Buy article online - an online subscription or single-article purchase is required to access this article.
Compounds
trans-tetraaquadichloridocobalt(II)–piperazine-2,5-dione (1/1), [CoCl
2(H
2O)
4]·C
4H
6N
2O
2, (I), and
trans-tetraaquadichloridonickel(II)–piperazine-2,5-dione (1/1), [NiCl
2(H
2O)
4]·C
4H
6N
2O
2, (II), are isomorphous. In each structure, the metal complex and the piperazinedione unit both lie across centres of inversion in the space group
P2
1/
n. The [
MCl
2(H
2O)
4] units (
M = Co or Ni) are linked by O—H
Cl hydrogen bonds into sheets of
R22(8) and
R42(12) rings, and these sheets are linked by the piperazinedione components
via a combination of O—H
O and N—H
Cl hydrogen bonds into a three-dimensional framework. In
catena-poly[[[
trans-diaquacopper(II)]-di-μ-chlorido] piperazine-2,5-dione solvate], {[CuCl
2(H
2O)
2]·C
4H
6N
2O
2}
n, (III), the metal ion and the piperazine unit both lie across centres of inversion in the space group
I2/
a. The coordination polymer forms chains of centrosymmetric [CuCl
2(H
2O)
2] units running parallel to [010] and these are linked by the piperazinedione units into a three-dimensional framework structure. In poly[μ
3-nitrato-μ
2-piperazine-2,5-dione-silver(I)], [Ag(NO
3)(C
4H
6N
2O
2)]
n, (IV), the silver and nitrate ions lie on mirror planes in the space group
Pnma, while the piperazinedione unit lies across a centre of inversion. The compound is a coordination polymer containing five-coordinate approximately square-pyramidal Ag, in which the ligating O atoms are derived from three different nitrate ligands and two different piperazinedione ligands. The ionic components form sheets in which each anion is coordinated to three different cations, and these sheets are linked into a three-dimensional framework by the organic ligands, each of which coordinates to two different Ag centres. The significance of this study lies in its demonstration of a wide variety of framework types built from a common and very simple organic component with simple metal salts.
Supporting information
CCDC references: 700010; 700011; 700012; 700013
Compounds (I)–(IV) were prepared by dissolving in water equimolar quantities of
piperazine-2,5-dione and, respectively, cobalt(II) chloride hexahydrate,
nickel(II) chloride tetrahydrate, copper(II) chloride dihydrate or silver
nitrate. The solutions were set aside to crystallize, providing crystals of
(I)–(IV) suitable for single-crystal X-ray diffraction.
For compounds (I), (II) and (IV, the space groups were uniquely assigned from
the systematic absences as P21/n, P21/n and
Pnma, respectively. For compound (III), the systematic absences
permitted Cc and C2/c as possible space groups;
C2/c was selected and confirmed by the refinement. Because of
the very large value of β in C2/c [132.180 (3)°], the
alternative setting I2/a was adopted prior to the final
refinement. Compound (III) was refined as a non-merohedral twin, resulting in
twin fractions of 0.469 and 0.531.
For each of (I)–(IV), all H atoms were located in difference maps and then
treated as riding atoms, with C—H = 0.99, N—H = 0.88 and O—H = 0.84 or
0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) or
1.5Ueq(O).
For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).
(I) trans-Tetraaquadichloridocobalt(II)–piperazine-2,5-dione (1/1)
top
Crystal data top
[CoCl2(H2O)4]·C4H6N2O2 | F(000) = 322 |
Mr = 316.00 | Dx = 1.809 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1330 reflections |
a = 9.5326 (4) Å | θ = 3.8–27.5° |
b = 6.6602 (2) Å | µ = 1.95 mm−1 |
c = 10.0167 (4) Å | T = 120 K |
β = 114.1660 (17)° | Plate, colourless |
V = 580.22 (4) Å3 | 0.40 × 0.20 × 0.07 mm |
Z = 2 | |
Data collection top
Nonius KappaCCD diffractometer | 1330 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1189 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.8° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −8→8 |
Tmin = 0.509, Tmax = 0.876 | l = −12→13 |
7527 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.020P)2 + 0.3391P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1330 reflections | Δρmax = 0.44 e Å−3 |
71 parameters | Δρmin = −0.37 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0182 (19) |
Crystal data top
[CoCl2(H2O)4]·C4H6N2O2 | V = 580.22 (4) Å3 |
Mr = 316.00 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.5326 (4) Å | µ = 1.95 mm−1 |
b = 6.6602 (2) Å | T = 120 K |
c = 10.0167 (4) Å | 0.40 × 0.20 × 0.07 mm |
β = 114.1660 (17)° | |
Data collection top
Nonius KappaCCD diffractometer | 1330 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1189 reflections with I > 2σ(I) |
Tmin = 0.509, Tmax = 0.876 | Rint = 0.032 |
7527 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.053 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.44 e Å−3 |
1330 reflections | Δρmin = −0.37 e Å−3 |
71 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.00843 (11) | |
Cl1 | 0.36781 (4) | 0.51301 (5) | 0.23198 (4) | 0.01167 (11) | |
O1 | 0.59489 (11) | 0.22731 (14) | 0.49628 (11) | 0.0148 (2) | |
O2 | 0.68877 (11) | 0.65237 (14) | 0.48809 (10) | 0.0129 (2) | |
O12 | 0.60342 (13) | −0.02818 (15) | 0.29173 (11) | 0.0177 (2) | |
N11 | 0.48079 (13) | 0.14996 (17) | 0.08559 (13) | 0.0131 (3) | |
C12 | 0.55480 (16) | −0.01067 (19) | 0.15618 (17) | 0.0121 (3) | |
C13 | 0.58539 (17) | −0.1785 (2) | 0.07207 (15) | 0.0146 (3) | |
H1A | 0.6552 | 0.1734 | 0.5746 | 0.022* | |
H1B | 0.5829 | 0.1501 | 0.4261 | 0.022* | |
H2A | 0.7376 | 0.7191 | 0.5643 | 0.019* | |
H2B | 0.6587 | 0.7357 | 0.4191 | 0.019* | |
H11 | 0.4704 | 0.2492 | 0.1388 | 0.016* | |
H13A | 0.6980 | −0.1949 | 0.1065 | 0.018* | |
H13B | 0.5441 | −0.3045 | 0.0943 | 0.018* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Co1 | 0.00921 (16) | 0.00771 (16) | 0.00769 (17) | 0.00058 (8) | 0.00276 (12) | −0.00047 (9) |
Cl1 | 0.01405 (19) | 0.01107 (19) | 0.00752 (19) | 0.00048 (11) | 0.00200 (15) | −0.00086 (11) |
O1 | 0.0198 (5) | 0.0122 (5) | 0.0094 (5) | 0.0056 (4) | 0.0029 (4) | −0.0012 (4) |
O2 | 0.0147 (5) | 0.0121 (5) | 0.0108 (5) | −0.0013 (4) | 0.0038 (4) | −0.0003 (4) |
O12 | 0.0269 (6) | 0.0146 (5) | 0.0116 (5) | 0.0027 (4) | 0.0079 (5) | −0.0001 (4) |
N11 | 0.0181 (6) | 0.0112 (6) | 0.0117 (6) | 0.0025 (4) | 0.0077 (5) | −0.0027 (4) |
C12 | 0.0133 (7) | 0.0117 (7) | 0.0134 (7) | −0.0021 (5) | 0.0074 (6) | −0.0017 (5) |
C13 | 0.0218 (7) | 0.0126 (7) | 0.0113 (7) | 0.0043 (5) | 0.0086 (6) | 0.0006 (5) |
Geometric parameters (Å, º) top
Co1—O1 | 2.0361 (9) | N11—C13ii | 1.4534 (18) |
Co1—O1i | 2.0361 (9) | N11—H11 | 0.88 |
Co1—O2 | 2.1113 (9) | O2—H2A | 0.84 |
Co1—O2i | 2.1113 (9) | O2—H2B | 0.84 |
Co1—Cl1 | 2.4562 (3) | C12—O12 | 1.2476 (19) |
Co1—Cl1i | 2.4562 (3) | C12—C13 | 1.4984 (19) |
O1—H1A | 0.84 | C13—N11ii | 1.4534 (18) |
O1—H1B | 0.84 | C13—H13A | 0.99 |
N11—C12 | 1.3167 (18) | C13—H13B | 0.99 |
| | | |
O1—Co1—O2 | 91.86 (4) | C12—N11—C13ii | 126.05 (12) |
O1i—Co1—O2 | 88.14 (4) | C12—N11—H11 | 117.0 |
O1—Co1—O2i | 88.14 (4) | C13ii—N11—H11 | 117.0 |
O1i—Co1—O2i | 91.86 (4) | Co1—O2—H2A | 111.8 |
O1—Co1—Cl1 | 92.55 (3) | Co1—O2—H2B | 110.7 |
O1i—Co1—Cl1 | 87.45 (3) | H2A—O2—H2B | 105.9 |
O2—Co1—Cl1 | 89.37 (3) | O12—C12—N11 | 122.62 (13) |
O2i—Co1—Cl1 | 90.63 (3) | O12—C12—C13 | 118.10 (12) |
O1—Co1—Cl1i | 87.45 (3) | N11—C12—C13 | 119.27 (13) |
O1i—Co1—Cl1i | 92.55 (3) | N11ii—C13—C12 | 114.56 (12) |
O2—Co1—Cl1i | 90.63 (3) | N11ii—C13—H13A | 108.6 |
O2i—Co1—Cl1i | 89.37 (3) | C12—C13—H13A | 108.6 |
Co1—O1—H1A | 120.2 | N11ii—C13—H13B | 108.6 |
Co1—O1—H1B | 130.7 | C12—C13—H13B | 108.6 |
H1A—O1—H1B | 109.0 | H13A—C13—H13B | 107.6 |
| | | |
C13ii—N11—C12—O12 | −177.06 (13) | O12—C12—C13—N11ii | 177.47 (12) |
C13ii—N11—C12—C13 | 4.2 (2) | N11—C12—C13—N11ii | −3.7 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1iii | 0.84 | 2.35 | 3.1426 (10) | 158 |
O1—H1B···O12 | 0.84 | 1.86 | 2.6901 (14) | 167 |
O2—H2A···Cl1iv | 0.84 | 2.42 | 3.2302 (10) | 163 |
O2—H2B···O12v | 0.84 | 1.96 | 2.7834 (14) | 168 |
N11—H11···Cl1 | 0.88 | 2.38 | 3.2326 (12) | 164 |
Symmetry codes: (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) x, y+1, z. |
(II) trans-Tetraaquadichloridonickel(II)–piperazine-2,5-dione (1/1)
top
Crystal data top
[NiCl2(H2O)4]·C4H6N2O2 | F(000) = 324 |
Mr = 315.78 | Dx = 1.826 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1315 reflections |
a = 9.4844 (4) Å | θ = 3.8–27.5° |
b = 6.6616 (3) Å | µ = 2.17 mm−1 |
c = 9.9975 (4) Å | T = 120 K |
β = 114.6290 (18)° | Block, colourless |
V = 574.19 (4) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 | |
Data collection top
Nonius KappaCCD diffractometer | 1315 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 1218 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.8° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −8→8 |
Tmin = 0.468, Tmax = 0.649 | l = −12→12 |
6275 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.019 | H-atom parameters constrained |
wR(F2) = 0.046 | w = 1/[σ2(Fo2) + (0.0167P)2 + 0.3677P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1315 reflections | Δρmax = 0.35 e Å−3 |
71 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.032 (2) |
Crystal data top
[NiCl2(H2O)4]·C4H6N2O2 | V = 574.19 (4) Å3 |
Mr = 315.78 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4844 (4) Å | µ = 2.17 mm−1 |
b = 6.6616 (3) Å | T = 120 K |
c = 9.9975 (4) Å | 0.40 × 0.30 × 0.20 mm |
β = 114.6290 (18)° | |
Data collection top
Nonius KappaCCD diffractometer | 1315 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1218 reflections with I > 2σ(I) |
Tmin = 0.468, Tmax = 0.649 | Rint = 0.022 |
6275 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 0 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.35 e Å−3 |
1315 reflections | Δρmin = −0.34 e Å−3 |
71 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.00809 (10) | |
Cl1 | 0.37016 (4) | 0.51186 (4) | 0.23679 (3) | 0.01131 (10) | |
O1 | 0.59374 (11) | 0.22730 (14) | 0.49672 (10) | 0.0160 (2) | |
O2 | 0.68915 (10) | 0.64843 (14) | 0.49002 (10) | 0.0128 (2) | |
O12 | 0.60300 (12) | −0.03041 (15) | 0.29286 (11) | 0.0182 (2) | |
N11 | 0.48200 (13) | 0.15055 (16) | 0.08636 (12) | 0.0128 (2) | |
C12 | 0.55513 (15) | −0.01192 (18) | 0.15700 (15) | 0.0119 (3) | |
C13 | 0.58485 (16) | −0.1796 (2) | 0.07224 (14) | 0.0146 (3) | |
H1A | 0.6519 | 0.1739 | 0.5770 | 0.024* | |
H1B | 0.5819 | 0.1525 | 0.4252 | 0.024* | |
H2A | 0.7343 | 0.7168 | 0.5667 | 0.019* | |
H2B | 0.6541 | 0.7327 | 0.4215 | 0.019* | |
H11 | 0.4729 | 0.2502 | 0.1400 | 0.015* | |
H13A | 0.6983 | −0.1969 | 0.1075 | 0.018* | |
H13B | 0.5427 | −0.3053 | 0.0939 | 0.018* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.00879 (14) | 0.00747 (14) | 0.00677 (14) | 0.00066 (7) | 0.00200 (9) | −0.00034 (7) |
Cl1 | 0.01365 (17) | 0.01068 (17) | 0.00688 (16) | 0.00055 (10) | 0.00159 (12) | −0.00093 (10) |
O1 | 0.0225 (5) | 0.0126 (5) | 0.0084 (4) | 0.0076 (4) | 0.0019 (4) | −0.0010 (4) |
O2 | 0.0136 (4) | 0.0122 (4) | 0.0107 (4) | −0.0011 (3) | 0.0030 (3) | 0.0009 (4) |
O12 | 0.0282 (6) | 0.0153 (5) | 0.0102 (5) | 0.0032 (4) | 0.0073 (4) | −0.0003 (4) |
N11 | 0.0186 (6) | 0.0104 (5) | 0.0106 (5) | 0.0024 (4) | 0.0073 (4) | −0.0027 (4) |
C12 | 0.0135 (6) | 0.0117 (6) | 0.0120 (6) | −0.0020 (4) | 0.0065 (5) | −0.0015 (5) |
C13 | 0.0221 (7) | 0.0120 (6) | 0.0116 (6) | 0.0055 (5) | 0.0090 (5) | 0.0017 (5) |
Geometric parameters (Å, º) top
Ni1—O1 | 2.0287 (9) | O2—H2B | 0.8399 |
Ni1—O1i | 2.0287 (9) | N11—C12 | 1.3202 (17) |
Ni1—O2 | 2.0869 (9) | N11—C13ii | 1.4545 (16) |
Ni1—O2i | 2.0869 (9) | N11—H11 | 0.88 |
Ni1—Cl1 | 2.3971 (3) | C12—O12 | 1.2459 (17) |
Ni1—Cl1i | 2.3971 (3) | C12—C13 | 1.4980 (18) |
O1—H1A | 0.8398 | C13—N11ii | 1.4545 (16) |
O1—H1B | 0.8399 | C13—H13A | 0.99 |
O2—H2A | 0.8399 | C13—H13B | 0.99 |
| | | |
O1—Ni1—O2 | 91.85 (4) | Ni1—O2—H2A | 109.6 |
O1i—Ni1—O2 | 88.15 (4) | Ni1—O2—H2B | 107.5 |
O1—Ni1—O2i | 88.15 (4) | H2A—O2—H2B | 105.1 |
O1i—Ni1—O2i | 91.85 (4) | C12—N11—C13ii | 125.82 (11) |
O1—Ni1—Cl1 | 92.29 (3) | C12—N11—H11 | 117.1 |
O1i—Ni1—Cl1 | 87.71 (3) | C13ii—N11—H11 | 117.1 |
O2—Ni1—Cl1 | 89.45 (3) | O12—C12—N11 | 122.39 (12) |
O2i—Ni1—Cl1 | 90.55 (3) | O12—C12—C13 | 118.30 (11) |
O1—Ni1—Cl1i | 87.71 (3) | N11—C12—C13 | 119.30 (12) |
O1i—Ni1—Cl1i | 92.29 (3) | N11ii—C13—C12 | 114.72 (11) |
O2—Ni1—Cl1i | 90.55 (3) | N11ii—C13—H13A | 108.6 |
O2i—Ni1—Cl1i | 89.45 (3) | C12—C13—H13A | 108.6 |
Ni1—O1—H1A | 118.8 | N11ii—C13—H13B | 108.6 |
Ni1—O1—H1B | 129.9 | C12—C13—H13B | 108.6 |
H1A—O1—H1B | 111.3 | H13A—C13—H13B | 107.6 |
| | | |
C13ii—N11—C12—O12 | −176.40 (13) | O12—C12—C13—N11ii | 176.86 (12) |
C13ii—N11—C12—C13 | 4.7 (2) | N11—C12—C13—N11ii | −4.23 (19) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1iii | 0.84 | 2.37 | 3.1508 (10) | 155 |
O1—H1B···O12 | 0.84 | 1.87 | 2.6941 (13) | 167 |
O2—H2A···Cl1iv | 0.84 | 2.45 | 3.2596 (9) | 163 |
O2—H2B···O12v | 0.84 | 1.96 | 2.7906 (13) | 168 |
N11—H11···Cl1 | 0.88 | 2.39 | 3.2419 (11) | 163 |
Symmetry codes: (iii) x+1/2, −y+1/2, z+1/2; (iv) x+1/2, −y+3/2, z+1/2; (v) x, y+1, z. |
(III)
catena-poly[[[
trans-diaquacopper(II)]-di-µ-chlorido]
piperazine-2,5-dione solvate]
top
Crystal data top
[CuCl2(H2O)2]·C4H6N2O2 | F(000) = 572 |
Mr = 284.58 | Dx = 2.032 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 1059 reflections |
a = 15.224 (3) Å | θ = 3.6–27.5° |
b = 3.9694 (8) Å | µ = 2.91 mm−1 |
c = 15.444 (4) Å | T = 120 K |
β = 94.73 (3)° | Needle, blue-green |
V = 930.1 (4) Å3 | 0.16 × 0.04 × 0.03 mm |
Z = 4 | |
Data collection top
Nonius KappaCCD diffractometer | 1059 independent reflections |
Radiation source: Bruker Nonius FR591 rotating anode | 787 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.0 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
ϕ and ω scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −5→5 |
Tmin = 0.654, Tmax = 0.918 | l = −12→19 |
4485 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0721P)2 + 6.6393P] where P = (Fo2 + 2Fc2)/3 |
1059 reflections | (Δ/σ)max < 0.001 |
62 parameters | Δρmax = 1.58 e Å−3 |
0 restraints | Δρmin = −1.45 e Å−3 |
Crystal data top
[CuCl2(H2O)2]·C4H6N2O2 | V = 930.1 (4) Å3 |
Mr = 284.58 | Z = 4 |
Monoclinic, I2/a | Mo Kα radiation |
a = 15.224 (3) Å | µ = 2.91 mm−1 |
b = 3.9694 (8) Å | T = 120 K |
c = 15.444 (4) Å | 0.16 × 0.04 × 0.03 mm |
β = 94.73 (3)° | |
Data collection top
Nonius KappaCCD diffractometer | 1059 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 787 reflections with I > 2σ(I) |
Tmin = 0.654, Tmax = 0.918 | Rint = 0.0 |
4485 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.09 | Δρmax = 1.58 e Å−3 |
1059 reflections | Δρmin = −1.45 e Å−3 |
62 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.2500 | 0.2500 | 0.2500 | 0.0182 (4) | |
Cl1 | 0.24586 (10) | 0.5930 (4) | 0.36560 (10) | 0.0215 (4) | |
O1 | 0.3780 (3) | 0.2422 (12) | 0.2634 (3) | 0.0205 (10) | |
O12 | 0.5031 (3) | 0.6199 (13) | 0.3563 (3) | 0.0212 (10) | |
N11 | 0.4258 (3) | 0.8700 (15) | 0.4572 (3) | 0.0195 (12) | |
C12 | 0.5002 (4) | 0.7978 (16) | 0.4227 (4) | 0.0158 (13) | |
C13 | 0.4159 (4) | 1.0630 (18) | 0.5352 (4) | 0.0186 (14) | |
H1A | 0.4111 | 0.4021 | 0.2915 | 0.031* | |
H1B | 0.4101 | 0.1948 | 0.2185 | 0.031* | |
H11 | 0.3805 | 0.7841 | 0.4255 | 0.023* | |
H13A | 0.3886 | 0.9173 | 0.5776 | 0.022* | |
H13B | 0.3749 | 1.2521 | 0.5207 | 0.022* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0160 (5) | 0.0241 (7) | 0.0146 (6) | 0.0010 (5) | 0.0008 (4) | −0.0071 (5) |
Cl1 | 0.0181 (7) | 0.0294 (9) | 0.0171 (7) | −0.0019 (7) | 0.0018 (5) | −0.0116 (7) |
O1 | 0.0127 (19) | 0.029 (3) | 0.020 (2) | −0.002 (2) | 0.0015 (17) | −0.008 (2) |
O12 | 0.021 (2) | 0.031 (3) | 0.011 (2) | −0.004 (2) | 0.0012 (17) | −0.005 (2) |
N11 | 0.017 (2) | 0.026 (3) | 0.015 (3) | −0.006 (2) | −0.003 (2) | −0.004 (2) |
C12 | 0.015 (3) | 0.020 (4) | 0.012 (3) | −0.002 (2) | 0.001 (2) | 0.004 (3) |
C13 | 0.015 (3) | 0.023 (4) | 0.017 (3) | 0.001 (3) | 0.000 (2) | 0.000 (3) |
Geometric parameters (Å, º) top
Cu1—O1i | 1.942 (4) | N11—C13 | 1.446 (8) |
Cu1—O1 | 1.942 (4) | N11—H11 | 0.88 |
Cu1—Cl1 | 2.2502 (15) | C12—O12 | 1.249 (8) |
Cu1—Cl1i | 2.2502 (15) | C12—C13iii | 1.492 (8) |
Cu1—Cl1ii | 3.1640 (18) | C13—C12iii | 1.492 (8) |
O1—H1A | 0.90 | C13—H13A | 0.99 |
O1—H1B | 0.90 | C13—H13B | 0.99 |
N11—C12 | 1.322 (8) | | |
| | | |
O1i—Cu1—Cl1 | 88.92 (14) | O12—C12—N11 | 122.9 (6) |
O1—Cu1—Cl1 | 91.08 (14) | O12—C12—C13iii | 118.6 (5) |
O1i—Cu1—Cl1i | 91.08 (14) | N11—C12—C13iii | 118.4 (6) |
O1—Cu1—Cl1i | 88.92 (14) | N11—C13—C12iii | 114.5 (5) |
Cu1—O1—H1A | 123.9 | N11—C13—H13A | 108.6 |
Cu1—O1—H1B | 121.7 | C12iii—C13—H13A | 108.6 |
H1A—O1—H1B | 101.6 | N11—C13—H13B | 108.6 |
C12—N11—C13 | 127.0 (5) | C12iii—C13—H13B | 108.6 |
C12—N11—H11 | 110.5 | H13A—C13—H13B | 107.6 |
C13—N11—H11 | 122.5 | | |
| | | |
C13—N11—C12—O12 | 177.7 (6) | C12—N11—C13—C12iii | 2.6 (11) |
C13—N11—C12—C13iii | −2.7 (11) | | |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O12 | 0.90 | 1.87 | 2.737 (6) | 162 |
O1—H1B···O12iv | 0.90 | 1.85 | 2.735 (6) | 167 |
N11—H11···Cl1 | 0.88 | 2.31 | 3.174 (5) | 168 |
Symmetry code: (iv) −x+1, y−1/2, −z+1/2. |
(IV) silver(I) nitrate–piperazine-2.5-dione (1/1)
top
Crystal data top
[Ag(NO3)]·C4H6N2O2 | F(000) = 552 |
Mr = 567.98 | Dx = 2.537 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 888 reflections |
a = 9.6276 (1) Å | θ = 4.1–27.6° |
b = 14.7180 (2) Å | µ = 2.71 mm−1 |
c = 5.2468 (4) Å | T = 120 K |
V = 743.47 (6) Å3 | Plate, colourless |
Z = 2 | 0.42 × 0.22 × 0.12 mm |
Data collection top
Nonius KappaCCD diffractometer | 888 independent reflections |
Radiation source: fine-focus sealed X-ray tube | 826 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 4.1° |
ϕ and ω scans | h = −12→11 |
Absorption correction: multi-scan SORTAV (Blessing, 1995, 1997) | k = −19→19 |
Tmin = 0.389, Tmax = 0.722 | l = −6→6 |
7016 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.017 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0202P)2 + 0.4734P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
888 reflections | Δρmax = 0.44 e Å−3 |
68 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0155 (9) |
Crystal data top
[Ag(NO3)]·C4H6N2O2 | V = 743.47 (6) Å3 |
Mr = 567.98 | Z = 2 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.6276 (1) Å | µ = 2.71 mm−1 |
b = 14.7180 (2) Å | T = 120 K |
c = 5.2468 (4) Å | 0.42 × 0.22 × 0.12 mm |
Data collection top
Nonius KappaCCD diffractometer | 888 independent reflections |
Absorption correction: multi-scan SORTAV (Blessing, 1995, 1997) | 826 reflections with I > 2σ(I) |
Tmin = 0.389, Tmax = 0.722 | Rint = 0.041 |
7016 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.044 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.44 e Å−3 |
888 reflections | Δρmin = −0.44 e Å−3 |
68 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ag1 | 0.587751 (19) | 0.2500 | 0.49038 (3) | 0.01324 (11) | |
O1 | 0.6353 (2) | 0.2500 | 0.9570 (4) | 0.0239 (4) | |
O2 | 0.81536 (18) | 0.2500 | 1.2012 (3) | 0.0161 (4) | |
O3 | 0.83942 (18) | 0.2500 | 0.7908 (4) | 0.0204 (4) | |
O12 | 0.59454 (12) | 0.40743 (9) | 0.4032 (3) | 0.0185 (3) | |
N1 | 0.7620 (2) | 0.2500 | 0.9817 (3) | 0.0107 (4) | |
N11 | 0.44162 (15) | 0.41922 (10) | 0.0797 (3) | 0.0170 (3) | |
C12 | 0.54788 (17) | 0.44853 (11) | 0.2160 (3) | 0.0139 (3) | |
C13 | 0.61478 (17) | 0.53704 (12) | 0.1454 (3) | 0.0153 (4) | |
H11 | 0.4014 | 0.3686 | 0.1300 | 0.020* | |
H13A | 0.6056 | 0.5793 | 0.2912 | 0.018* | |
H13B | 0.7152 | 0.5263 | 0.1178 | 0.018* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ag1 | 0.01476 (15) | 0.01149 (15) | 0.01348 (16) | 0.000 | −0.00071 (6) | 0.000 |
O1 | 0.0126 (10) | 0.0395 (13) | 0.0197 (9) | 0.000 | −0.0030 (7) | 0.000 |
O2 | 0.0203 (8) | 0.0132 (8) | 0.0149 (8) | 0.000 | −0.0076 (7) | 0.000 |
O3 | 0.0219 (9) | 0.0201 (10) | 0.0193 (9) | 0.000 | 0.0065 (8) | 0.000 |
O12 | 0.0216 (6) | 0.0148 (7) | 0.0190 (7) | −0.0014 (5) | −0.0047 (5) | 0.0039 (5) |
N1 | 0.0136 (10) | 0.0066 (9) | 0.0119 (10) | 0.000 | −0.0018 (7) | 0.000 |
N11 | 0.0179 (7) | 0.0124 (7) | 0.0207 (8) | −0.0042 (6) | −0.0028 (7) | 0.0058 (6) |
C12 | 0.0134 (7) | 0.0123 (8) | 0.0159 (8) | 0.0008 (6) | 0.0022 (6) | −0.0008 (6) |
C13 | 0.0158 (7) | 0.0150 (9) | 0.0153 (8) | −0.0034 (6) | −0.0011 (7) | 0.0026 (6) |
Geometric parameters (Å, º) top
Ag1—O1 | 2.4907 (18) | N11—C12 | 1.321 (2) |
Ag1—O2i | 2.6653 (17) | N11—C13iii | 1.451 (2) |
Ag1—O3ii | 2.6522 (18) | N11—H11 | 0.88 |
Ag1—O12 | 2.3627 (13) | C12—O12 | 1.238 (2) |
N1—O1 | 1.226 (3) | C12—C13 | 1.500 (2) |
N1—O3 | 1.249 (3) | C13—H13A | 0.99 |
N1—O2 | 1.261 (3) | C13—H13B | 0.99 |
| | | |
O1—Ag1—O2i | 114.11 (6) | C12—N11—H11 | 117.1 |
O1—Ag1—O3ii | 74.94 (6) | C13iii—N11—H11 | 117.1 |
O1—Ag1—O12 | 100.67 (3) | O12—C12—N11 | 123.44 (15) |
O12—Ag1—O12iv | 157.45 (7) | O12—C12—C13 | 117.67 (15) |
O2i—Ag1—O3ii | 170.95 (6) | N11—C12—C13 | 118.87 (15) |
O2i—Ag1—O12 | 82.36 (3) | C12—O12—Ag1 | 128.51 (11) |
O3ii—Ag1—O12 | 96.24 (3) | N11iii—C13—C12 | 115.20 (14) |
O1—N1—O3 | 120.58 (19) | N11iii—C13—H13A | 108.5 |
O1—N1—O2 | 120.1 (2) | C12—C13—H13A | 108.5 |
O3—N1—O2 | 119.3 (2) | N11iii—C13—H13B | 108.5 |
N1—O1—Ag1 | 106.68 (14) | C12—C13—H13B | 108.5 |
C12—N11—C13iii | 125.86 (14) | H13A—C13—H13B | 107.5 |
| | | |
O12iv—Ag1—O1—N1 | 86.34 (3) | C13—C12—O12—Ag1 | −153.91 (11) |
O12—Ag1—O1—N1 | −86.34 (3) | O12iv—Ag1—O12—C12 | 37.0 (2) |
C13iii—N11—C12—O12 | −178.05 (17) | O1—Ag1—O12—C12 | −162.03 (14) |
C13iii—N11—C12—C13 | 3.2 (3) | O12—C12—C13—N11iii | 178.31 (16) |
N11—C12—O12—Ag1 | 27.3 (2) | N11—C12—C13—N11iii | −2.8 (3) |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, −z+3/2; (iii) −x+1, −y+1, −z; (iv) x, −y+1/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11···O2v | 0.88 | 2.13 | 3.0004 (18) | 173 |
Symmetry code: (v) x−1/2, y, −z+3/2. |
Experimental details
| (I) | (II) | (III) | (IV) |
Crystal data |
Chemical formula | [CoCl2(H2O)4]·C4H6N2O2 | [NiCl2(H2O)4]·C4H6N2O2 | [CuCl2(H2O)2]·C4H6N2O2 | [Ag(NO3)]·C4H6N2O2 |
Mr | 316.00 | 315.78 | 284.58 | 567.98 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, P21/n | Monoclinic, I2/a | Orthorhombic, Pnma |
Temperature (K) | 120 | 120 | 120 | 120 |
a, b, c (Å) | 9.5326 (4), 6.6602 (2), 10.0167 (4) | 9.4844 (4), 6.6616 (3), 9.9975 (4) | 15.224 (3), 3.9694 (8), 15.444 (4) | 9.6276 (1), 14.7180 (2), 5.2468 (4) |
α, β, γ (°) | 90, 114.1660 (17), 90 | 90, 114.6290 (18), 90 | 90, 94.73 (3), 90 | 90, 90, 90 |
V (Å3) | 580.22 (4) | 574.19 (4) | 930.1 (4) | 743.47 (6) |
Z | 2 | 2 | 4 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.95 | 2.17 | 2.91 | 2.71 |
Crystal size (mm) | 0.40 × 0.20 × 0.07 | 0.40 × 0.30 × 0.20 | 0.16 × 0.04 × 0.03 | 0.42 × 0.22 × 0.12 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan (SADABS; Sheldrick, 2003) | Multi-scan SORTAV (Blessing, 1995, 1997) |
Tmin, Tmax | 0.509, 0.876 | 0.468, 0.649 | 0.654, 0.918 | 0.389, 0.722 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7527, 1330, 1189 | 6275, 1315, 1218 | 4485, 1059, 787 | 7016, 888, 826 |
Rint | 0.032 | 0.022 | 0.0 | 0.041 |
(sin θ/λ)max (Å−1) | 0.650 | 0.651 | 0.650 | 0.652 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.053, 1.05 | 0.019, 0.046, 1.06 | 0.058, 0.164, 1.09 | 0.017, 0.044, 1.09 |
No. of reflections | 1330 | 1315 | 1059 | 888 |
No. of parameters | 71 | 71 | 62 | 68 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.37 | 0.35, −0.34 | 1.58, −1.45 | 0.44, −0.44 |
Selected geometric parameters (Å, º) for (IV) topAg1—O1 | 2.4907 (18) | Ag1—O3ii | 2.6522 (18) |
Ag1—O2i | 2.6653 (17) | Ag1—O12 | 2.3627 (13) |
| | | |
O1—Ag1—O2i | 114.11 (6) | O2i—Ag1—O3ii | 170.95 (6) |
O1—Ag1—O3ii | 74.94 (6) | O2i—Ag1—O12 | 82.36 (3) |
O1—Ag1—O12 | 100.67 (3) | O3ii—Ag1—O12 | 96.24 (3) |
O12—Ag1—O12iii | 157.45 (7) | | |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, −z+3/2; (iii) x, −y+1/2, z. |
Selected bond distances (Å) for compounds (I)–(III) topParameter | (I), M = Co | (II), M = Ni | (III), M = Cu |
M-O1 | 2.0361 (9) | 2.0287 (9) | 1.942 (4) |
M-O2 | 2.1113 (9) | 2.0869 (9) | |
M-Cl | 2.4562 (3) | 2.3971 (3) | 2.2502 (15) |
M-Cli | | | 3.1640 (18) |
Symmetry code: (i) x, -1 + y, z. |
Hydrogen-bond parameters (Å, °) for compounds (I)–(IV) topD-H···A | D-H | H···A | D···A | D-H···A |
(I) | | | | |
O1-H1A···Cli | 0.84 | 2.35 | 3.1426 (10) | 158 |
O1-H1B···O12 | 0.84 | 1.86 | 2.6901 (14) | 167 |
O2-H2A···Clii | 0.84 | 2.42 | 3.2302 (10) | 163 |
O2-H2B···O12iii | 0.84 | 1.96 | 2.7834 (14) | 168 |
N11-H11···Cl1 | 0.88 | 2.38 | 3.2326 (12) | 164 |
(II) | | | | |
O1-H1A···Cli | 0.84 | 2.37 | 3.1508 (10) | 155 |
O1-H1B···O12 | 0.84 | 1.87 | 2.6941 (13) | 167 |
O2-H2A···Clii | 0.84 | 2.45 | 3.2596 (9) | 163 |
O2-H2B···O12iii | 0.84 | 1.96 | 2.7906 (13) | 168 |
N11-H11···Cl1 | 0.88 | 2.39 | 3.2419 (11) | 163 |
(III) | | | | |
N11-H11···Cl1 | 0.88 | 2.31 | 3.174 (5) | 168 |
O1-H1A···O2 | 0.90 | 1.87 | 2.736 (7) | 162 |
O1-H1B···O12iv | 0.90 | 1.85 | 2.735 (7) | 167 |
(IV) | | | | |
N11-H11···O2v | 0.88 | 2.13 | 3.0004 (18) | 173 |
Symmetry codes:
(i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 + x, 3/2 - y, 1/2 + z;
(iii) x, 1 + y, z; (iv) 1 - x, -1/2 + y, 1/2 - z;
(v) -1/2 + x, 1/2 - y, 3/2 - z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
In the structure of piperazine-2,5-dione (diketopiperazine, the cyclic anhydride derived from glycine), the molecules lie across centres of inversion. They are linked into chains of R22(8) rings (Bernstein et al., 1995) by means of N—H···O hydrogen bonds (Degeilh & Marsh, 1959; Sarangarajan et al., 2005), and these chains are themselves linked into sheets by C—H···O hydrogen bonds (Sarangarajan et al., 2005). In the hydrogen-bonded adducts formed by piperazine-2,5-dione with simple monocarboxylic acids, the same chain of R22(8) rings occurs, with the acid units pendant from it (Kartha et al., 1981; Luo & Palmore, 2002), while with dicarboxylic acids or phenolic monocarboxyic acids these chains are linked into sheets (Luo & Palmore, 2002; Sarangarajan et al., 2005). Unusually, the adduct formed with salicylic acid contains neither chains nor sheets but finite centrosymmetric aggregates of two acid molecules and one piperazinedione unit (Varughese & Kartha, 1982). Despite the substantial number of hydrogen-bonded adducts formed with organic acids, very little structural information is available for metal complexes of piperazine-2,5-dione. However, the closely-related 1,4-dimethylpiperazine-2,5-dione forms a finite encapsulation complex with aluminium tris(2,6-diphenylphenoxide (Ooi et al., 1998), and the same amide forms a one-dimensional coordination polymer with Ph2SnCl2 (Kovala-Demertzi et al., 1995). We report here the structures of four adducts, (I)–(IV) (Figs. 1–4), formed by piperazine-2.5-dione when it is co-crystallized from aqueous solutions containing simple salts of CoII, NiII, CuII and AgI.
Compounds (I) and (II) are isomorphous. In these structures, the metal atom lies at a centre of inversion in space group P21/n, selected as that at (1/2, 1/2, 1/2), and it is coordinated by two Cl and four water ligands. Within the selected asymmetric unit, the centrosymmetric piperidinedione component is linked to the neutral [M(H2O)4)Cl2] unit (M = Co or Ni) by a combination of O—H···O and N—H···Cl hydrogen bonds (Table 3), such that the organic component lies across the centre of inversion at (1/2, 0, 0) (Figs. 1 and 2). In each complex, the coordination of the metal atom has symmetry very close to D4h (4/mmm), with the bond angles subtended at the metal atoms by pairs of cis ligands all within 3° of 90°. The M—O and M—Cl distances are slightly smaller in (II) than in (I) (Table 1).
All of the O—H and N—H bonds within the structures of (I) and (II) are involved in hydrogen bonding (Table 3) and the components are thereby linked into a three-dimensional framework structure. The [M(H2O)4)Cl2] units are linked by the two independent O—H···Cl hydrogen bonds into a sheet parallel to (101) and containing both R22(8) and R42(12) rings (Fig. 5), and these inorganic sheets then linked by the organic components. This linking is most simply envisaged in terms of a chain running parallel to the [011] direction and containing alternating inorganic and organic units linked by hydrogen-bonded R22(8) rings (Fig. 6). The combination of (101) sheets and [011] chains suffices to generate the three-dimensional pillared layer structure, which could be regarded as an organic–inorganic hybrid structure. In nickel(II) chloride tetrahydrate, there are discrete [Ni(H2O)4)Cl2] units, but of cis configuration and lying in general positions. These units are linked into a complex three-dimensional framework structure by both O—H···Cl and O—H···O hydrogen bonds (Ptasiewicz-Bak et al., 1999), so that the hydrogen-bonded structure in the free hydrated chloride is quite different from that found here for the piperazinedione adduct (II).
In the Cu complex, (III), the metal atom lies on a centre of inversion in space group I2/a, selected as that at (1/4, 1/4, 1/4). It is coordinated by two water ligands and by four Cl ligands, each of which bridges two metal centres, so generating a chain of edge-fused octahedra of composition [CuCl2(H2O)2]n running parallel to the [010] direction (Fig. 3). The piperazinedione component also lies across a centre of inversion, selected as that at (1/2, 1, 1/2), so that within the selected asymmetric unit the components are linked by O—H···O and N—H···Cl hydrogen bonds (Table 3), as in compounds (I) and (II). Within the coordination polymer chain, the centrosymmetric Cu2Cl2 units contain two significantly different Cu—Cl distances (Table 1). A similar chain, with Cu—Cl distances of 2.2724 (13) and 3.1537 (14) Å, is present in benzimidazolium tetrachorocuprate [tetrachloridocuprate ?] monohydrate [Cambridge Structural Database (Allen, 2002) refcode FUTRUH; Bukowska-Strzyżewska & Skoweranda, 1987]. More frequently, however, [CuCl2(H2O)2] units are found as isolated square-planar units, as in NPYOCU (Williams et al., 1971) and TPPOCU (Dunaj-Jurco et al., 1979) or as square-planar units weakly coordinated by two further axial ligands, as in UGAYUW (Giantsidis et al., 2002). The hydrogen bonds in (III) link the reference Cu atom at (1/4, 1/4, 1/4), via the piperazinedione units centred at (0, 0, 1/2), (0, -1/2, 0), (1/2, 1/2, 0) and (1/2, 1, 1/2), respectively, to the Cu atoms at (-1/4, -1/4, 3/4), (-1/4, -5/4, -1/4), (3/4, 3/4, -1/4) and (3/4, 7/4, 3/4), so forming a sheet parallel to (211) (Fig. 7). In this manner, the reference coordination polymer chain along (1/4, y, 1/4), is directly linked to the four chains along (-1/4, y, -1/4), (-1/4, y, 3/4), (3/4, y, -1/4) and (3/4, y, 3/4), thereby generating a three-dimensional framework structure.
Complex (IV), derived from Ag[NO3], is a coordination polymer, [(DKP)Ag(NO3)]n [DKP is diketopiperazine?], containing five-coordinate Ag. The compound crystallizes in space group Pnma, and the Ag+ ions and all the atoms of the nitrate anions lie on mirror planes, while the DKP units lie across centres of inversion. For the selected asymmetric unit, in which DKP atom O12 is coordinated to Ag (Fig. 4), the DKP unit lies across the centre of inversion at (1/2, 1/2, 0), while the Ag+ and nitrate ions lie on the mirror plane at y = 1/4. The constitution of (IV) is most readily analysed in terms of the two-dimensional sub-structure built from Ag and [NO3] units only. These layers are linked by the DKP units acting as bridging ligands between pairs of Ag ions in different layers. Within the ionic layer, the Ag+ ion at (x, 1/4, z) is coordinated by O atoms from three different nitrate ions, namely atom O1 in the anion at (x, 1/4, z), atom O2 in the anion at (x, 1/4, -1 + z) and atom O3 in the anion at (-1/2 + x, 1/4, 3/2 - z) (Table 2). Propagation of these interactions then leads to the formation of an (010) sheet built from a single type of 12-membered ring (Fig. 8).
In addition to the three O ligands from within the ionic layer, the Ag+ ion at (x, 1/4, z) is also coordinated by two O atoms from two different DKP ligands, namely those at (x, y, z) and (x, 1/2 - y, z). The coordination polyhedron around the Ag+ ion is best described as a distorted square pyramid (Fig. 4) in which two of the basal Ag—O distances are significantly longer than the other pair (Table 2). The two independent O—Ag—O angles in the basal plane have values close to 90°, while the angles subtended at Ag by the axial O and one of the basal O sites range from 74.94 (6) to 114.11 (6)°. The atoms of type O12 at (x, y, z) and (x, 1/2 - y, z) form part of the DKP units centred at (1/2, 1/2, 0) and (1/2, 0, 0), respectively, so that propagation of this Ag—O interaction by reflection and inversion generates a chain running parallel to the [010] direction (Fig. 9) which serves to link all of the (010) layers into a three-dimensional coordination polymer. The three-dimensional framework is reinforced by a single N—H···O hydrogen bond.
Thus, in each of compounds (I) and (II) there is a finite [M(H2O)4Cl2] fragment, in compound (III) there is a one-dimensional coordination polymer, [CuCl2(H2O)2]n, and in compound (IV) there is a three-dimensional coordination polymer, [Ag(NO3)(C4H6N2O2]n. In (I) and (II), the formation of the three-dimensional framework is dependent upon the actions of multiple hydrogen bonds, while in compound (IV) the framework is formed by the three-dimensional coordination polymer, to the formation of which the single hydrogen bond is incidental. The three-dimensional framework in (III) is of a hybrid type, depending upon hydrogen bonds to link the one-dimensional coordination polymer chains. The organic piperazine-2,5-dione component may thus prove to be a very versatile building block for crystal structure design and construction.