Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal energy landscapes of the salts of two rigid pharmaceutically active molecules reveal that the experimental structure of amantadine hydrochloride is the most stable structure with the majority of low-energy structures adopting a chain hydrogen-bond motif and packings that do not have solvent accessible voids. By contrast, memantine hydrochloride which differs in the substitution of two methyl groups on the adamantane ring has a crystal energy landscape where all structures within 10 kJ mol−1 of the global minimum have solvent-accessible voids ranging from 3 to 14% of the unit-cell volume including the lattice energy minimum that was calculated after removing water from the hydrated memantine hydrochloride salt structure. The success in using crystal structure prediction (CSP) to rationalize the different hydration propensities of these substituted adamantane hydrochloride salts allowed us to extend the model to predict under blind test conditions the experimental crystal structures of the previously uncharacterized 1-(methylamino)adamantane base and its corresponding hydrochloride salt. Although the crystal structure of 1-(methylamino)adamantane was correctly predicted as the second ranked structure on the static lattice energy landscape, the crystallization of a Z′ = 3 structure of 1-(methylamino)adamantane hydrochloride reveals the limits of applying CSP when the contents of the crystallographic asymmetric unit are unknown.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520616006326/gp5081sup1.cif
Contains datablocks 3, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616006326/gp50813sup2.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616006326/gp5081IIIsup3.hkl
Contains datablock III

txt

Text file https://doi.org/10.1107/S2052520616006326/gp5081sup4.txt
Top 100 ranked predicted crystal structures of 3

txt

Text file https://doi.org/10.1107/S2052520616006326/gp5081sup5.txt
Top 100 ranked predicted crystal structures of I

txt

Text file https://doi.org/10.1107/S2052520616006326/gp5081sup6.txt
Top 100 ranked predicted crystal structures of II

txt

Text file https://doi.org/10.1107/S2052520616006326/gp5081sup7.txt
Top 100 ranked predicted crystal structures of III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520616006326/gp5081sup8.pdf
Supporting figures and tables

CCDC references: 1474181; 1474182

Computing details top

For both compounds, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(3) top
Crystal data top
C11H19NF(000) = 184
Mr = 165.27Dx = 1.165 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 8.2451 (8) ÅCell parameters from 13304 reflections
b = 6.5202 (6) Åθ = 2.3–26.0°
c = 8.8214 (8) ŵ = 0.07 mm1
β = 96.509 (3)°T = 100 K
V = 471.18 (8) Å3BLOCK, colorless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEX-II CCD
diffractometer
913 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
sadabs
θmax = 26.0°, θmin = 2.3°
Tmin = 0.627, Tmax = 0.746h = 1010
13304 measured reflectionsk = 88
1000 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.076H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.029P)2 + 0.7802P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1000 reflectionsΔρmax = 0.27 e Å3
68 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8170 (3)0.75000.6373 (3)0.0174 (6)
N10.9161 (3)0.75000.5081 (3)0.0294 (7)
H10.978 (6)0.873 (7)0.515 (6)0.035*0.5
C20.7096 (3)0.5601 (3)0.6384 (3)0.0300 (5)
H2A0.77830.43540.63900.036*
H2B0.63090.55750.54490.036*
C60.9379 (3)0.75000.7826 (3)0.0354 (9)
H6A1.00850.62700.78400.043*0.5
H6B1.00850.87300.78400.043*0.5
C30.6169 (3)0.5609 (4)0.7793 (3)0.0409 (7)
H30.54720.43520.77870.049*
C50.8452 (4)0.75000.9237 (3)0.0551 (14)
H50.92510.75001.01780.066*
C70.5094 (4)0.75000.7764 (4)0.0381 (9)
H7A0.44710.75000.86600.046*
H7B0.43060.75000.68300.046*
C80.8244 (4)0.75000.3558 (3)0.0404 (10)
H8A0.74160.85840.34980.061*0.5
H8B0.77100.61680.33660.061*0.5
H8C0.89930.77480.27910.061*0.5
C40.7388 (3)0.5618 (6)0.9229 (3)0.0666 (11)
H4A0.67960.56161.01450.080*
H4B0.80740.43700.92560.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (12)0.0237 (15)0.0142 (12)0.0000.0021 (10)0.000
N10.0181 (12)0.055 (2)0.0157 (12)0.0000.0037 (9)0.000
C20.0353 (12)0.0141 (11)0.0410 (13)0.0001 (9)0.0058 (9)0.0041 (9)
C60.0141 (13)0.074 (3)0.0177 (15)0.0000.0009 (11)0.000
C30.0355 (12)0.0409 (16)0.0475 (14)0.0148 (12)0.0097 (10)0.0193 (12)
C50.0194 (15)0.134 (4)0.0115 (14)0.0000.0006 (12)0.000
C70.0153 (14)0.073 (3)0.0277 (16)0.0000.0075 (12)0.000
C80.0314 (17)0.077 (3)0.0140 (14)0.0000.0054 (12)0.000
C40.0428 (14)0.115 (3)0.0437 (15)0.0107 (18)0.0132 (12)0.0525 (18)
Geometric parameters (Å, º) top
C1—N11.476 (3)C6—C51.532 (4)
C1—C2i1.523 (2)C3—C71.517 (3)
C1—C21.523 (2)C3—C41.525 (4)
C1—C61.533 (4)C5—C4i1.508 (4)
N1—C81.465 (4)C5—C41.508 (4)
C2—C31.532 (3)C7—C3i1.517 (3)
N1—C1—C2i112.21 (14)C7—C3—C4109.9 (3)
N1—C1—C2112.21 (14)C7—C3—C2109.5 (2)
C2i—C1—C2108.8 (2)C4—C3—C2109.35 (19)
N1—C1—C6106.3 (2)C4i—C5—C4108.9 (3)
C2i—C1—C6108.56 (15)C4i—C5—C6109.87 (19)
C2—C1—C6108.56 (15)C4—C5—C6109.87 (19)
C8—N1—C1115.8 (2)C3—C7—C3i108.7 (2)
C1—C2—C3110.26 (19)C5—C4—C3109.6 (2)
C5—C6—C1110.0 (2)
C2i—C1—N1—C861.46 (16)C1—C2—C3—C460.1 (3)
C2—C1—N1—C861.46 (16)C1—C6—C5—C4i59.89 (19)
C6—C1—N1—C8180.000 (1)C1—C6—C5—C459.89 (19)
N1—C1—C2—C3176.67 (19)C4—C3—C7—C3i59.2 (3)
C2i—C1—C2—C358.5 (3)C2—C3—C7—C3i60.8 (3)
C6—C1—C2—C359.5 (2)C4i—C5—C4—C360.6 (4)
N1—C1—C6—C5180.000 (1)C6—C5—C4—C359.8 (3)
C2i—C1—C6—C559.08 (14)C7—C3—C4—C560.5 (3)
C2—C1—C6—C559.08 (14)C2—C3—C4—C559.7 (3)
C1—C2—C3—C760.3 (2)
Symmetry code: (i) x, y+3/2, z.
(III) top
Crystal data top
C11H20ClNDx = 1.207 Mg m3
Mr = 201.73Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 88459 reflections
a = 6.6114 (3) Åθ = 2.8–66.7°
b = 20.4778 (10) ŵ = 2.67 mm1
c = 24.6057 (12) ÅT = 100 K
V = 3331.3 (3) Å3BLOCK, colorless
Z = 120.30 × 0.20 × 0.20 mm
F(000) = 1320
Data collection top
Bruker APEX-II CCD
diffractometer
5475 reflections with I > 2σ(I)
φ and ω scansRint = 0.079
Absorption correction: multi-scan
sadabs
θmax = 66.7°, θmin = 2.8°
Tmin = 0.559, Tmax = 0.756h = 77
88459 measured reflectionsk = 2424
5796 independent reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.039P)2 + 5.052P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.46 e Å3
5796 reflectionsΔρmin = 0.33 e Å3
380 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.06 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20220 (18)0.51842 (5)0.60578 (5)0.0283 (3)
Cl20.60770 (18)0.59671 (6)0.42060 (5)0.0307 (3)
Cl30.8375 (2)0.37486 (6)0.46439 (5)0.0366 (3)
N30.5768 (6)0.57616 (18)0.54649 (17)0.0259 (9)
N20.1412 (7)0.3787 (2)0.55876 (18)0.0297 (9)
N10.9777 (6)0.50539 (19)0.41262 (15)0.0247 (9)
C300.7311 (8)0.6873 (2)0.66567 (19)0.0292 (11)
H300.75530.67850.70430.035*
C101.0848 (7)0.5690 (2)0.33126 (18)0.0253 (10)
H10A0.96570.59630.33530.030*
H10B1.19520.58920.35110.030*
C41.1190 (9)0.4211 (2)0.2574 (2)0.0344 (12)
H4A1.09470.37760.27160.041*
H4B1.15570.41730.21930.041*
C230.6422 (7)0.6377 (2)0.57647 (18)0.0228 (9)
C210.0410 (8)0.2634 (2)0.5776 (2)0.0320 (11)
H21A0.05910.26620.54890.038*
H21B0.16590.24710.56210.038*
C310.9222 (8)0.7162 (3)0.6401 (2)0.0337 (12)
H31A1.03360.68580.64410.040*
H31B0.95800.75640.65860.040*
C330.6990 (8)0.5166 (2)0.5550 (2)0.0314 (10)
H33A0.67860.48720.52510.047*
H33B0.65840.49580.58820.047*
H33C0.83950.52820.55710.047*
C11.0428 (7)0.5008 (2)0.35420 (18)0.0235 (10)
C70.9664 (8)0.5308 (2)0.23972 (19)0.0301 (11)
H7A0.84520.55720.24290.036*
H7B1.00150.52760.20150.036*
C190.0332 (9)0.2171 (2)0.6222 (2)0.0371 (13)
H190.05490.17360.60660.045*
C111.1200 (8)0.5345 (2)0.45193 (19)0.0334 (11)
H11A1.25200.51590.44680.050*
H11B1.07440.52560.48820.050*
H11C1.12620.58080.44640.050*
C81.1402 (7)0.5630 (2)0.27120 (19)0.0281 (10)
H81.16570.60660.25630.034*
C200.1286 (10)0.2128 (2)0.6664 (2)0.0429 (14)
H20A0.25420.19700.65090.052*
H20B0.08600.18240.69440.052*
C50.9275 (7)0.4626 (2)0.26303 (19)0.0280 (11)
H50.81620.44180.24320.034*
C270.5198 (7)0.7492 (2)0.5997 (2)0.0281 (11)
H270.40770.78020.59600.034*
C21.2353 (7)0.4589 (2)0.34926 (19)0.0270 (10)
H2C1.34520.47900.36930.032*
H2D1.21140.41580.36430.032*
C140.1616 (9)0.2811 (3)0.6914 (2)0.0390 (13)
H140.26360.27820.72020.047*
C91.3314 (7)0.5215 (3)0.26569 (19)0.0314 (11)
H9A1.36940.51810.22770.038*
H9B1.44200.54200.28520.038*
C320.6796 (8)0.6228 (2)0.63613 (18)0.0273 (10)
H32A0.79090.59230.63980.033*
H32B0.55990.60330.65210.033*
C250.8851 (8)0.7299 (2)0.57964 (19)0.0274 (10)
H251.00720.74890.56350.033*
C220.3346 (8)0.3654 (3)0.5298 (2)0.0408 (13)
H22A0.35620.39830.50260.061*
H22B0.32800.32330.51280.061*
H22C0.44430.36610.55540.061*
C160.1971 (9)0.3103 (2)0.6705 (2)0.0356 (12)
H160.32420.32680.68580.043*
C130.2361 (8)0.3273 (2)0.6471 (2)0.0331 (12)
H13A0.36250.31140.63210.040*
H13B0.25940.37040.66220.040*
C31.2906 (8)0.4536 (2)0.28896 (19)0.0304 (11)
H31.41310.42700.28530.036*
C170.1210 (7)0.3569 (2)0.6263 (2)0.0271 (10)
H17A0.22180.36070.59780.033*
H17B0.09890.40000.64170.033*
C280.4663 (7)0.6853 (2)0.57049 (19)0.0250 (10)
H28A0.34490.66660.58620.030*
H28B0.44090.69390.53230.030*
C260.7098 (8)0.7781 (2)0.5742 (2)0.0280 (10)
H26A0.74400.81870.59210.034*
H26B0.68530.78730.53610.034*
C150.0365 (9)0.3057 (3)0.7154 (2)0.0388 (13)
H15A0.01600.34830.73170.047*
H15B0.08220.27600.74360.047*
C180.2310 (9)0.2421 (2)0.6457 (2)0.0388 (13)
H18A0.27910.21230.67350.047*
H18B0.33240.24460.61730.047*
C290.5563 (8)0.7348 (2)0.65986 (19)0.0299 (11)
H29A0.58740.77510.67890.036*
H29B0.43520.71620.67590.036*
C240.8330 (7)0.6659 (2)0.55048 (18)0.0238 (10)
H24A0.81000.67410.51210.029*
H24B0.94400.63520.55390.029*
C60.8717 (7)0.4686 (2)0.32297 (18)0.0265 (10)
H6A0.74960.49450.32670.032*
H6B0.84540.42560.33790.032*
C120.0760 (7)0.3311 (2)0.6024 (2)0.0270 (10)
H1A0.936 (8)0.465 (3)0.425 (2)0.035 (15)*
H3A0.450 (9)0.563 (2)0.557 (2)0.029 (14)*
H1B0.841 (10)0.532 (3)0.414 (2)0.056 (18)*
H3B0.579 (9)0.585 (3)0.506 (2)0.040 (16)*
H2A0.163 (10)0.418 (3)0.578 (3)0.053 (18)*
H2B0.055 (11)0.374 (3)0.533 (3)0.06 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0283 (6)0.0243 (5)0.0324 (6)0.0056 (5)0.0003 (5)0.0008 (4)
Cl20.0278 (6)0.0318 (6)0.0326 (6)0.0028 (5)0.0007 (5)0.0013 (5)
Cl30.0456 (8)0.0282 (6)0.0359 (6)0.0129 (5)0.0085 (5)0.0037 (5)
N30.025 (2)0.021 (2)0.032 (2)0.0062 (16)0.0007 (17)0.0020 (16)
N20.031 (3)0.025 (2)0.032 (2)0.0021 (18)0.0024 (18)0.0025 (18)
N10.029 (2)0.019 (2)0.026 (2)0.0054 (16)0.0007 (16)0.0006 (16)
C300.033 (3)0.029 (2)0.025 (2)0.005 (2)0.001 (2)0.0011 (19)
C100.026 (3)0.018 (2)0.032 (2)0.0030 (19)0.002 (2)0.0009 (19)
C40.043 (3)0.029 (3)0.032 (3)0.006 (2)0.006 (2)0.005 (2)
C230.026 (3)0.019 (2)0.024 (2)0.0054 (18)0.0015 (19)0.0015 (17)
C210.030 (3)0.023 (3)0.042 (3)0.000 (2)0.004 (2)0.005 (2)
C310.035 (3)0.035 (3)0.032 (3)0.008 (2)0.006 (2)0.004 (2)
C330.028 (3)0.023 (2)0.042 (3)0.000 (2)0.002 (2)0.002 (2)
C10.028 (3)0.021 (2)0.022 (2)0.0007 (18)0.0014 (18)0.0009 (17)
C70.028 (3)0.034 (3)0.028 (3)0.004 (2)0.003 (2)0.006 (2)
C190.042 (3)0.019 (2)0.051 (3)0.003 (2)0.007 (2)0.000 (2)
C110.043 (3)0.031 (3)0.027 (2)0.006 (2)0.002 (2)0.003 (2)
C80.029 (3)0.026 (2)0.029 (2)0.000 (2)0.001 (2)0.0050 (19)
C200.054 (4)0.023 (3)0.052 (3)0.002 (2)0.010 (3)0.008 (2)
C50.026 (3)0.028 (3)0.029 (3)0.003 (2)0.006 (2)0.004 (2)
C270.027 (3)0.021 (2)0.036 (3)0.0014 (19)0.001 (2)0.002 (2)
C20.027 (3)0.024 (2)0.030 (2)0.0023 (19)0.0047 (19)0.0001 (19)
C140.045 (4)0.032 (3)0.040 (3)0.002 (2)0.014 (2)0.004 (2)
C90.026 (3)0.041 (3)0.027 (2)0.003 (2)0.0007 (19)0.001 (2)
C320.029 (3)0.023 (2)0.030 (2)0.004 (2)0.003 (2)0.0025 (19)
C250.027 (3)0.028 (2)0.028 (2)0.009 (2)0.001 (2)0.001 (2)
C220.039 (3)0.033 (3)0.051 (3)0.002 (2)0.009 (3)0.003 (2)
C160.038 (3)0.030 (3)0.039 (3)0.006 (2)0.001 (2)0.003 (2)
C130.031 (3)0.024 (2)0.044 (3)0.002 (2)0.009 (2)0.001 (2)
C30.027 (3)0.033 (3)0.032 (3)0.010 (2)0.003 (2)0.005 (2)
C170.026 (3)0.020 (2)0.035 (3)0.0018 (19)0.006 (2)0.0014 (19)
C280.024 (3)0.022 (2)0.029 (3)0.0029 (19)0.0004 (19)0.0010 (19)
C260.035 (3)0.018 (2)0.031 (2)0.003 (2)0.004 (2)0.0007 (18)
C150.049 (4)0.034 (3)0.033 (3)0.007 (3)0.003 (2)0.004 (2)
C180.046 (4)0.026 (3)0.045 (3)0.009 (2)0.003 (3)0.003 (2)
C290.035 (3)0.025 (2)0.030 (3)0.001 (2)0.002 (2)0.005 (2)
C240.022 (3)0.020 (2)0.029 (2)0.0003 (18)0.0008 (19)0.0027 (18)
C60.024 (3)0.024 (2)0.031 (2)0.0045 (19)0.001 (2)0.0032 (19)
C120.030 (3)0.018 (2)0.033 (2)0.0030 (18)0.005 (2)0.0007 (19)
Geometric parameters (Å, º) top
N3—C331.478 (6)C7—C51.533 (7)
N3—C231.523 (5)C7—C81.534 (7)
N2—C221.489 (7)C19—C181.519 (8)
N2—C121.513 (6)C19—C201.527 (8)
N1—C111.475 (6)C8—C91.529 (7)
N1—C11.503 (6)C20—C141.543 (7)
C30—C291.517 (7)C5—C61.525 (6)
C30—C311.530 (7)C27—C261.524 (7)
C30—C321.545 (6)C27—C291.528 (7)
C10—C81.528 (6)C27—C281.534 (6)
C10—C11.533 (6)C2—C31.532 (7)
C4—C31.528 (7)C14—C151.522 (8)
C4—C51.531 (7)C14—C131.527 (8)
C23—C321.520 (6)C9—C31.528 (7)
C23—C281.525 (6)C25—C261.527 (7)
C23—C241.527 (6)C25—C241.534 (6)
C21—C191.532 (7)C16—C171.533 (7)
C21—C121.532 (6)C16—C151.535 (7)
C31—C251.535 (7)C16—C181.541 (7)
C1—C61.518 (6)C13—C121.528 (7)
C1—C21.539 (6)C17—C121.524 (7)
C33—N3—C23117.4 (4)C26—C27—C29110.1 (4)
C22—N2—C12117.8 (4)C26—C27—C28109.1 (4)
C11—N1—C1118.0 (4)C29—C27—C28109.1 (4)
C29—C30—C31110.0 (4)C3—C2—C1108.3 (4)
C29—C30—C32109.7 (4)C15—C14—C13110.4 (4)
C31—C30—C32108.6 (4)C15—C14—C20109.5 (5)
C8—C10—C1109.0 (4)C13—C14—C20108.8 (4)
C3—C4—C5109.0 (4)C3—C9—C8109.0 (4)
C32—C23—N3110.3 (4)C23—C32—C30108.6 (4)
C32—C23—C28110.2 (4)C26—C25—C24109.9 (4)
N3—C23—C28105.4 (4)C26—C25—C31109.0 (4)
C32—C23—C24110.2 (4)C24—C25—C31109.5 (4)
N3—C23—C24110.1 (4)C17—C16—C15108.8 (4)
C28—C23—C24110.4 (4)C17—C16—C18109.3 (4)
C19—C21—C12108.8 (4)C15—C16—C18109.2 (4)
C30—C31—C25109.7 (4)C14—C13—C12108.8 (4)
N1—C1—C6107.4 (4)C9—C3—C4109.7 (4)
N1—C1—C10110.3 (4)C9—C3—C2109.9 (4)
C6—C1—C10110.1 (4)C4—C3—C2110.2 (4)
N1—C1—C2110.3 (4)C12—C17—C16109.8 (4)
C6—C1—C2109.5 (4)C23—C28—C27108.9 (4)
C10—C1—C2109.2 (4)C27—C26—C25109.8 (4)
C5—C7—C8109.1 (4)C14—C15—C16109.7 (4)
C18—C19—C20110.6 (5)C19—C18—C16109.3 (4)
C18—C19—C21109.9 (4)C30—C29—C27109.5 (4)
C20—C19—C21108.8 (4)C23—C24—C25108.2 (4)
C10—C8—C9109.2 (4)C1—C6—C5110.1 (4)
C10—C8—C7110.1 (4)N2—C12—C17107.1 (4)
C9—C8—C7109.7 (4)N2—C12—C13110.2 (4)
C19—C20—C14109.3 (4)C17—C12—C13109.4 (4)
C6—C5—C4109.4 (4)N2—C12—C21110.1 (4)
C6—C5—C7109.2 (4)C17—C12—C21109.8 (4)
C4—C5—C7109.5 (4)C13—C12—C21110.2 (4)
C33—N3—C23—C3248.6 (5)C15—C16—C17—C1260.0 (5)
C33—N3—C23—C28167.6 (4)C18—C16—C17—C1259.2 (5)
C33—N3—C23—C2473.3 (5)C32—C23—C28—C2760.9 (5)
C29—C30—C31—C2559.7 (5)N3—C23—C28—C27180.0 (4)
C32—C30—C31—C2560.3 (5)C24—C23—C28—C2761.1 (5)
C11—N1—C1—C6179.3 (4)C26—C27—C28—C2360.0 (5)
C11—N1—C1—C1060.7 (5)C29—C27—C28—C2360.3 (5)
C11—N1—C1—C260.0 (5)C29—C27—C26—C2559.7 (5)
C8—C10—C1—N1177.2 (4)C28—C27—C26—C2560.0 (5)
C8—C10—C1—C658.9 (5)C24—C25—C26—C2760.3 (5)
C8—C10—C1—C261.4 (5)C31—C25—C26—C2759.7 (5)
C12—C21—C19—C1860.7 (5)C13—C14—C15—C1659.5 (5)
C12—C21—C19—C2060.5 (5)C20—C14—C15—C1660.2 (6)
C1—C10—C8—C961.1 (5)C17—C16—C15—C1458.9 (5)
C1—C10—C8—C759.3 (5)C18—C16—C15—C1460.4 (6)
C5—C7—C8—C1060.2 (5)C20—C19—C18—C1659.6 (5)
C5—C7—C8—C960.0 (5)C21—C19—C18—C1660.5 (6)
C18—C19—C20—C1459.2 (6)C17—C16—C18—C1959.4 (6)
C21—C19—C20—C1461.5 (6)C15—C16—C18—C1959.5 (6)
C3—C4—C5—C659.3 (5)C31—C30—C29—C2759.0 (5)
C3—C4—C5—C760.4 (5)C32—C30—C29—C2760.4 (5)
C8—C7—C5—C659.8 (5)C26—C27—C29—C3059.1 (5)
C8—C7—C5—C460.0 (5)C28—C27—C29—C3060.7 (5)
N1—C1—C2—C3177.9 (4)C32—C23—C24—C2561.5 (5)
C6—C1—C2—C360.0 (5)N3—C23—C24—C25176.5 (4)
C10—C1—C2—C360.7 (5)C28—C23—C24—C2560.5 (5)
C19—C20—C14—C1559.2 (6)C26—C25—C24—C2359.6 (5)
C19—C20—C14—C1361.6 (6)C31—C25—C24—C2360.0 (5)
C10—C8—C9—C360.6 (5)N1—C1—C6—C5179.8 (4)
C7—C8—C9—C360.1 (5)C10—C1—C6—C559.7 (5)
N3—C23—C32—C30176.1 (4)C2—C1—C6—C560.4 (5)
C28—C23—C32—C3060.1 (5)C4—C5—C6—C159.9 (5)
C24—C23—C32—C3062.0 (5)C7—C5—C6—C159.9 (5)
C29—C30—C32—C2359.7 (5)C22—N2—C12—C17178.4 (4)
C31—C30—C32—C2360.6 (5)C22—N2—C12—C1359.5 (6)
C30—C31—C25—C2659.6 (5)C22—N2—C12—C2162.3 (6)
C30—C31—C25—C2460.6 (5)C16—C17—C12—N2179.3 (4)
C15—C14—C13—C1259.8 (5)C16—C17—C12—C1361.2 (5)
C20—C14—C13—C1260.4 (6)C16—C17—C12—C2159.9 (5)
C8—C9—C3—C460.6 (5)C14—C13—C12—N2177.8 (4)
C8—C9—C3—C260.8 (5)C14—C13—C12—C1760.3 (5)
C5—C4—C3—C960.8 (5)C14—C13—C12—C2160.5 (5)
C5—C4—C3—C260.4 (5)C19—C21—C12—N2177.7 (4)
C1—C2—C3—C960.6 (5)C19—C21—C12—C1760.1 (5)
C1—C2—C3—C460.4 (5)C19—C21—C12—C1360.5 (5)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds