Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015279/gs1053sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015279/gs1053Isup2.hkl |
La synthèse du composé étudié a été réalisée à partir d'une solution aqueuse de Co(NO3)2·6H2O, Na2CO3 et H3PO4 85% pris dans les proportions Na:Co:P = 2:1:4. Au bout de deux semaines et par évaporization libre de la solution à la température ambiante, des cristaux de couleur rose et de taille suffisante pour une étude structurale apparaissent.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macicek & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Johnson & Burnett, 1997); software used to prepare material for publication: SHELXL93.
H16CoNa2O20P4 | F(000) = 570 |
Mr = 564.92 | Dx = 2.207 Mg m−3 Dm = 2.204 Mg m−3 Dm measured by flotation |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.2516 (7) Å | θ = 10–15° |
b = 10.723 (3) Å | µ = 1.54 mm−1 |
c = 12.142 (6) Å | T = 293 K |
β = 115.80 (1)° | Prism, pink |
V = 850.0 (5) Å3 | 0.50 × 0.40 × 0.36 mm |
Z = 2 |
Enraf-Nonius CAD-4 diffractometer | 1762 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.007 |
Graphite monochromator | θmax = 27.0°, θmin = 2.7° |
ω/2θ scans | h = −9→9 |
Absorption correction: ψ-scan (North et al., 1968) | k = 0→13 |
Tmin = 0.487, Tmax = 0.575 | l = 0→15 |
2049 measured reflections | 2 standard reflections every 120 min |
1845 independent reflections | intensity decay: 1.8% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | All H-atom parameters refined |
wR(F2) = 0.056 | Calculated w = 1/[σ2(Fo2) + (0.0275P)2 + 0.5564P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.003 |
1845 reflections | Δρmax = 0.37 e Å−3 |
157 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Extinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: heavy-atom method | Extinction coefficient: 0.009 (1) |
H16CoNa2O20P4 | V = 850.0 (5) Å3 |
Mr = 564.92 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.2516 (7) Å | µ = 1.54 mm−1 |
b = 10.723 (3) Å | T = 293 K |
c = 12.142 (6) Å | 0.50 × 0.40 × 0.36 mm |
β = 115.80 (1)° |
Enraf-Nonius CAD-4 diffractometer | 1762 reflections with I > 2σ(I) |
Absorption correction: ψ-scan (North et al., 1968) | Rint = 0.007 |
Tmin = 0.487, Tmax = 0.575 | 2 standard reflections every 120 min |
2049 measured reflections | intensity decay: 1.8% |
1845 independent reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.056 | All H-atom parameters refined |
S = 1.17 | Δρmax = 0.37 e Å−3 |
1845 reflections | Δρmin = −0.31 e Å−3 |
157 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_gt etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. La largeur de balayage est (1.00 + 0.35 t gθ)°. Les intensités ont été corrigés des facteurs de Lorentz-Polarization. La structure a été résolue par la méthode de l'atome lourd (SHELXS86; Sheldrick, 1990) puis affinée par la méthode des moindres carrés (SHELXL93; Sheldrick, 1993). |
x | y | z | Uiso*/Ueq | ||
Co | 1/2 | 0 | 1/2 | 0.0126 (1) | |
P1 | 0.04192 (6) | 0.04535 (4) | 0.28201 (4) | 0.0135 (1) | |
P2 | 0.68066 (6) | 0.26178 (4) | 0.41884 (4) | 0.0124 (1) | |
Na | 0.20619 (1) | 0.32852 (7) | 0.45911 (7) | 0.0209 (2) | |
O1 | 0.2702 (2) | 0.0307 (1) | 0.3255 (1) | 0.0178 (3) | |
O2 | 0.6820 (2) | 0.1413 (1) | 0.4828 (1) | 0.0209 (3) | |
O3 | 0.3627 (2) | 0.1293 (1) | 0.5834 (1) | 0.0184 (3) | |
O4 | −0.0893 (2) | 0.0151 (1) | 0.1499 (1) | 0.0202 (3) | |
O5 | −0.0297 (2) | −0.0385 (2) | 0.3631 (1) | 0.0261 (3) | |
O6 | 0.0053 (2) | 0.1845 (1) | 0.3073 (1) | 0.0235 (3) | |
O7 | 0.6498 (2) | 0.2468 (1) | 0.2879 (1) | 0.0185 (3) | |
O8 | 0.5075 (2) | 0.3471 (1) | 0.4235 (1) | 0.0219 (3) | |
O9 | 0.8892 (2) | 0.3307 (1) | 0.4892 (1) | 0.0196 (3) | |
OW | 0.4061 (2) | 0.4394 (1) | 0.6479 (1) | 0.0215 (3) | |
H1 | 0.449 (4) | 0.157 (3) | 0.643 (3) | 0.038 (7)* | |
H2 | 0.275 (4) | 0.096 (3) | 0.604 (2) | 0.039 (7)* | |
H3 | 0.064 (3) | −0.079 (3) | 0.413 (2) | 0.050 (8)* | |
H4 | −0.108 (5) | 0.196 (3) | 0.293 (3) | 0.046 (8)* | |
H5 | 0.513 (4) | 0.411 (3) | 0.397 (3) | 0.043 (8)* | |
H6 | 0.893 (4) | 0.369 (3) | 0.543 (3) | 0.044 (8)* | |
H7 | 0.493 (4) | 0.386 (3) | 0.691 (2) | 0.032 (7)* | |
H8 | 0.355 (4) | 0.457 (3) | 0.689 (3) | 0.040 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.0106 (2) | 0.0128 (2) | 0.0130 (2) | −0.0000 (1) | 0.0039 (1) | 0.0019 (1) |
P1 | 0.0112 (2) | 0.0164 (2) | 0.0118 (2) | 0.0013 (1) | 0.0040 (2) | 0.0007 (1) |
P2 | 0.0120 (2) | 0.0114 (2) | 0.0136 (2) | −0.0004 (1) | 0.0054 (2) | 0.0005 (1) |
Na | 0.0191 (3) | 0.0192 (4) | 0.0230 (4) | −0.0009 (3) | 0.0078 (3) | −0.0004 (3) |
O1 | 0.0122 (6) | 0.0258 (6) | 0.0152 (6) | 0.0025 (5) | 0.0057 (5) | 0.0037 (5) |
O2 | 0.0177 (6) | 0.0173 (6) | 0.0255 (6) | −0.0011 (5) | 0.0074 (5) | 0.0074 (5) |
O3 | 0.0166 (6) | 0.0202 (6) | 0.0172 (6) | −0.0023 (5) | 0.0063 (5) | −0.0025 (5) |
O4 | 0.0226 (6) | 0.0184 (6) | 0.0134 (6) | −0.0006 (5) | 0.0021 (5) | −0.0001 (4) |
O5 | 0.0157 (6) | 0.0381 (8) | 0.0244 (7) | 0.0028 (6) | 0.0086 (6) | 0.0149 (6) |
O6 | 0.0171 (6) | 0.0216 (7) | 0.0291 (7) | 0.0019 (5) | 0.0076 (5) | −0.0086 (5) |
O7 | 0.0187 (6) | 0.0211 (6) | 0.0137 (6) | 0.0015 (5) | 0.0054 (5) | −0.0002 (4) |
O8 | 0.0200 (6) | 0.0178 (6) | 0.0325 (7) | 0.0034 (5) | 0.0157 (6) | 0.0018 (5) |
O9 | 0.0172 (6) | 0.0217 (6) | 0.0212 (6) | −0.0063 (5) | 0.0096 (5) | −0.0082 (5) |
OW | 0.0257 (7) | 0.0200 (6) | 0.0213 (6) | 0.0060 (5) | 0.0126 (6) | 0.0043 (5) |
Co—O1i | 2.074 (1) | Na—O6 | 2.359 (2) |
Co—O1 | 2.074 (1) | Na—O8 | 2.414 (1) |
Co—O2 | 2.079 (1) | Na—OW | 2.425 (2) |
Co—O2i | 2.079 (1) | Na—O9iii | 2.479 (1) |
Co—O3 | 2.195 (1) | Na—O3 | 2.576 (2) |
Co—O3i | 2.195 (1) | O3—H1 | 0.78 (3) |
P1—O4 | 1.502 (1) | O3—H2 | 0.86 (3) |
P1—O1 | 1.511 (1) | O4—Naiv | 2.344 (2) |
P1—O6 | 1.569 (1) | O5—H3 | 0.81 (1) |
P1—O5 | 1.579 (1) | O6—H4 | 0.77 (3) |
P2—O2 | 1.505 (1) | O8—H5 | 0.77 (3) |
P2—O7 | 1.515 (1) | O9—Nav | 2.479 (1) |
P2—O9 | 1.561 (1) | O9—H6 | 0.77 (3) |
P2—O8 | 1.574 (1) | OW—H7 | 0.84 (3) |
Na—O4ii | 2.344 (1) | OW—H8 | 0.76 (3) |
O1i—Co—O1 | 180.0 | O8—Na—OW | 85.03 (6) |
O1i—Co—O2 | 87.45 (5) | O4ii—Na—O9iii | 86.84 (5) |
O1—Co—O2 | 92.55 (5) | O6—Na—O9iii | 79.91 (5) |
O1i—Co—O2i | 92.55 (5) | O8—Na—O9iii | 174.48 (6) |
O1—Co—O2i | 87.45 (5) | OW—Na—O9iii | 93.88 (6) |
O2—Co—O2i | 180.0 | O4ii—Na—O3 | 175.61 (5) |
O1i—Co—O3 | 87.33 (6) | O6—Na—O3 | 83.10 (6) |
O1—Co—O3 | 92.67 (6) | O8—Na—O3 | 88.31 (5) |
O2—Co—O3 | 91.23 (5) | OW—Na—O3 | 85.58 (6) |
O2i—Co—O3 | 88.77 (5) | O9iii—Na—O3 | 97.01 (5) |
O1i—Co—O3i | 92.67 (6) | P1—O1—Co | 130.14 (7) |
O1—Co—O3i | 87.33 (6) | P2—O2—Co | 144.64 (8) |
O2—Co—O3i | 88.77 (5) | Co—O3—Na | 115.25 (6) |
O2i—Co—O3i | 91.23 (5) | Co—O3—H1 | 108.9 (2) |
O3—Co—O3i | 180.0 | Na—O3—H1 | 101.6 (2) |
O4—P1—O1 | 116.06 (8) | Co—O3—H2 | 114.8 (2) |
O4—P1—O6 | 109.39 (7) | Na—O3—H2 | 108.8 (2) |
O1—P1—O6 | 106.44 (7) | H1—O3—H2 | 106.4 (3) |
O4—P1—O5 | 108.38 (8) | P1—O4—Naiv | 133.86 (8) |
O1—P1—O5 | 109.31 (8) | P1—O5—H3 | 111.1 (2) |
O6—P1—O5 | 106.87 (8) | P1—O6—Na | 132.51 (8) |
O2—P2—O7 | 114.54 (8) | P1—O6—H4 | 110.8 (2) |
O2—P2—O9 | 109.68 (7) | Na—O6—H4 | 108.1 (2) |
O7—P2—O9 | 106.84 (7) | P2—O8—Na | 139.21 (8) |
O2—P2—O8 | 107.86 (8) | P2—O8—H5 | 108.6 (2) |
O7—P2—O8 | 110.08 (7) | Na—O8—H5 | 111.4 (2) |
O9—P2—O8 | 107.66 (8) | P2—O9—Nav | 130.88 (8) |
O4ii—Na—O6 | 99.71 (6) | P2—O9—H6 | 112.9 (2) |
O4ii—Na—O8 | 87.79 (5) | Nav—O9—H6 | 116.2 (2) |
O6—Na—O8 | 102.29 (6) | Na—OW—H7 | 103.3 (2) |
O4ii—Na—OW | 92.06 (6) | Na—OW—H8 | 118.5 (2) |
O6—Na—OW | 166.30 (6) | H7—OW—H8 | 102.3 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x, y−1/2, −z+1/2; (v) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O7vi | 0.79 (3) | 2.01 (3) | 2.786 (2) | 171 (3) |
O3—H2···O5vii | 0.86 (3) | 2.08 (3) | 2.928 (2) | 170 (3) |
O5—H3···O2i | 0.81 (1) | 1.84 (1) | 2.637 (2) | 166 (3) |
O6—H4···O7iii | 0.78 (3) | 1.81 (3) | 2.573 (2) | 166 (3) |
O8—H5···OWviii | 0.78 (3) | 1.85 (3) | 2.619 (2) | 166 (3) |
O9—H6···O4ix | 0.78 (3) | 1.73 (3) | 2.510 (2) | 168 (3) |
OW—H7···O7vi | 0.84 (3) | 1.88 (3) | 2.717 (2) | 170 (3) |
OW—H8···O1vi | 0.76 (3) | 2.02 (3) | 2.752 (2) | 164 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (iii) x−1, y, z; (vi) x, −y+1/2, z+1/2; (vii) −x, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x+1, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | H16CoNa2O20P4 |
Mr | 564.92 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.2516 (7), 10.723 (3), 12.142 (6) |
β (°) | 115.80 (1) |
V (Å3) | 850.0 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.54 |
Crystal size (mm) | 0.50 × 0.40 × 0.36 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | ψ-scan (North et al., 1968) |
Tmin, Tmax | 0.487, 0.575 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2049, 1845, 1762 |
Rint | 0.007 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.056, 1.17 |
No. of reflections | 1845 |
No. of parameters | 157 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.37, −0.31 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macicek & Yordanov, 1992), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEPIII (Johnson & Burnett, 1997), SHELXL93.
Co—O1i | 2.074 (1) | Na—O4ii | 2.344 (1) |
Co—O1 | 2.074 (1) | Na—O6 | 2.359 (2) |
Co—O2 | 2.079 (1) | Na—O8 | 2.414 (1) |
Co—O2i | 2.079 (1) | Na—OW | 2.425 (2) |
Co—O3 | 2.195 (1) | Na—O9iii | 2.479 (1) |
Co—O3i | 2.195 (1) | Na—O3 | 2.576 (2) |
P1—O4 | 1.502 (1) | O3—H1 | 0.78 (3) |
P1—O1 | 1.511 (1) | O3—H2 | 0.86 (3) |
P1—O6 | 1.569 (1) | O5—H3 | 0.81 (1) |
P1—O5 | 1.579 (1) | O6—H4 | 0.77 (3) |
P2—O2 | 1.505 (1) | O8—H5 | 0.77 (3) |
P2—O7 | 1.515 (1) | O9—H6 | 0.77 (3) |
P2—O9 | 1.561 (1) | OW—H7 | 0.84 (3) |
P2—O8 | 1.574 (1) | OW—H8 | 0.76 (3) |
O1i—Co—O1 | 180.0 | O3—Co—O3i | 180.0 |
O1i—Co—O2 | 87.45 (5) | O4—P1—O1 | 116.06 (8) |
O1—Co—O2 | 92.55 (5) | O4—P1—O6 | 109.39 (7) |
O1i—Co—O2i | 92.55 (5) | O1—P1—O6 | 106.44 (7) |
O1—Co—O2i | 87.45 (5) | O4—P1—O5 | 108.38 (8) |
O2—Co—O2i | 180.0 | O1—P1—O5 | 109.31 (8) |
O1i—Co—O3 | 87.33 (6) | O6—P1—O5 | 106.87 (8) |
O1—Co—O3 | 92.67 (6) | O2—P2—O7 | 114.54 (8) |
O2—Co—O3 | 91.23 (5) | O2—P2—O9 | 109.68 (7) |
O2i—Co—O3 | 88.77 (5) | O7—P2—O9 | 106.84 (7) |
O1i—Co—O3i | 92.67 (6) | O2—P2—O8 | 107.86 (8) |
O1—Co—O3i | 87.33 (6) | O7—P2—O8 | 110.08 (7) |
O2—Co—O3i | 88.77 (5) | O9—P2—O8 | 107.66 (8) |
O2i—Co—O3i | 91.23 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O7iv | 0.79 (3) | 2.01 (3) | 2.786 (2) | 171 (3) |
O3—H2···O5v | 0.86 (3) | 2.08 (3) | 2.928 (2) | 170 (3) |
O5—H3···O2i | 0.81 (1) | 1.84 (1) | 2.637 (2) | 166 (3) |
O6—H4···O7iii | 0.78 (3) | 1.81 (3) | 2.573 (2) | 166 (3) |
O8—H5···OWvi | 0.78 (3) | 1.85 (3) | 2.619 (2) | 166 (3) |
O9—H6···O4vii | 0.78 (3) | 1.73 (3) | 2.510 (2) | 168 (3) |
OW—H7···O7iv | 0.84 (3) | 1.88 (3) | 2.717 (2) | 170 (3) |
OW—H8···O1iv | 0.76 (3) | 2.02 (3) | 2.752 (2) | 164 (3) |
Symmetry codes: (i) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) x, −y+1/2, z+1/2; (v) −x, −y, −z+1; (vi) −x+1, −y+1, −z+1; (vii) x+1, −y+1/2, z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Les phosphates des métaux de transition forment une grande famille de composés à structures souvent ouvertes et pouvant dans certains cas présenter des propriétés physiques intéressantes: conduction et échange d'ions (Clearfield, 1982, 1988; Hong, 1976) ou doublage de fréquences en optique non linéaire (Bierlein & Vanherzeele, 1989; Bierlein et al., 1989).
Une étude bibliographique révèle que les systèmes A—Co—X—O (A = alcalin, X = P ou As) restent peu explorés, un nombre limité de phosphates et d'arséniates de cobalt y est reporté (Lii & Shih, 1994; Lujan, 1994; Kubel, 1994; Barmond & Barbier, 1996; Sanz et al., 1996; Horng et al., 1996). Dans ces derniers, l'association des polyèdres CoOn (n = 4 ou 5) e t de tétraèdres HnXO4 (n = 0, 1 ou 2), conduit à des charpentes mixtes pouvant être uni-, bi- ou tridimensionnelles. Nous présentons dans ce travail, l'étude et la discussion de la structure d'un nouveau phosphate de cobalt et de sodium de formulation Na2Co(H2PO4)4·4H2O.
La structure de Na2Co(H2PO4)4·4H2O est caractérisée par l'existence d'anions [Co(H2PO4)4(OH2)2]2- résultant de la connexion des octaèdres CoO4(OH2)2 aux tétraèdres PO2(OH)2 par la mize en commun de sommets oxygène (Fig. 1).
L'absence d'un encha^ınement direct entre ces anions est due à l'existence de molécules d'eau dans la sphère de coordination du Co et de groupements hydroxyle liés au phosphore. La cohésion de l'édifice structural est assurée par des liaisons hydrogène dont cinq sont fortes (Brown, 1976). Il en résulte un réseau tridimensionnel avec la formation de tunnels parallèles à la direction [001] où logent les cations Na+ (Fig. 2).
Les distances interatomiques dans cette structure sont conformes à celles rencontrées dans la bibliographie (Ichikawa, 1987; Effenberger, 1992). La coordinence octaèdrique du Co est confirmée par la coloration rose du cristal (Cotton & Wilkinson, 1980). Les calculs des forces de valences en utilisant les paramètres de Brown & Wu (1976) pour P1, P2, Co et Na conduisent aux valeurs respectives 5.01, 5.03, 1.98 e t 1.24 unités de valence. Ces valeurs sont en accord avec les états d'oxydation trouvés dans la structure. La comparaison de la structure de Na2Co(H2PO4)4·4H2O avec celles des phosphates de cobalt formées par le même type d'octaèdres CoO4(OH2)2 a permis de mettre en évidence une certaine analogie entre la structure du composé étudié et celles de Co(H2PO4)2·2H2O (Effenberger, 1992) et de K2CoP4O12·5H2O (Jouini et al., 1987). Dans Co(H2PO4)2·2H2O, chaque tétraèdre partage deux sommets différents avec deux octaèdres différents pour former des couches parallèles au plan (-101) e t reliées entre elles par des liaisons hydrogène. Deux polyèdres de nature différente, dans la structure étudiée, ne partagent qu'un seul sommet d'où la formation des unités Co(H2PO4)4(OH2)2.
On peut signaler que par élimination de quatre molécules d'eau entre les tétraèdres, il pourrait y avoir formation du cycle P4O12 et passage à la charpente anionique rencontrée dans le métaphosphate K2CoP4O12·5H2O.