Selected torsion angles (º) for (YW) top
N1—C1—C9—N2161.60 (15)N1—C1—C2—C347.2 (2)
C1—C9—N2—C10177.26 (15)C1—C2—C3—C478.8 (2)
C9—N2—C10—C2067.6 (2)N2—C10—C11—C1264.5 (2)
N2—C10—C20—O3147.54 (16)C10—C11—C12—C1358.1 (3)
Hydrogen-bond geometry (Å, º) for (YW) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.95 (3)2.16 (3)2.915 (2)137 (2)
N1—H2···O1Wii0.99 (3)1.63 (3)2.611 (2)170 (2)
N1—H3···C7iii0.87 (3)2.66 (3)3.298 (3)131 (2)
O1—H4···O4i0.86 (3)1.86 (3)2.653 (2)153 (3)
N2—H5···O3iv0.87 (3)1.96 (3)2.825 (2)170 (2)
N3—H6···C14v0.88 (3)2.65 (3)3.419 (3)147 (2)
O1W—H1W···O40.850 (18)1.877 (17)2.725 (2)177 (3)
O1W—H2W···O3iv0.857 (18)1.805 (19)2.653 (2)170 (3)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+1; (iv) x1, y, z; (v) x, y+1/2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds