Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Different salts of the 2-phenyl-1,10-phenanthrolin-1-ium cation, (pnpH)+, are obtained by reacting 2-phenyl-1,10-phen­anthroline (pnp), C18H12N2, (I), with a variety of anions, such as hexa­fluorido­phosphate, C18H13N2+·PF6, (II), tri­fluoro­methane­sulfonate, C18H13N2+·CF3SO3, (III), tetra­chlorido­aurate, (C18H13N2)[AuCl4], (IV), and bromide (as the dihydrate), C18H13N2+·Br·2H2O, (V). Compound (I) crystallizes with Z′ = 2, with both independent mol­ecules adopting a coplanar conformation. In (II)–(IV), a hydrogen bond exists between the cation and anion, while one of the lattice water mol­ecules serves as a hydrogen-bonded bridge between the cation and anion in (V). Reaction of (I) with HAuCl4 gives the salt complex (IV); however, reaction with KAuCl4 produces the monodentate complex tri­chlorido­(2-phenyl-1,10-phenanthroline-κN10)gold(III), [AuCl3(C18H12N2)], (VI). Di­chlorido­(2-phenyl-1,10-phenanthroline-κ2N,N′)copper(II), [CuCl2(C18H12N2)], (VII), results from the reaction of CuCl2·2H2O and (I), in which the CuII center adopts a tetra­hedrally distorted square-planar geometry. The pendent phenyl ring twists to a bis­ecting position relative to the phenanthroline plane. The square-planar PdII complex, bromido­[2-(phenanthrolin-2-yl)phenyl-κ3C1,N,N′]palladium(II), [PdBr(C18H11N2)], (VIII), is obtained from the reaction of (I) with [PdCl2(cyclo­octa-1,5-diene)], followed by addition of bromine. A coplanar geometry for the pendent ring is adopted as a result of the tridentate bonding motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614001843/gz3246sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, VIII, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246VIsup7.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246VIIsup8.hkl
Contains datablock VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614001843/gz3246VIIIsup9.hkl
Contains datablock VIII

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614001843/gz3246Isup10.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614001843/gz3246IIIsup11.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614001843/gz3246Vsup12.cml
Supplementary material

CCDC references: 983576; 983577; 983578; 941963; 983579; 941962; 983580; 983581

Introduction top

2-Phenyl-1,10-phenanthroline [pnp, (I)] was first reported by Case & Sasin (1955) and later by Riesgo et al. (1996). Studies involving (I), other substituted phenanthroline (phen) ligands, as well as substituted 2,2'-bi­pyridine (bpy) ligands and their complexes, are centered primarily around the variable chelating ability of these ligands and how this can influence the electronic and steric properties of the resulting complexes. The consensus is that the disposition of the pendent group with respect to the phen or bpy moiety (dihedral angle, α, defined by rotation about the 2,2' bond) influences key inter- and intra-ligand communication via π stacking inter­actions (Constable et al., 2008; Goodman et al., 1995; Jeffrey et al., 1995; Shishkin et al., 2011; Wu et al., 1999; Yang et al., 2009).

Energy-minimized molecular mechanics calculations carried out by Wu et al. (1999) on (I) show that α = 28° is preferred by the uncomplexed ligand while upon complexation the calculated α angle expands, for example in [Ru(pnp)(bpy)2](PF6)2 α = 54.7°. On the other hand, researchers have investigated the reactivity of pnp–metal complexes as model systems for metal–DNA inter­actions. For example, Suggs et al. (1993) found that [(RPd)2(µ-adenine)]+ (R = pnp and derivatives thereof) can act as nucleases generating nicks in DNA; the planarity of the ligand is presumed to give rise to a favorable geometry for inter­calation.

In this paper, we report the structure of (I) and several protonated salts of the type, (pnpH)X [X = PF6, (II), CF3SO3, (III), AuCl4, (IV), and Br, (V)]. In addition, the structures of three pnp–metal complexes are reported (see Scheme), where the ligand adopts a monodentate, [AuCl3(pnp)], (VI), a bidentate, [CuCl2(pnp)], (VII), or tridentate, [PdBr(pnp)] (VIII), bonding motif.

Experimental top

Synthesis and crystallization top

Compound (I) was prepared according to the literature method of Riesgo et al. (1996). Colorless single crystals were grown at room temperature by slow evaporation of a methyl­ene chloride solution or slow evaporation of a layered di­chloro­methane–hexane solution (1:1 v/v).

Compound (II) was isolated as a side product during the reaction of PtCl(pip2NCN) with AgPF6 (Chatterjee et al., 2012), followed by the addition of (I). Colorless crystals were harvested from slow evaporation of a solution of acetone–di­ethyl ether (1:1 v/v) kept at room temperature.

Colorless single crystals of (III) were obtained upon reacting [La(CF3SO3)3] with (I) at room temperature in aceto­nitrile–di­chloro­methane solution [1:1 molar ratio of rea­cta­nts (typically 0.1 mmol of each rea­ctant), 5 ml of each solvent]. Crystals grew in the test tube over the course of 1–2 weeks.

After approximately one week at room temperature, a solution of HAuCl4 in methanol and (I) in di­chloro­methane [1:1 molar ratio of rea­cta­nts (typically 0.1 mmol of each rea­ctant), 5 ml of each solvent, testtube reaction] yielded golden-yellow crystals of (IV).

Compound (V) was obtained as a by-product from th Cheers fnow Dil

——————————————————- e reaction of PtCl(pnp) and bromine. Colorless crystals were obtained from aceto­nitrile–di­ethyl ether solutions (1:1 v/v) maintained at room temperature.

In a test tube, a clear yellow solution of KAuCl4 in methanol was layered over a solution of (I) in di­chloro­methane [1:1 molar ratio of rea­cta­nts (typically 0.08 mmol of each rea­ctant), 5 ml of each solvent] and allowed to sit at room temperature. Golden yellow plates of (VI) were harvested after two weeks.

Orange crystals of (VII) were obtained from a room temperature test tube reaction of CuCl2.2H2O dissolved in methanol and (I) dissolved in di­chloro­methane [1:1 molar ratio of rea­cta­nts (typically 0.05–0.1 mmol of each rea­ctant), 5 ml of each solvent]. Crystals of a suitable size for diffraction analysis grew in 5–10 d.

Compound (VIII) was otained as follows. [PdCl2(COD)] and (I) in methanol–aceto­nitrile (0.2 mmol of each rea­ctant, 1:1 solvent ratio, 50 ml total solvent volume) were refluxed for 4 h. The resulting yellow precipitate was filtered off, washed with di­ethyl ether and subsequently dissolved in methanol–aceto­nitrile (1:1 v/v). Bromine (10 equivalents) was added and refluxed for 4 h. The resulting product was filtered off and washed with di­ethyl ether. Yellow crystals were obtained from a layered aceto­nitrile–di­ethyl ether solution (1:1 v/v) maintained at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The PF6- counter-ion in (II) shows typical disorder in four F atoms in the equatorial plane that have been refined with a two-component disorder model. The refined major occupancy is 0.53 (2). However, it appears that the electron density in the equatorial place could be described as a ring of electron density with multiple options for partial-occupancy F-atom placement.

Atom H1 for (II)–(V), as well as the water H atoms for (V), were located directly from the difference map and the coordinates refined. All distances and angles associated with hydrogen-bond inter­actions are summarized in Tables 2 and 3. All C-bound H atoms for (I)–(VIII) were calculated based on geometric criteria, and treated with a riding model, with C—H = 0.95 Å. Isotropic displacement parameters for all H atoms were defined as kUeq(C,N,O) where k = 1.5 for solvent H atoms and 1.2 for all others.

Results and discussion top

Compound (I) (Fig. 1) crystallizes with two independent molecules in the asymmetric unit. Both molecules adopt a nearly coplanar conformation [α = 8.92 (7)° for molecule A and 9.70 (10)° for molecule B]. Similar coplanarity is found for 2-(2-hy­droxy­phenyl)-1,10-phenanthroline (two independent molecules with reported α angles of 15.6 and 20.8°; Jeffrey et al., 1995) and 2-(4-iodo­phenyl)-1,10-phenanthroline [α = 11.1 (2)°; Shishkin et al., 2011]. This is also observed for the 1:1 hydrogen-bonded cocrystal 2,2,6,6-tetra­methyl-4-oxopiperidinium hexa­fluoro­phosphate–php [php = 2-(pyridin-2-yl)-1,10-phenanthroline], where α = 10.97 (12)° (Krause et al., 2013). As expected, increased steric bulk on the pendent ring favors larger values of α. For example, the reported angle for 2-(2,4,6-tri­methyl­phenyl)-1,10-phenanthroline (Zhao et al., 2009) is α = 82.69 (4)°.

Reaction of (I) with various metal complexes produces (II)–(V) (Figs. 2–5). The pnpH+ cation, (I)H+, is protonated at atom N1, resulting in an inter­molecular hydrogen bond (Table 2) with the anion as in (II) and (III). A similar but weak hydrogen-bonding inter­action occurs for (IV). The N—H···Cl inter­action for (IV) is longer than observed for the related [n-BuphenH]AuCl4 (2.91 Å) and [sec-BuphenH]AuCl4 (3.00 Å) but shorter than the value of 3.55 Å observed for [tBuphenH]AuCl2 (Hudson et al., 2009). In the case of (V), a lattice water molecule serves as a hydrogen-bonded bridge between the cation and anion (Table 3). Additionally, a second lattice water (O2W) is present which hydrogen bonds with both Br1 and O1W to form a one-dimensional chain which runs parallel to the aaxis (Fig. 6 and Table 3). Each cation in (II), (III) and (V) retains the nearly coplanar arrangement of the pendent phenyl ring [α = 5.14 (11)° for (II), 2.71 (7)° for (III), and 3.68 (16)° for (V)], while the disposition of the ring is twisted to 12.49 (12)° for (IV). The more planar arrangement observed for (II), (III), and (V) may be attributed to a favorable C—H···anion–solvate inter­action [C18···F1 = 3.537 (3) Å for (II), C18···O2 = 3.452 (2) Å for (III), and C18···O1W = 3.593 (7) Å for (V)], whereas the related C—H···anion distance is >4.0 Å for (IV).

As a ligand, (I) is rather versatile in its coordination to metals. Reaction of (I) with KAuCl4 produces (VI) (Fig. 7). The ligand coordinates to the square-planar AuIII metal center in a monodentate fashion and approaches a perpendicular orientation with respect to the AuCl3 moiety [72.05 (3)°]. The bond lengths and angles involving the gold (Table 4) are comparable to other square-planar AuCl3-containing complexes such as trichlorido[2-(2,5-di­methyl­phenyl)­pyridine]­gold(III) and trichlorido[2-(2-meth­oxy­phenyl)­pyridine]­gold(III) (Hashmi et al., 2010), (dpo)AuCl3 (dpo = di-2-pyridyl ether; Hodges et al., 2011), and (acridine-N)trichloridogold(III) (Sloufova & Slouf, 2001). The orientation of the pendent phenyl ring [α = 30.57 (7)°] is twisted away from a coplanar arrangement. In contrast, the substituted phenanthroline ligand in n-BuphenAuCl3 and sec-BuphenAuCl3 binds in a bidentate fashion to the gold (Hudson et al., 2009).

Reaction of CuCl2.2H2O and (I) forms (VII) (Fig. 8) in which the ligand coordinates through the N atoms in a bidentate fashion with a bite angle of 82.56 (7)°. The CuII center in (VII) adopts a tetra­hedrally distorted square-planar geometry. The angles about the Cu are in the range 82–155° (Table 5), with the Cl1—Cu1—Cl2 angle [99.74 (2)°] midway between the expected square-planar and tetra­hedral angles. Perhaps a better indicator of the degree of distortion in (VII) is reflected in the dihedral angle [53.34 (4)°] about the Cu-containing planes N1—Cu1—N1 and Cl1—Cu1—Cl2 (90° for tetra­hedral and 0° for square planar). Such distortion is frequently observed in four-coordinate Cu complexes (Raithby et al., 2000), particularly those having bidentate ligands and can be rationalized in terms of electronic and steric effects, i.e. increased π-back-bonding of the chelating ligand favors a square planar geometry, while bulky substituents tend to cause tetra­hedral distortions. However, the degree of distortion is highly variable, e.g. [Cu{R-bis­(oxazoline)}(H2O)2](SbF6)2 (R = tert-butyl, ave. distortion reported as 33.3°; R = iso­propyl, ave. distortion = 7°) (Johnson & Evans, 2000), [CuCl2{tBu-bis­(oxazoline)}] (37°; Evans et al., 1999), [Cu(tbz)2](CF3SO3)2.H2O [tbz = bis­(2-benzimidazolyl)propane; 62°;Albada et al., 2000], [CuCl2(5,5'-di­amino-2,2'-bi­pyridine)] (41.1°; Janiak et al., 1999), [CuCl2(2,2'-bi­quinoline)] (65.4°; Muranishi et al., 2005) and [CuCl2(BLiPr)] [BLiPr = bis­(1,3-diiso­propyl-4,5-di­methyl­imidazolin-2-yl­idene)-1,2-ethanedi­amine; reported distortion of 53.9°; Glöge et al., 2010]. Another way of describing the distortion at the four-coordinate metal center is the τ4 geometry index (Yang et al., 2007), similar to the τ5 index popularized by Addison et al. (1984) for the description of five-coordinate metal centers. As pointed out, (VII) is a difficult case that appears to be an average of a number of geometries, the τ4 index of 0.52 suggests a tetra­hedrally distorted seesaw geometry. As with the triclinic and monoclinic forms of [CuCl2(php)] [2.4336 (7) and 2.4461 (9) versus 2.2393 (8) and 2.2578 (6) Å; Krause et al., 2013], there is an elongation of the Cu—Clapical bond in (V) [Cu—Cl2 = 2.2458 (6) versus Cu—Cl1 = 2.2180 (6) Å]. In addition, the Cu atom in (VII) is displaced 0.1218 (14) Å out of the plane generated by the phen ring. Taken together, one may speculate a pyramidal distortion is also contributing to the observed asymmetry. The orientation of the pendent phenyl ring is significantly canted away from coplanarity [α = 45.63 (5)°], similar angles are observed for [AuCl(dpp)]C7H7SO3.0.5CH3OH [55.1 (2)°; Chan et al., 1994], [Cu(dpp)2](PF6)2 and [Cu(dpp)2](ClO4)2 (dpp = 2,9-di­phenyl-1,10-phenanthroline; 42.6–61.4 and 39.9–43.3°, respectively; Miller et al., 1998). In contrast, an α = 10.3° orientation is reported by Constable et al. (2008) for [Cu(Rphen)2]PF6 [Rphen = 2-(4-meth­oxy­phenyl)-1,10-phenanthroline].

Refluxing [PdCl2(COD)] (COD = 1,5-cyclo­octa­diene) and (I) in methanol–aceto­nitrile followed by the addition of bromine results in (VIII) (Fig. 9). The PdII geometry is square planar, with (I) acting as a tridentate ligand to the metal atom. This is a popular chelating mode of aromatic polypyridine ligands such as 2,2':6,2''-terpyridine (tpy), php, pnp and related derivatives. The bonding about the PdII atom is asymmetric, with the central Pd—N bond shorter than the distal Pd—N or Pd—C bonds (Table 6). For representative complexes such as [AuCl(dpp)](C7H7SO3).0.5CH3OH (Chan et al., 1994), [CuCl2(php)] (Krause et al., 2013), [PtCl(4,7-Me2-php)]CF3SO3 (Moore et al., 2002), [PtCl(php)]X (X = ClO4-, ReO4-, PF6- and AsF6-; Norton et al., 2014), [PtCl(tpy)]ClO4 (Taylor et al., 2013), [PtCl(tpy)]PF6 and [PtCl(tpy)]ClO4.H2O (Taylor et al., 2010), shortening of the central bond is typical (1.92–1.97 Å range), while the distal bonds fall in the range 2.01–2.22 Å. The customary contraction of the angle between the distal atoms of the chelating ligand and the metal [N1—Pd1—C18 = 160.04 (11)°] is observed, comparable to that for the above-mentioned four- and five-coordinate examples (154–163° range). As expected, the disposition [α = 1.25 (11)°] of the pendent phenyl ring is small; values of 0.3–6.0° are adopted for similar ligands in [PtCl(4,7-Me2-php)]CF3SO3 (Moore et al., 2002), [PtCl(php)]X (X = ClO4-, ReO4-, PF6- and AsF6-; Norton et al., 2014) and [CuCl2(php)] (Krause et al., 2013).

The packing arrangement for (II), (III) and (V) maximizes π-inter­actions but with the conventional offset stacking pattern [the centroid distances between the central ring defined by atoms C4–C9 of the phenanthroline system and the pendent phenyl ring are 3.582 (2) Å for (II), 3.6770 (10) Å for (III), and 3.711 (3) Å for (V)]. The closest inter­planar distance for (IV) is 3.757 (3) Å between the distal ring defined by atoms N1–C5 of the phenanthroline system and the pendent phenyl ring. The displacement angles for these inter­actions range from 18.7 to 29.7°. The more planar the metal complex, the less slippage is associated with the C4–C9 phenanthroline centroid-to-centroid π-inter­action. As a result, stacking distances of 3.487 (2) Å for (VIII), 3.713 (2) Å for (VI), and 3.8983 (13) Å for (VII) are observed with associated displacement angles in the range 9.3–26.2°. As reported by Janiak (2000), distances and displacement angles clustered about 3.8 Å and 20°, respectively, are common.

Related literature top

For related literature, see:van Albada et al. (2000); Case & Sasin (1955); Chan et al. (1994); Chatterjee et al. (2012); Constable et al. (2008); Evans et al. (1999); Glöge et al. (2010); Goodman et al. (1995); Hashmi et al. (2010); Hodges et al. (2011); Hudson et al. (2009); Janiak (2000); Janiak et al. (1999); Jeffrey et al. (1995); Johnson & Evans (2000); Krause et al. (2013); Miller et al. (1998); Moore et al. (2002); Muranishi et al. (2005); Norton et al. (2014); Raithby et al. (2000); Riesgo et al. (1996); Shishkin et al. (2011); Sloufova & Slouf (2001); Suggs et al. (1993); Taylor et al. (2010, 2013); Wu et al. (1999); Yang et al. (2007, 2009); Zhao et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2003) for (I), (III), (IV), (VI), (VII); APEX2 (Bruker, 2005) for (II), (V), (VIII). For all compounds, cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b). Molecular graphics: SHELXTL (Sheldrick, 2008b) for (I), (II), (III), (IV), (VI), (VII), (VIII); SHELXTL (Sheldrick, 2008b) and DIAMOND (Brandenburg, 2012) for (V). For all compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atomic labelling scheme and 50% probability displacement ellipsoids. The dashed line indicates a hydrogen-bonding interaction.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atomic labelling scheme and 50% probability displacement ellipsoids. The dashed line indicates a hydrogen-bonding interaction.
[Figure 4] Fig. 4. The molecular structure of (IV), showing the atomic labelling scheme and 50% probability displacement ellipsoids. The dashed line indicates a hydrogen-bonding interaction.
[Figure 5] Fig. 5. The molecular structure of (V), showing the atomic labelling scheme and 50% probability displacement ellipsoids. The dashed line indicates a hydrogen-bonding interaction.
[Figure 6] Fig. 6. The hydrogen-bonded network of (V), viewed in the ab plane. Only H atoms involved in hydrogen bonding are shown.
[Figure 7] Fig. 7. The molecular structure of (VI), showing the atomic labelling scheme and 50% probability displacement ellipsoids.
[Figure 8] Fig. 8. The molecular structure of (VII), showing the atomic labelling scheme and 50% probability displacement ellipsoids.
[Figure 9] Fig. 9. The molecular structure of (VIII), showing the atomic labelling scheme and 50% probability displacement ellipsoids.
(I) 2-Phenyl-1,10-phenanthroline top
Crystal data top
C18H12N2F(000) = 1072
Mr = 256.30Dx = 1.283 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 4494 reflections
a = 10.8180 (4) Åθ = 4.2–66.1°
b = 21.0893 (8) ŵ = 0.59 mm1
c = 12.2199 (5) ÅT = 150 K
β = 107.844 (2)°Rectangular block, colorless
V = 2653.78 (18) Å30.27 × 0.15 × 0.08 mm
Z = 8
Data collection top
Bruker SMART6000 CCD
diffractometer
4740 independent reflections
Radiation source: fine-focus sealed tube3118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 67.9°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1212
Tmin = 0.856, Tmax = 0.954k = 2525
22260 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0711P)2]
where P = (Fo2 + 2Fc2)/3
4740 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H12N2V = 2653.78 (18) Å3
Mr = 256.30Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.8180 (4) ŵ = 0.59 mm1
b = 21.0893 (8) ÅT = 150 K
c = 12.2199 (5) Å0.27 × 0.15 × 0.08 mm
β = 107.844 (2)°
Data collection top
Bruker SMART6000 CCD
diffractometer
4740 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3118 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.954Rint = 0.056
22260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.99Δρmax = 0.18 e Å3
4740 reflectionsΔρmin = 0.19 e Å3
361 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Our standard practice is to collect a full sphere of data out to a theta angle of 67° (0.83 Å resolution).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.12251 (15)0.15229 (8)0.45401 (14)0.0470 (4)
N2A0.04455 (14)0.13877 (7)0.67646 (13)0.0377 (4)
C1A0.1944 (2)0.15945 (10)0.34590 (18)0.0533 (6)
H1A0.24610.12450.30940.064*
C2A0.2002 (2)0.21454 (11)0.28122 (19)0.0540 (6)
H2A0.25210.21640.20290.065*
C3A0.12897 (19)0.26581 (10)0.33380 (18)0.0469 (5)
H3A0.13230.30430.29260.056*
C4A0.05098 (18)0.26126 (9)0.44877 (16)0.0400 (5)
C5A0.04914 (18)0.20270 (9)0.50624 (16)0.0385 (4)
C6A0.02822 (19)0.31283 (9)0.50664 (17)0.0432 (5)
H6A0.02350.35240.46830.052*
C7A0.10937 (19)0.30652 (9)0.61433 (17)0.0433 (5)
H7A0.16080.34150.65100.052*
C8A0.11873 (18)0.24752 (9)0.67391 (16)0.0390 (5)
C9A0.03899 (17)0.19563 (9)0.62228 (16)0.0363 (4)
C10A0.20892 (19)0.23771 (10)0.78248 (17)0.0446 (5)
H10A0.26470.27120.81980.054*
C11A0.21667 (19)0.18000 (9)0.83469 (17)0.0437 (5)
H11A0.27920.17280.90740.052*
C12A0.13096 (17)0.13109 (9)0.77974 (16)0.0377 (4)
C13A0.13207 (18)0.06815 (9)0.83550 (16)0.0387 (4)
C14A0.19725 (18)0.05835 (9)0.95183 (17)0.0420 (5)
H14A0.24440.09230.99680.050*
C15A0.19433 (19)0.00001 (10)1.00268 (18)0.0462 (5)
H15A0.23790.00561.08230.055*
C16A0.1285 (2)0.04993 (10)0.93812 (19)0.0504 (5)
H16A0.12790.09020.97290.060*
C17A0.0634 (2)0.04145 (10)0.82305 (19)0.0526 (6)
H17A0.01750.07580.77850.063*
C18A0.0648 (2)0.01707 (9)0.77234 (18)0.0455 (5)
H18A0.01920.02250.69310.055*
N1B0.27871 (15)0.10705 (7)0.37739 (13)0.0419 (4)
N2B0.42869 (15)0.09526 (7)0.23349 (13)0.0371 (4)
C1B0.1995 (2)0.11041 (10)0.44147 (18)0.0494 (5)
H1B0.16550.15080.45120.059*
C2B0.1626 (2)0.05864 (10)0.49556 (18)0.0514 (5)
H2B0.10420.06390.53920.062*
C3B0.2120 (2)0.00048 (10)0.48445 (17)0.0505 (5)
H3B0.18880.03540.52080.061*
C4B0.2978 (2)0.00603 (9)0.41880 (17)0.0427 (5)
C5B0.32680 (18)0.04888 (9)0.36455 (16)0.0383 (4)
C6B0.3541 (2)0.06563 (10)0.40425 (19)0.0535 (6)
H6B0.33340.10240.43990.064*
C7B0.4362 (2)0.07043 (9)0.34075 (19)0.0529 (6)
H7B0.47400.11030.33400.064*
C8B0.46700 (19)0.01637 (9)0.28361 (17)0.0432 (5)
C9B0.41088 (17)0.04314 (8)0.29247 (15)0.0362 (4)
C10B0.5490 (2)0.01912 (10)0.21416 (18)0.0494 (5)
H10B0.59160.05770.20790.059*
C11B0.56791 (19)0.03308 (9)0.15570 (18)0.0455 (5)
H11B0.62390.03120.10920.055*
C12B0.50319 (17)0.09024 (9)0.16500 (16)0.0380 (4)
C13B0.51281 (18)0.14813 (9)0.09817 (16)0.0402 (5)
C14B0.5724 (2)0.14761 (11)0.01166 (18)0.0512 (5)
H14B0.60870.10930.00570.061*
C15B0.5792 (2)0.20261 (12)0.0494 (2)0.0611 (6)
H15B0.62080.20160.10750.073*
C16B0.5260 (2)0.25845 (11)0.02609 (19)0.0583 (6)
H16B0.53090.29580.06790.070*
C17B0.4655 (2)0.25979 (10)0.05852 (18)0.0510 (5)
H17B0.42790.29810.07410.061*
C18B0.45963 (19)0.20550 (9)0.12064 (17)0.0435 (5)
H18B0.41900.20720.17930.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0412 (9)0.0460 (10)0.0481 (10)0.0065 (8)0.0054 (8)0.0017 (8)
N2A0.0348 (8)0.0372 (9)0.0413 (9)0.0014 (7)0.0120 (7)0.0039 (7)
C1A0.0446 (12)0.0535 (13)0.0520 (13)0.0113 (11)0.0004 (10)0.0003 (10)
C2A0.0433 (12)0.0640 (15)0.0490 (13)0.0042 (11)0.0055 (10)0.0056 (11)
C3A0.0390 (11)0.0508 (13)0.0525 (13)0.0016 (10)0.0163 (10)0.0080 (10)
C4A0.0342 (10)0.0443 (11)0.0452 (12)0.0001 (9)0.0177 (9)0.0007 (9)
C5A0.0325 (10)0.0394 (11)0.0451 (12)0.0012 (9)0.0140 (8)0.0025 (8)
C6A0.0458 (11)0.0375 (11)0.0510 (13)0.0022 (9)0.0219 (10)0.0005 (9)
C7A0.0459 (11)0.0385 (11)0.0496 (13)0.0082 (9)0.0208 (10)0.0081 (9)
C8A0.0371 (10)0.0397 (11)0.0435 (11)0.0037 (9)0.0172 (9)0.0070 (8)
C9A0.0340 (10)0.0370 (10)0.0411 (11)0.0004 (8)0.0160 (8)0.0024 (8)
C10A0.0445 (11)0.0447 (12)0.0451 (12)0.0108 (10)0.0143 (9)0.0107 (9)
C11A0.0401 (11)0.0465 (12)0.0418 (11)0.0066 (9)0.0085 (9)0.0072 (9)
C12A0.0332 (10)0.0411 (11)0.0393 (11)0.0015 (9)0.0121 (8)0.0066 (8)
C13A0.0353 (10)0.0398 (11)0.0424 (11)0.0008 (9)0.0141 (8)0.0029 (8)
C14A0.0363 (10)0.0412 (11)0.0464 (12)0.0019 (9)0.0097 (9)0.0073 (9)
C15A0.0400 (11)0.0506 (12)0.0463 (12)0.0037 (10)0.0106 (9)0.0007 (10)
C16A0.0430 (12)0.0444 (12)0.0639 (15)0.0011 (10)0.0165 (10)0.0087 (10)
C17A0.0498 (13)0.0445 (12)0.0600 (14)0.0137 (11)0.0114 (11)0.0028 (10)
C18A0.0441 (11)0.0477 (12)0.0427 (12)0.0072 (10)0.0102 (9)0.0025 (9)
N1B0.0458 (10)0.0358 (9)0.0456 (10)0.0001 (8)0.0160 (8)0.0032 (7)
N2B0.0345 (8)0.0340 (9)0.0399 (9)0.0002 (7)0.0070 (7)0.0024 (7)
C1B0.0541 (13)0.0434 (12)0.0547 (13)0.0022 (10)0.0228 (11)0.0078 (10)
C2B0.0573 (13)0.0530 (13)0.0480 (13)0.0106 (11)0.0225 (11)0.0069 (10)
C3B0.0557 (13)0.0497 (13)0.0442 (12)0.0118 (11)0.0125 (10)0.0033 (10)
C4B0.0457 (11)0.0373 (11)0.0404 (11)0.0054 (9)0.0062 (9)0.0005 (8)
C5B0.0375 (10)0.0362 (11)0.0365 (11)0.0018 (9)0.0046 (8)0.0020 (8)
C6B0.0621 (14)0.0385 (12)0.0564 (14)0.0007 (11)0.0129 (11)0.0096 (10)
C7B0.0574 (14)0.0344 (11)0.0632 (15)0.0108 (10)0.0128 (11)0.0060 (10)
C8B0.0396 (11)0.0364 (11)0.0479 (12)0.0040 (9)0.0048 (9)0.0000 (9)
C9B0.0343 (10)0.0311 (10)0.0375 (11)0.0010 (8)0.0026 (8)0.0016 (8)
C10B0.0419 (12)0.0392 (12)0.0635 (15)0.0098 (10)0.0109 (10)0.0028 (10)
C11B0.0376 (11)0.0447 (12)0.0556 (13)0.0038 (10)0.0163 (10)0.0049 (10)
C12B0.0303 (9)0.0402 (11)0.0398 (11)0.0010 (8)0.0055 (8)0.0053 (8)
C13B0.0328 (10)0.0438 (11)0.0402 (11)0.0046 (9)0.0058 (8)0.0014 (9)
C14B0.0412 (11)0.0598 (14)0.0519 (13)0.0007 (11)0.0131 (10)0.0013 (11)
C15B0.0526 (14)0.0784 (18)0.0542 (15)0.0125 (13)0.0193 (11)0.0071 (12)
C16B0.0559 (14)0.0559 (14)0.0540 (14)0.0201 (12)0.0035 (11)0.0092 (11)
C17B0.0548 (13)0.0388 (11)0.0504 (13)0.0094 (10)0.0026 (10)0.0022 (9)
C18B0.0424 (11)0.0407 (11)0.0440 (12)0.0060 (9)0.0081 (9)0.0040 (9)
Geometric parameters (Å, º) top
N1A—C1A1.320 (3)N1B—C1B1.328 (2)
N1A—C5A1.363 (2)N1B—C5B1.360 (2)
N2A—C12A1.330 (2)N2B—C12B1.332 (2)
N2A—C9A1.362 (2)N2B—C9B1.360 (2)
C1A—C2A1.396 (3)C1B—C2B1.396 (3)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.368 (3)C2B—C3B1.361 (3)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.403 (3)C3B—C4B1.407 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.418 (3)C4B—C5B1.416 (3)
C4A—C6A1.430 (3)C4B—C6B1.432 (3)
C5A—C9A1.454 (3)C5B—C9B1.452 (3)
C6A—C7A1.346 (3)C6B—C7B1.351 (3)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C8A1.430 (3)C7B—C8B1.429 (3)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C10A1.400 (3)C8B—C10B1.404 (3)
C8A—C9A1.416 (3)C8B—C9B1.413 (3)
C10A—C11A1.365 (3)C10B—C11B1.362 (3)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.412 (3)C11B—C12B1.416 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.490 (3)C12B—C13B1.490 (3)
C13A—C18A1.393 (3)C13B—C14B1.397 (3)
C13A—C14A1.395 (3)C13B—C18B1.402 (3)
C14A—C15A1.383 (3)C14B—C15B1.393 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.376 (3)C15B—C16B1.378 (3)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.378 (3)C16B—C17B1.383 (3)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.383 (3)C17B—C18B1.386 (3)
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9500C18B—H18B0.9500
C1A—N1A—C5A117.35 (18)C1B—N1B—C5B117.06 (17)
C12A—N2A—C9A118.81 (16)C12B—N2B—C9B118.68 (16)
N1A—C1A—C2A124.9 (2)N1B—C1B—C2B124.5 (2)
N1A—C1A—H1A117.6N1B—C1B—H1B117.7
C2A—C1A—H1A117.6C2B—C1B—H1B117.7
C3A—C2A—C1A118.1 (2)C3B—C2B—C1B118.7 (2)
C3A—C2A—H2A121.0C3B—C2B—H2B120.7
C1A—C2A—H2A121.0C1B—C2B—H2B120.7
C2A—C3A—C4A119.70 (19)C2B—C3B—C4B119.50 (19)
C2A—C3A—H3A120.2C2B—C3B—H3B120.2
C4A—C3A—H3A120.1C4B—C3B—H3B120.2
C3A—C4A—C5A117.93 (18)C3B—C4B—C5B117.82 (18)
C3A—C4A—C6A121.90 (18)C3B—C4B—C6B122.46 (19)
C5A—C4A—C6A120.14 (18)C5B—C4B—C6B119.72 (19)
N1A—C5A—C4A121.99 (18)N1B—C5B—C4B122.39 (18)
N1A—C5A—C9A119.37 (17)N1B—C5B—C9B118.55 (16)
C4A—C5A—C9A118.55 (17)C4B—C5B—C9B119.06 (17)
C7A—C6A—C4A121.37 (18)C7B—C6B—C4B121.15 (19)
C7A—C6A—H6A119.3C7B—C6B—H6B119.4
C4A—C6A—H6A119.3C4B—C6B—H6B119.4
C6A—C7A—C8A120.47 (18)C6B—C7B—C8B120.91 (19)
C6A—C7A—H7A119.8C6B—C7B—H7B119.5
C8A—C7A—H7A119.8C8B—C7B—H7B119.5
C10A—C8A—C9A117.41 (18)C10B—C8B—C9B116.67 (18)
C10A—C8A—C7A122.07 (18)C10B—C8B—C7B123.19 (19)
C9A—C8A—C7A120.48 (18)C9B—C8B—C7B120.1 (2)
N2A—C9A—C8A122.24 (17)N2B—C9B—C8B122.91 (18)
N2A—C9A—C5A118.86 (16)N2B—C9B—C5B118.09 (16)
C8A—C9A—C5A118.89 (17)C8B—C9B—C5B118.96 (17)
C11A—C10A—C8A119.98 (18)C11B—C10B—C8B120.55 (19)
C11A—C10A—H10A120.0C11B—C10B—H10B119.7
C8A—C10A—H10A120.0C8B—C10B—H10B119.7
C10A—C11A—C12A119.46 (19)C10B—C11B—C12B119.24 (19)
C10A—C11A—H11A120.3C10B—C11B—H11B120.4
C12A—C11A—H11A120.3C12B—C11B—H11B120.4
N2A—C12A—C11A122.04 (18)N2B—C12B—C11B121.82 (18)
N2A—C12A—C13A116.55 (16)N2B—C12B—C13B115.88 (17)
C11A—C12A—C13A121.41 (17)C11B—C12B—C13B122.29 (17)
C18A—C13A—C14A117.71 (18)C14B—C13B—C18B117.84 (19)
C18A—C13A—C12A120.38 (18)C14B—C13B—C12B122.30 (18)
C14A—C13A—C12A121.90 (17)C18B—C13B—C12B119.86 (17)
C15A—C14A—C13A121.03 (19)C15B—C14B—C13B120.8 (2)
C15A—C14A—H14A119.5C15B—C14B—H14B119.6
C13A—C14A—H14A119.5C13B—C14B—H14B119.6
C16A—C15A—C14A120.1 (2)C16B—C15B—C14B120.4 (2)
C16A—C15A—H15A119.9C16B—C15B—H15B119.8
C14A—C15A—H15A119.9C14B—C15B—H15B119.8
C15A—C16A—C17A119.9 (2)C15B—C16B—C17B119.7 (2)
C15A—C16A—H16A120.0C15B—C16B—H16B120.2
C17A—C16A—H16A120.0C17B—C16B—H16B120.2
C16A—C17A—C18A120.0 (2)C16B—C17B—C18B120.3 (2)
C16A—C17A—H17A120.0C16B—C17B—H17B119.9
C18A—C17A—H17A120.0C18B—C17B—H17B119.9
C17A—C18A—C13A121.16 (19)C17B—C18B—C13B121.0 (2)
C17A—C18A—H18A119.4C17B—C18B—H18B119.5
C13A—C18A—H18A119.4C13B—C18B—H18B119.5
C5A—N1A—C1A—C2A0.4 (3)C5B—N1B—C1B—C2B0.2 (3)
N1A—C1A—C2A—C3A1.8 (4)N1B—C1B—C2B—C3B1.2 (3)
C1A—C2A—C3A—C4A1.4 (3)C1B—C2B—C3B—C4B0.3 (3)
C2A—C3A—C4A—C5A0.2 (3)C2B—C3B—C4B—C5B1.4 (3)
C2A—C3A—C4A—C6A178.13 (19)C2B—C3B—C4B—C6B179.5 (2)
C1A—N1A—C5A—C4A1.3 (3)C1B—N1B—C5B—C4B1.7 (3)
C1A—N1A—C5A—C9A175.40 (18)C1B—N1B—C5B—C9B178.33 (17)
C3A—C4A—C5A—N1A1.6 (3)C3B—C4B—C5B—N1B2.4 (3)
C6A—C4A—C5A—N1A179.62 (17)C6B—C4B—C5B—N1B178.40 (18)
C3A—C4A—C5A—C9A175.15 (16)C3B—C4B—C5B—C9B177.55 (17)
C6A—C4A—C5A—C9A2.9 (3)C6B—C4B—C5B—C9B1.6 (3)
C3A—C4A—C6A—C7A175.37 (18)C3B—C4B—C6B—C7B180.0 (2)
C5A—C4A—C6A—C7A2.6 (3)C5B—C4B—C6B—C7B0.9 (3)
C4A—C6A—C7A—C8A0.2 (3)C4B—C6B—C7B—C8B1.6 (3)
C6A—C7A—C8A—C10A175.10 (18)C6B—C7B—C8B—C10B178.3 (2)
C6A—C7A—C8A—C9A2.6 (3)C6B—C7B—C8B—C9B0.3 (3)
C12A—N2A—C9A—C8A2.4 (3)C12B—N2B—C9B—C8B0.6 (3)
C12A—N2A—C9A—C5A175.84 (16)C12B—N2B—C9B—C5B178.47 (16)
C10A—C8A—C9A—N2A2.6 (3)C10B—C8B—C9B—N2B3.0 (3)
C7A—C8A—C9A—N2A179.66 (17)C7B—C8B—C9B—N2B175.04 (18)
C10A—C8A—C9A—C5A175.62 (16)C10B—C8B—C9B—C5B179.11 (17)
C7A—C8A—C9A—C5A2.1 (3)C7B—C8B—C9B—C5B2.8 (3)
N1A—C5A—C9A—N2A0.9 (3)N1B—C5B—C9B—N2B5.5 (2)
C4A—C5A—C9A—N2A177.72 (16)C4B—C5B—C9B—N2B174.54 (16)
N1A—C5A—C9A—C8A177.39 (16)N1B—C5B—C9B—C8B176.58 (16)
C4A—C5A—C9A—C8A0.5 (3)C4B—C5B—C9B—C8B3.4 (3)
C9A—C8A—C10A—C11A0.5 (3)C9B—C8B—C10B—C11B2.4 (3)
C7A—C8A—C10A—C11A178.22 (18)C7B—C8B—C10B—C11B175.6 (2)
C8A—C10A—C11A—C12A1.7 (3)C8B—C10B—C11B—C12B0.5 (3)
C9A—N2A—C12A—C11A0.1 (3)C9B—N2B—C12B—C11B2.5 (3)
C9A—N2A—C12A—C13A179.50 (15)C9B—N2B—C12B—C13B176.82 (15)
C10A—C11A—C12A—N2A2.0 (3)C10B—C11B—C12B—N2B3.1 (3)
C10A—C11A—C12A—C13A177.45 (18)C10B—C11B—C12B—C13B176.23 (18)
N2A—C12A—C13A—C18A12.6 (3)N2B—C12B—C13B—C14B171.08 (17)
C11A—C12A—C13A—C18A167.99 (18)C11B—C12B—C13B—C14B8.3 (3)
N2A—C12A—C13A—C14A166.13 (17)N2B—C12B—C13B—C18B8.2 (2)
C11A—C12A—C13A—C14A13.3 (3)C11B—C12B—C13B—C18B172.42 (17)
C18A—C13A—C14A—C15A0.4 (3)C18B—C13B—C14B—C15B0.4 (3)
C12A—C13A—C14A—C15A178.31 (17)C12B—C13B—C14B—C15B179.75 (19)
C13A—C14A—C15A—C16A1.2 (3)C13B—C14B—C15B—C16B0.6 (3)
C14A—C15A—C16A—C17A1.2 (3)C14B—C15B—C16B—C17B0.0 (3)
C15A—C16A—C17A—C18A0.3 (3)C15B—C16B—C17B—C18B0.8 (3)
C16A—C17A—C18A—C13A0.4 (3)C16B—C17B—C18B—C13B0.9 (3)
C14A—C13A—C18A—C17A0.4 (3)C14B—C13B—C18B—C17B0.3 (3)
C12A—C13A—C18A—C17A179.15 (19)C12B—C13B—C18B—C17B179.01 (18)
(II) 2-Phenyl-1,10-phenanthrolin-1-ium hexafluoridophosphate top
Crystal data top
C18H13N2+·PF6Z = 2
Mr = 402.27F(000) = 408
Triclinic, P1Dx = 1.612 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.77500 Å
a = 7.5798 (8) ÅCell parameters from 3494 reflections
b = 10.6930 (12) Åθ = 2.1–27.1°
c = 10.9157 (12) ŵ = 0.29 mm1
α = 103.713 (3)°T = 173 K
β = 90.801 (3)°Plate, colorless
γ = 104.707 (3)°0.08 × 0.04 × 0.01 mm
V = 828.75 (16) Å3
Data collection top
Bruker Platinum 200
diffractometer
3316 independent reflections
Radiation source: synchrotron2793 reflections with I > 2σ(I)
Si-<111> channel cut crystal monochromatorRint = 0.056
ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.977, Tmax = 0.997k = 1313
8626 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.3941P]
where P = (Fo2 + 2Fc2)/3
3316 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H13N2+·PF6γ = 104.707 (3)°
Mr = 402.27V = 828.75 (16) Å3
Triclinic, P1Z = 2
a = 7.5798 (8) ÅSynchrotron radiation, λ = 0.77500 Å
b = 10.6930 (12) ŵ = 0.29 mm1
c = 10.9157 (12) ÅT = 173 K
α = 103.713 (3)°0.08 × 0.04 × 0.01 mm
β = 90.801 (3)°
Data collection top
Bruker Platinum 200
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2793 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.997Rint = 0.056
8626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.62 e Å3
3316 reflectionsΔρmin = 0.33 e Å3
284 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data resolution to 0.85 Å in refinement.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The PF6- counterion in (II) shows typical disorder in 4 F-atoms in the equatorial plane that have been refined with a two-component disorder model. The refined major occupancy is 0.53 (2). However it appears that the electron density in the equatorial plane could be described as a ring of electron density with multiple options for partial-occupancy F-atom placement.

H1 involved in H-bonding (N1—H1···F1) was located directly from the difference map and the coordinates refined. Uiso(H1)=1.2Ueq(N1).

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.7359 (3)0.59376 (19)0.75184 (19)0.0362 (4)
H10.756 (4)0.523 (3)0.723 (3)0.043*
N20.7615 (2)0.48032 (18)0.50441 (17)0.0307 (4)
C10.7269 (4)0.6403 (2)0.8742 (2)0.0443 (6)
H1A0.75420.59310.93240.053*
C20.6773 (4)0.7589 (3)0.9176 (3)0.0519 (7)
H2A0.66850.79261.00540.062*
C30.6412 (4)0.8265 (2)0.8321 (3)0.0506 (7)
H3A0.60780.90770.86120.061*
C40.6531 (3)0.7775 (2)0.7022 (3)0.0408 (6)
C50.7025 (3)0.6562 (2)0.6628 (2)0.0349 (5)
C60.6169 (3)0.8416 (2)0.6068 (3)0.0478 (7)
H6A0.58260.92300.63080.057*
C70.6308 (3)0.7880 (2)0.4836 (3)0.0461 (6)
H7A0.60500.83230.42240.055*
C80.6834 (3)0.6660 (2)0.4427 (2)0.0382 (5)
C90.7164 (3)0.5974 (2)0.5326 (2)0.0324 (5)
C100.7069 (3)0.6075 (2)0.3170 (2)0.0434 (6)
H10A0.68920.64980.25220.052*
C110.7550 (3)0.4900 (3)0.2875 (2)0.0404 (5)
H11A0.77290.45140.20240.049*
C120.7783 (3)0.4252 (2)0.3841 (2)0.0323 (5)
C130.8206 (3)0.2936 (2)0.3549 (2)0.0320 (5)
C140.8288 (3)0.2228 (3)0.2312 (2)0.0417 (6)
H14A0.81110.26060.16300.050*
C150.8625 (4)0.0983 (3)0.2063 (3)0.0481 (6)
H15A0.86850.05150.12150.058*
C160.8874 (4)0.0415 (3)0.3047 (3)0.0460 (6)
H16A0.90990.04420.28770.055*
C170.8792 (3)0.1107 (2)0.4281 (2)0.0405 (5)
H17A0.89650.07210.49570.049*
C180.8461 (3)0.2352 (2)0.4537 (2)0.0333 (5)
H18A0.84050.28140.53880.040*
P10.76724 (9)0.26099 (6)0.85587 (5)0.0384 (2)
F10.8521 (3)0.37312 (18)0.78258 (17)0.0690 (6)
F20.6793 (3)0.15248 (18)0.92971 (18)0.0784 (6)
F3A0.804 (2)0.1568 (13)0.7420 (13)0.091 (4)0.474 (19)
F4A0.5819 (13)0.2950 (13)0.8368 (14)0.116 (5)0.474 (19)
F5A0.820 (2)0.3753 (10)0.9812 (9)0.080 (3)0.474 (19)
F6A0.9509 (18)0.2294 (14)0.8745 (16)0.119 (5)0.474 (19)
F3B0.734 (3)0.1532 (11)0.7280 (11)0.121 (5)0.526 (19)
F4B0.5768 (15)0.2410 (19)0.7973 (12)0.157 (5)0.526 (19)
F5B0.725 (2)0.3637 (10)0.9730 (10)0.091 (3)0.526 (19)
F6B0.9614 (15)0.2823 (16)0.9148 (14)0.139 (5)0.526 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0400 (10)0.0288 (9)0.0394 (11)0.0091 (8)0.0056 (8)0.0075 (8)
N20.0272 (9)0.0311 (9)0.0342 (10)0.0053 (7)0.0009 (7)0.0114 (7)
C10.0496 (14)0.0400 (13)0.0391 (13)0.0073 (10)0.0076 (11)0.0067 (10)
C20.0575 (16)0.0414 (14)0.0487 (15)0.0094 (12)0.0121 (13)0.0010 (11)
C30.0444 (14)0.0330 (12)0.0684 (18)0.0095 (10)0.0087 (13)0.0016 (12)
C40.0306 (11)0.0285 (11)0.0606 (16)0.0050 (9)0.0028 (10)0.0090 (10)
C50.0270 (10)0.0289 (11)0.0479 (13)0.0039 (8)0.0015 (9)0.0116 (9)
C60.0351 (12)0.0284 (11)0.080 (2)0.0074 (9)0.0009 (12)0.0144 (12)
C70.0346 (12)0.0357 (12)0.0712 (18)0.0051 (10)0.0058 (12)0.0246 (12)
C80.0291 (10)0.0346 (11)0.0527 (14)0.0034 (9)0.0041 (10)0.0203 (10)
C90.0240 (10)0.0289 (10)0.0444 (13)0.0027 (8)0.0006 (9)0.0143 (9)
C100.0404 (12)0.0463 (14)0.0481 (15)0.0051 (10)0.0042 (11)0.0274 (11)
C110.0405 (12)0.0480 (14)0.0346 (12)0.0075 (10)0.0005 (10)0.0184 (10)
C120.0254 (10)0.0366 (11)0.0355 (11)0.0043 (8)0.0003 (9)0.0146 (9)
C130.0260 (10)0.0378 (11)0.0312 (11)0.0065 (8)0.0007 (8)0.0091 (9)
C140.0423 (13)0.0487 (14)0.0332 (12)0.0115 (11)0.0007 (10)0.0092 (10)
C150.0494 (14)0.0509 (15)0.0376 (13)0.0133 (12)0.0037 (11)0.0013 (11)
C160.0430 (13)0.0398 (13)0.0538 (15)0.0148 (10)0.0053 (11)0.0048 (11)
C170.0393 (12)0.0407 (13)0.0453 (13)0.0149 (10)0.0035 (10)0.0135 (10)
C180.0332 (11)0.0360 (11)0.0319 (11)0.0107 (9)0.0023 (9)0.0092 (9)
P10.0545 (4)0.0348 (4)0.0276 (4)0.0145 (3)0.0003 (3)0.0080 (3)
F10.1086 (16)0.0549 (10)0.0568 (11)0.0306 (10)0.0309 (10)0.0281 (8)
F20.1279 (19)0.0463 (10)0.0592 (11)0.0107 (10)0.0183 (11)0.0225 (8)
F3A0.162 (9)0.059 (6)0.071 (8)0.064 (7)0.051 (7)0.015 (5)
F4A0.058 (4)0.165 (8)0.194 (12)0.058 (5)0.043 (6)0.143 (9)
F5A0.145 (8)0.046 (3)0.027 (2)0.009 (5)0.003 (4)0.0034 (17)
F6A0.100 (8)0.139 (8)0.178 (13)0.086 (7)0.036 (7)0.092 (8)
F3B0.246 (14)0.045 (4)0.034 (3)0.016 (5)0.002 (6)0.005 (2)
F4B0.077 (5)0.292 (14)0.102 (6)0.049 (7)0.027 (4)0.051 (8)
F5B0.164 (9)0.047 (4)0.057 (4)0.024 (5)0.054 (6)0.007 (3)
F6B0.073 (5)0.189 (11)0.141 (8)0.008 (6)0.063 (6)0.065 (8)
Geometric parameters (Å, º) top
N1—C11.320 (3)C11—H11A0.9500
N1—C51.357 (3)C12—C131.484 (3)
N1—H10.80 (3)C13—C141.393 (3)
N2—C121.329 (3)C13—C181.403 (3)
N2—C91.347 (3)C14—C151.384 (4)
C1—C21.391 (4)C14—H14A0.9500
C1—H1A0.9500C15—C161.385 (4)
C2—C31.372 (4)C15—H15A0.9500
C2—H2A0.9500C16—C171.385 (4)
C3—C41.403 (4)C16—H16A0.9500
C3—H3A0.9500C17—C181.381 (3)
C4—C51.412 (3)C17—H17A0.9500
C4—C61.434 (4)C18—H18A0.9500
C5—C91.428 (3)P1—F4B1.514 (10)
C6—C71.348 (4)P1—F6A1.535 (9)
C6—H6A0.9500P1—F6B1.538 (8)
C7—C81.433 (3)P1—F3A1.541 (9)
C7—H7A0.9500P1—F3B1.555 (10)
C8—C101.401 (4)P1—F4A1.561 (8)
C8—C91.411 (3)P1—F5B1.571 (9)
C10—C111.364 (4)P1—F5A1.571 (9)
C10—H10A0.9500P1—F21.5830 (18)
C11—C121.423 (3)P1—F11.6027 (17)
C1—N1—C5123.9 (2)C16—C15—H15A119.9
C1—N1—H1122 (2)C15—C16—C17119.5 (2)
C5—N1—H1114 (2)C15—C16—H16A120.3
C12—N2—C9118.40 (19)C17—C16—H16A120.3
N1—C1—C2119.7 (3)C18—C17—C16120.7 (2)
N1—C1—H1A120.2C18—C17—H17A119.6
C2—C1—H1A120.2C16—C17—H17A119.6
C3—C2—C1119.2 (3)C17—C18—C13120.3 (2)
C3—C2—H2A120.4C17—C18—H18A119.8
C1—C2—H2A120.4C13—C18—H18A119.8
C2—C3—C4120.9 (2)F4B—P1—F6A157.0 (7)
C2—C3—H3A119.5F4B—P1—F6B179.5 (8)
C4—C3—H3A119.5F4B—P1—F3A90.4 (10)
C3—C4—C5117.8 (2)F6B—P1—F3A89.5 (10)
C3—C4—C6124.4 (2)F6A—P1—F3B87.2 (11)
C5—C4—C6117.8 (2)F6B—P1—F3B109.5 (12)
N1—C5—C4118.6 (2)F6A—P1—F4A179.2 (6)
N1—C5—C9119.4 (2)F6B—P1—F4A156.5 (7)
C4—C5—C9122.0 (2)F3A—P1—F4A112.8 (9)
C7—C6—C4121.0 (2)F3B—P1—F4A93.1 (11)
C7—C6—H6A119.5F4B—P1—F5B88.8 (6)
C4—C6—H6A119.5F6A—P1—F5B113.1 (6)
C6—C7—C8121.7 (2)F6B—P1—F5B91.2 (6)
C6—C7—H7A119.2F3A—P1—F5B178.3 (8)
C8—C7—H7A119.2F3B—P1—F5B159.2 (12)
C10—C8—C9115.8 (2)F4B—P1—F5A113.7 (6)
C10—C8—C7124.6 (2)F6A—P1—F5A88.9 (6)
C9—C8—C7119.6 (2)F3A—P1—F5A155.4 (10)
N2—C9—C8124.6 (2)F3B—P1—F5A174.4 (10)
N2—C9—C5117.49 (19)F4A—P1—F5A90.7 (6)
C8—C9—C5117.9 (2)F4B—P1—F287.4 (6)
C11—C10—C8120.1 (2)F6A—P1—F287.9 (5)
C11—C10—H10A119.9F6B—P1—F293.1 (6)
C8—C10—H10A119.9F3A—P1—F293.4 (6)
C10—C11—C12120.1 (2)F3B—P1—F291.5 (5)
C10—C11—H11A119.9F4A—P1—F292.8 (3)
C12—C11—H11A119.9F5B—P1—F285.0 (4)
N2—C12—C11120.9 (2)F5A—P1—F292.5 (4)
N2—C12—C13117.37 (18)F4B—P1—F191.6 (6)
C11—C12—C13121.7 (2)F6A—P1—F193.5 (5)
C14—C13—C18118.3 (2)F6B—P1—F187.9 (6)
C14—C13—C12122.1 (2)F3A—P1—F187.9 (6)
C18—C13—C12119.5 (2)F3B—P1—F189.4 (5)
C15—C14—C13120.9 (2)F4A—P1—F185.8 (3)
C15—C14—H14A119.5F5B—P1—F193.7 (4)
C13—C14—H14A119.5F5A—P1—F186.8 (4)
C14—C15—C16120.2 (2)F2—P1—F1178.37 (12)
C14—C15—H15A119.9
C5—N1—C1—C21.3 (4)C4—C5—C9—N2178.88 (19)
N1—C1—C2—C31.0 (4)N1—C5—C9—C8179.09 (19)
C1—C2—C3—C40.2 (4)C4—C5—C9—C81.5 (3)
C2—C3—C4—C50.3 (4)C9—C8—C10—C111.3 (3)
C2—C3—C4—C6179.7 (2)C7—C8—C10—C11179.1 (2)
C1—N1—C5—C40.8 (3)C8—C10—C11—C121.1 (4)
C1—N1—C5—C9179.8 (2)C9—N2—C12—C111.9 (3)
C3—C4—C5—N10.0 (3)C9—N2—C12—C13177.57 (18)
C6—C4—C5—N1179.5 (2)C10—C11—C12—N22.9 (3)
C3—C4—C5—C9179.3 (2)C10—C11—C12—C13176.6 (2)
C6—C4—C5—C90.1 (3)N2—C12—C13—C14175.5 (2)
C3—C4—C6—C7179.8 (2)C11—C12—C13—C143.9 (3)
C5—C4—C6—C70.4 (4)N2—C12—C13—C181.9 (3)
C4—C6—C7—C80.5 (4)C11—C12—C13—C18178.7 (2)
C6—C7—C8—C10177.6 (2)C18—C13—C14—C150.4 (4)
C6—C7—C8—C92.0 (4)C12—C13—C14—C15177.8 (2)
C12—N2—C9—C80.7 (3)C13—C14—C15—C160.4 (4)
C12—N2—C9—C5178.81 (18)C14—C15—C16—C170.3 (4)
C10—C8—C9—N22.4 (3)C15—C16—C17—C180.2 (4)
C7—C8—C9—N2178.04 (19)C16—C17—C18—C130.1 (4)
C10—C8—C9—C5177.2 (2)C14—C13—C18—C170.2 (3)
C7—C8—C9—C52.4 (3)C12—C13—C18—C17177.8 (2)
N1—C5—C9—N20.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···F10.80 (3)2.14 (3)2.806 (3)140 (3)
(III) 2-Phenyl-1,10-phenanthrolin-1-ium trifluoromethanesulfonate top
Crystal data top
C18H13N2+·CF3SO3Z = 2
Mr = 406.37F(000) = 416
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.6682 (2) ÅCell parameters from 4788 reflections
b = 10.7446 (4) Åθ = 4.2–67.7°
c = 11.1174 (4) ŵ = 2.19 mm1
α = 104.848 (2)°T = 150 K
β = 95.687 (2)°Block, colorless
γ = 100.439 (2)°0.11 × 0.10 × 0.05 mm
V = 860.48 (5) Å3
Data collection top
Bruker SMART6000 CCD
diffractometer
2976 independent reflections
Radiation source: fine-focus sealed tube2658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 67.9°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.794, Tmax = 0.898k = 1112
7396 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2088P]
where P = (Fo2 + 2Fc2)/3
2976 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H13N2+·CF3SO3γ = 100.439 (2)°
Mr = 406.37V = 860.48 (5) Å3
Triclinic, P1Z = 2
a = 7.6682 (2) ÅCu Kα radiation
b = 10.7446 (4) ŵ = 2.19 mm1
c = 11.1174 (4) ÅT = 150 K
α = 104.848 (2)°0.11 × 0.10 × 0.05 mm
β = 95.687 (2)°
Data collection top
Bruker SMART6000 CCD
diffractometer
2976 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2658 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.898Rint = 0.021
7396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
2976 reflectionsΔρmin = 0.28 e Å3
256 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Our standard practice is to collect a full sphere of data out to a theta angle of 67° (0.83 Å resolution).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H1 involved in H-bonding (N1—H1···O2) was located directly from the difference map and the coordinates refined. Uiso(H1)=1.2Ueq(N1).

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82129 (19)0.37096 (14)0.24790 (13)0.0278 (3)
H10.801 (3)0.444 (2)0.2719 (19)0.033*
N20.75786 (18)0.48085 (13)0.48577 (12)0.0263 (3)
C10.8476 (2)0.32438 (17)0.12979 (16)0.0320 (4)
H1A0.84390.37710.07320.038*
C20.8804 (2)0.19852 (18)0.08934 (17)0.0354 (4)
H2A0.89680.16380.00460.042*
C30.8890 (2)0.12466 (17)0.17333 (17)0.0337 (4)
H3A0.91160.03860.14620.040*
C40.8646 (2)0.17512 (16)0.29892 (16)0.0289 (4)
C50.8277 (2)0.30197 (16)0.33458 (15)0.0265 (3)
C60.8778 (2)0.10544 (17)0.39261 (17)0.0323 (4)
H6A0.90270.01970.37030.039*
C70.8553 (2)0.16056 (17)0.51205 (17)0.0324 (4)
H7A0.86840.11390.57320.039*
C80.8121 (2)0.28787 (17)0.54848 (16)0.0288 (4)
C90.7979 (2)0.36027 (16)0.46050 (15)0.0258 (3)
C100.7793 (2)0.34725 (17)0.67040 (16)0.0316 (4)
H10A0.78770.30340.73420.038*
C110.7354 (2)0.46834 (17)0.69647 (16)0.0311 (4)
H11A0.71100.50800.77800.037*
C120.7264 (2)0.53452 (16)0.60124 (15)0.0266 (3)
C130.6835 (2)0.66778 (16)0.62633 (15)0.0272 (4)
C140.6588 (2)0.73704 (18)0.74594 (16)0.0342 (4)
H14A0.66650.69810.81340.041*
C150.6233 (3)0.86216 (19)0.76683 (17)0.0385 (4)
H15A0.60720.90850.84860.046*
C160.6112 (2)0.92001 (18)0.66934 (17)0.0362 (4)
H16A0.58781.00610.68410.043*
C170.6335 (2)0.85149 (17)0.54991 (17)0.0342 (4)
H17A0.62370.89050.48260.041*
C180.6698 (2)0.72677 (16)0.52804 (15)0.0296 (4)
H18A0.68540.68090.44600.035*
S10.81504 (5)0.69060 (4)0.14034 (4)0.02846 (15)
O10.82534 (18)0.61105 (12)0.01695 (12)0.0398 (3)
F10.60625 (17)0.82031 (13)0.04384 (11)0.0519 (3)
F20.57104 (16)0.81289 (12)0.23124 (11)0.0504 (3)
F30.46595 (16)0.64175 (12)0.07531 (12)0.0553 (3)
O20.78871 (19)0.61981 (13)0.23348 (12)0.0413 (3)
O30.94529 (17)0.81352 (12)0.18409 (11)0.0367 (3)
C190.6034 (2)0.74334 (18)0.12102 (16)0.0340 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0312 (7)0.0241 (7)0.0291 (7)0.0070 (6)0.0066 (6)0.0079 (6)
N20.0253 (7)0.0263 (7)0.0271 (7)0.0034 (5)0.0035 (5)0.0085 (5)
C10.0349 (9)0.0332 (9)0.0294 (8)0.0061 (7)0.0076 (7)0.0111 (7)
C20.0404 (10)0.0340 (10)0.0312 (9)0.0080 (7)0.0115 (7)0.0057 (7)
C30.0319 (9)0.0276 (9)0.0407 (10)0.0072 (7)0.0089 (7)0.0061 (7)
C40.0238 (8)0.0279 (9)0.0348 (9)0.0053 (6)0.0046 (7)0.0089 (7)
C50.0224 (8)0.0266 (8)0.0305 (8)0.0029 (6)0.0030 (6)0.0102 (6)
C60.0300 (9)0.0265 (9)0.0432 (10)0.0084 (7)0.0056 (7)0.0133 (7)
C70.0311 (9)0.0321 (9)0.0378 (9)0.0075 (7)0.0030 (7)0.0168 (7)
C80.0247 (8)0.0295 (9)0.0326 (9)0.0036 (6)0.0012 (6)0.0123 (7)
C90.0229 (8)0.0245 (8)0.0290 (8)0.0021 (6)0.0025 (6)0.0084 (6)
C100.0330 (9)0.0352 (10)0.0290 (8)0.0062 (7)0.0024 (7)0.0149 (7)
C110.0332 (9)0.0338 (9)0.0258 (8)0.0052 (7)0.0036 (7)0.0090 (7)
C120.0236 (8)0.0274 (9)0.0266 (8)0.0022 (6)0.0017 (6)0.0068 (6)
C130.0238 (8)0.0274 (9)0.0282 (8)0.0026 (6)0.0031 (6)0.0062 (6)
C140.0402 (10)0.0348 (10)0.0287 (9)0.0095 (7)0.0067 (7)0.0094 (7)
C150.0458 (10)0.0379 (10)0.0313 (9)0.0123 (8)0.0104 (8)0.0046 (7)
C160.0390 (10)0.0277 (9)0.0425 (10)0.0114 (7)0.0090 (8)0.0067 (7)
C170.0366 (9)0.0318 (9)0.0354 (9)0.0066 (7)0.0057 (7)0.0117 (7)
C180.0313 (9)0.0288 (9)0.0269 (8)0.0047 (7)0.0042 (7)0.0061 (6)
S10.0371 (2)0.0252 (2)0.0251 (2)0.00996 (17)0.00670 (16)0.00760 (16)
O10.0496 (8)0.0348 (7)0.0342 (7)0.0107 (6)0.0146 (6)0.0041 (5)
F10.0618 (8)0.0588 (8)0.0487 (7)0.0256 (6)0.0063 (6)0.0311 (6)
F20.0560 (7)0.0569 (7)0.0433 (7)0.0290 (6)0.0176 (5)0.0073 (5)
F30.0392 (6)0.0509 (7)0.0676 (8)0.0025 (5)0.0008 (6)0.0102 (6)
O20.0588 (8)0.0378 (7)0.0389 (7)0.0212 (6)0.0144 (6)0.0212 (6)
O30.0397 (7)0.0318 (7)0.0367 (7)0.0066 (5)0.0032 (5)0.0080 (5)
C190.0379 (10)0.0342 (10)0.0319 (9)0.0105 (7)0.0057 (7)0.0111 (7)
Geometric parameters (Å, º) top
N1—C11.329 (2)C11—C121.421 (2)
N1—C51.360 (2)C11—H11A0.9500
N1—H10.81 (2)C12—C131.490 (2)
N2—C121.331 (2)C13—C141.397 (2)
N2—C91.351 (2)C13—C181.401 (2)
C1—C21.389 (2)C14—C151.386 (3)
C1—H1A0.9500C14—H14A0.9500
C2—C31.376 (3)C15—C161.384 (3)
C2—H2A0.9500C15—H15A0.9500
C3—C41.407 (2)C16—C171.387 (2)
C3—H3A0.9500C16—H16A0.9500
C4—C51.407 (2)C17—C181.383 (2)
C4—C61.436 (2)C17—H17A0.9500
C5—C91.439 (2)C18—H18A0.9500
C6—C71.350 (2)S1—O11.4366 (12)
C6—H6A0.9500S1—O31.4404 (13)
C7—C81.432 (2)S1—O21.4425 (13)
C7—H7A0.9500S1—C191.8238 (19)
C8—C91.405 (2)F1—C191.335 (2)
C8—C101.411 (2)F2—C191.334 (2)
C10—C111.369 (2)F3—C191.324 (2)
C10—H10A0.9500
C1—N1—C5123.25 (15)C10—C11—H11A120.1
C1—N1—H1120.3 (15)C12—C11—H11A120.1
C5—N1—H1116.4 (15)N2—C12—C11121.48 (15)
C12—N2—C9118.16 (14)N2—C12—C13116.88 (14)
N1—C1—C2119.86 (16)C11—C12—C13121.64 (14)
N1—C1—H1A120.1C14—C13—C18118.69 (15)
C2—C1—H1A120.1C14—C13—C12121.89 (15)
C3—C2—C1119.26 (16)C18—C13—C12119.42 (14)
C3—C2—H2A120.4C15—C14—C13120.46 (16)
C1—C2—H2A120.4C15—C14—H14A119.8
C2—C3—C4120.78 (16)C13—C14—H14A119.8
C2—C3—H3A119.6C16—C15—C14120.44 (16)
C4—C3—H3A119.6C16—C15—H15A119.8
C3—C4—C5117.80 (15)C14—C15—H15A119.8
C3—C4—C6123.76 (15)C15—C16—C17119.56 (16)
C5—C4—C6118.44 (15)C15—C16—H16A120.2
N1—C5—C4119.02 (15)C17—C16—H16A120.2
N1—C5—C9119.48 (15)C18—C17—C16120.52 (16)
C4—C5—C9121.50 (15)C18—C17—H17A119.7
C7—C6—C4120.67 (15)C16—C17—H17A119.7
C7—C6—H6A119.7C17—C18—C13120.33 (15)
C4—C6—H6A119.7C17—C18—H18A119.8
C6—C7—C8121.38 (16)C13—C18—H18A119.8
C6—C7—H7A119.3O1—S1—O3115.13 (8)
C8—C7—H7A119.3O1—S1—O2115.22 (8)
C9—C8—C10116.17 (15)O3—S1—O2114.60 (8)
C9—C8—C7120.19 (15)O1—S1—C19104.23 (8)
C10—C8—C7123.63 (15)O3—S1—C19102.96 (8)
N2—C9—C8124.57 (15)O2—S1—C19102.26 (8)
N2—C9—C5117.66 (14)F3—C19—F2107.36 (15)
C8—C9—C5117.76 (15)F3—C19—F1108.06 (15)
C11—C10—C8119.77 (15)F2—C19—F1107.10 (14)
C11—C10—H10A120.1F3—C19—S1111.83 (13)
C8—C10—H10A120.1F2—C19—S1110.79 (12)
C10—C11—C12119.82 (15)F1—C19—S1111.48 (12)
C5—N1—C1—C21.2 (3)C4—C5—C9—N2178.00 (14)
N1—C1—C2—C31.3 (3)N1—C5—C9—C8177.74 (14)
C1—C2—C3—C40.1 (3)C4—C5—C9—C81.9 (2)
C2—C3—C4—C51.3 (2)C9—C8—C10—C110.4 (2)
C2—C3—C4—C6177.75 (16)C7—C8—C10—C11178.73 (16)
C1—N1—C5—C40.2 (2)C8—C10—C11—C121.2 (2)
C1—N1—C5—C9179.88 (14)C9—N2—C12—C110.4 (2)
C3—C4—C5—N11.4 (2)C9—N2—C12—C13179.70 (14)
C6—C4—C5—N1177.62 (14)C10—C11—C12—N20.8 (2)
C3—C4—C5—C9178.93 (14)C10—C11—C12—C13178.47 (15)
C6—C4—C5—C92.0 (2)N2—C12—C13—C14176.04 (14)
C3—C4—C6—C7179.05 (15)C11—C12—C13—C143.2 (2)
C5—C4—C6—C70.0 (2)N2—C12—C13—C183.1 (2)
C4—C6—C7—C82.0 (3)C11—C12—C13—C18177.67 (15)
C6—C7—C8—C92.1 (3)C18—C13—C14—C150.7 (3)
C6—C7—C8—C10177.06 (16)C12—C13—C14—C15178.46 (16)
C12—N2—C9—C81.3 (2)C13—C14—C15—C160.2 (3)
C12—N2—C9—C5178.63 (13)C14—C15—C16—C170.5 (3)
C10—C8—C9—N20.8 (2)C15—C16—C17—C180.8 (3)
C7—C8—C9—N2179.99 (15)C16—C17—C18—C130.3 (3)
C10—C8—C9—C5179.07 (13)C14—C13—C18—C170.4 (2)
C7—C8—C9—C50.1 (2)C12—C13—C18—C17178.77 (15)
N1—C5—C9—N22.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.81 (2)2.06 (2)2.773 (2)147 (2)
(IV) 2-Phenyl-1,10-phenanthrolin-1-ium tetrachloridoaurate(III) top
Crystal data top
(C18H13N2)[AuCl4]F(000) = 2256
Mr = 596.07Dx = 2.142 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9263 reflections
a = 14.7934 (3) Åθ = 3.8–67.6°
b = 10.7307 (3) ŵ = 20.31 mm1
c = 23.3067 (5) ÅT = 150 K
β = 92.593 (2)°Blade, golden-yellow
V = 3696.00 (15) Å30.13 × 0.04 × 0.01 mm
Z = 8
Data collection top
Bruker SMART6000 CCD
diffractometer
3259 independent reflections
Radiation source: fine-focus sealed tube2946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 67.8°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1717
Tmin = 0.178, Tmax = 0.823k = 1212
15346 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0412P)2 + 2.1988P]
where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
(C18H13N2)[AuCl4]V = 3696.00 (15) Å3
Mr = 596.07Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.7934 (3) ŵ = 20.31 mm1
b = 10.7307 (3) ÅT = 150 K
c = 23.3067 (5) Å0.13 × 0.04 × 0.01 mm
β = 92.593 (2)°
Data collection top
Bruker SMART6000 CCD
diffractometer
3259 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2946 reflections with I > 2σ(I)
Tmin = 0.178, Tmax = 0.823Rint = 0.042
15346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.12 e Å3
3259 reflectionsΔρmin = 0.58 e Å3
229 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Our standard practice is to collect a full sphere of data out to a theta angle of 67° (0.83 Å resolution).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H1 involved in H-bonding (N1—H1···F1) was located directly from the difference map and the coordinates refined. Uiso(H1)=1.2Ueq(N1).

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.171156 (10)0.031329 (16)0.375453 (7)0.02849 (8)
Cl10.23443 (6)0.16649 (10)0.44143 (4)0.0340 (2)
Cl20.09533 (7)0.06282 (12)0.44699 (5)0.0401 (3)
Cl30.10036 (7)0.09831 (12)0.30966 (5)0.0445 (3)
Cl40.25302 (8)0.11992 (11)0.30562 (4)0.0408 (3)
N10.2199 (2)0.0036 (4)0.56608 (16)0.0317 (8)
H10.222 (3)0.031 (4)0.524 (2)0.038*
N20.3654 (2)0.1073 (3)0.51642 (14)0.0270 (7)
C10.1443 (3)0.0428 (4)0.5871 (2)0.0342 (10)
H1A0.09130.05180.56290.041*
C20.1435 (3)0.0777 (5)0.6445 (2)0.0390 (10)
H2A0.08980.10960.65990.047*
C30.2210 (3)0.0658 (4)0.67873 (19)0.0377 (10)
H3A0.22100.09120.71780.045*
C40.3003 (3)0.0166 (4)0.6567 (2)0.0324 (9)
C50.2982 (3)0.0186 (4)0.59833 (18)0.0285 (9)
C60.3827 (3)0.0024 (5)0.6904 (2)0.0400 (11)
H6A0.38590.02010.72980.048*
C70.4561 (3)0.0522 (4)0.6663 (2)0.0371 (10)
H7A0.51010.06400.68930.045*
C80.4546 (3)0.0873 (4)0.60755 (18)0.0304 (9)
C90.3747 (3)0.0735 (4)0.57280 (17)0.0279 (8)
C100.5294 (3)0.1369 (4)0.57954 (19)0.0347 (10)
H10A0.58580.14680.60020.042*
C110.5211 (3)0.1706 (4)0.52304 (18)0.0319 (9)
H11A0.57170.20380.50450.038*
C120.4372 (3)0.1562 (4)0.49207 (17)0.0278 (8)
C130.4250 (3)0.1951 (4)0.43142 (17)0.0295 (9)
C140.4979 (3)0.2270 (4)0.39810 (19)0.0360 (10)
H14A0.55760.22330.41480.043*
C150.4850 (3)0.2637 (5)0.3412 (2)0.0434 (11)
H15A0.53550.28520.31950.052*
C160.3983 (3)0.2692 (4)0.31605 (19)0.0403 (11)
H16A0.38910.29500.27720.048*
C170.3257 (3)0.2368 (4)0.34779 (19)0.0389 (10)
H17A0.26650.23860.33030.047*
C180.3376 (3)0.2015 (4)0.40493 (18)0.0339 (9)
H18A0.28640.18150.42630.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02213 (11)0.03765 (13)0.02557 (11)0.00113 (6)0.00035 (7)0.00189 (6)
Cl10.0273 (5)0.0455 (6)0.0292 (5)0.0044 (4)0.0002 (4)0.0030 (4)
Cl20.0299 (5)0.0564 (7)0.0342 (5)0.0101 (5)0.0022 (4)0.0091 (5)
Cl30.0341 (5)0.0610 (7)0.0383 (5)0.0116 (5)0.0006 (5)0.0119 (5)
Cl40.0442 (6)0.0517 (7)0.0271 (5)0.0107 (5)0.0062 (5)0.0022 (4)
N10.0277 (19)0.040 (2)0.0275 (19)0.0021 (16)0.0031 (16)0.0039 (15)
N20.0237 (16)0.0301 (18)0.0274 (16)0.0002 (13)0.0022 (14)0.0052 (14)
C10.023 (2)0.046 (3)0.035 (2)0.0039 (17)0.0041 (19)0.0069 (18)
C20.035 (2)0.040 (3)0.043 (2)0.007 (2)0.013 (2)0.003 (2)
C30.046 (3)0.038 (2)0.030 (2)0.000 (2)0.010 (2)0.0061 (18)
C40.032 (2)0.033 (2)0.032 (2)0.0051 (18)0.0045 (19)0.0058 (18)
C50.026 (2)0.032 (2)0.028 (2)0.0032 (16)0.0031 (18)0.0055 (16)
C60.045 (3)0.046 (3)0.028 (2)0.003 (2)0.001 (2)0.002 (2)
C70.030 (2)0.048 (3)0.032 (2)0.0012 (19)0.007 (2)0.0036 (19)
C80.027 (2)0.029 (2)0.035 (2)0.0053 (17)0.0000 (18)0.0051 (18)
C90.025 (2)0.029 (2)0.030 (2)0.0018 (17)0.0006 (17)0.0062 (17)
C100.0199 (19)0.045 (3)0.039 (2)0.0031 (18)0.0050 (18)0.005 (2)
C110.0193 (19)0.037 (2)0.040 (2)0.0007 (17)0.0046 (18)0.0035 (18)
C120.0214 (19)0.028 (2)0.034 (2)0.0013 (16)0.0036 (17)0.0064 (17)
C130.025 (2)0.032 (2)0.031 (2)0.0032 (16)0.0002 (17)0.0041 (17)
C140.027 (2)0.041 (3)0.040 (2)0.0049 (18)0.0040 (19)0.001 (2)
C150.043 (3)0.049 (3)0.039 (2)0.008 (2)0.013 (2)0.001 (2)
C160.053 (3)0.036 (3)0.033 (2)0.005 (2)0.006 (2)0.0008 (19)
C170.038 (2)0.040 (3)0.037 (2)0.004 (2)0.007 (2)0.004 (2)
C180.030 (2)0.036 (2)0.035 (2)0.0042 (18)0.0031 (19)0.0006 (18)
Geometric parameters (Å, º) top
Au—Cl42.2800 (10)C7—C81.419 (6)
Au—Cl12.2834 (10)C7—H7A0.9500
Au—Cl22.2865 (10)C8—C91.410 (6)
Au—Cl32.2887 (11)C8—C101.414 (6)
N1—C11.337 (6)C10—C111.366 (6)
N1—C51.362 (6)C10—H10A0.9500
N1—H11.02 (5)C11—C121.417 (6)
N2—C121.333 (5)C11—H11A0.9500
N2—C91.364 (5)C12—C131.477 (6)
C1—C21.390 (7)C13—C141.400 (6)
C1—H1A0.9500C13—C181.409 (6)
C2—C31.373 (7)C14—C151.389 (6)
C2—H2A0.9500C14—H14A0.9500
C3—C41.405 (7)C15—C161.387 (7)
C3—H3A0.9500C15—H15A0.9500
C4—C51.410 (6)C16—C171.376 (7)
C4—C61.435 (7)C16—H16A0.9500
C5—C91.429 (6)C17—C181.388 (6)
C6—C71.355 (7)C17—H17A0.9500
C6—H6A0.9500C18—H18A0.9500
Cl4—Au—Cl190.06 (4)C9—C8—C7120.2 (4)
Cl4—Au—Cl2177.17 (4)C10—C8—C7124.5 (4)
Cl1—Au—Cl289.39 (4)N2—C9—C8124.8 (4)
Cl4—Au—Cl390.97 (4)N2—C9—C5117.6 (4)
Cl1—Au—Cl3176.84 (4)C8—C9—C5117.6 (4)
Cl2—Au—Cl389.73 (4)C11—C10—C8120.5 (4)
C1—N1—C5123.1 (4)C11—C10—H10A119.8
C1—N1—H1121 (3)C8—C10—H10A119.8
C5—N1—H1116 (3)C10—C11—C12120.0 (4)
C12—N2—C9117.9 (3)C10—C11—H11A120.0
N1—C1—C2119.8 (4)C12—C11—H11A120.0
N1—C1—H1A120.1N2—C12—C11121.5 (4)
C2—C1—H1A120.1N2—C12—C13117.0 (3)
C3—C2—C1119.4 (4)C11—C12—C13121.5 (4)
C3—C2—H2A120.3C14—C13—C18117.4 (4)
C1—C2—H2A120.3C14—C13—C12122.4 (4)
C2—C3—C4120.8 (4)C18—C13—C12120.2 (4)
C2—C3—H3A119.6C15—C14—C13121.5 (4)
C4—C3—H3A119.6C15—C14—H14A119.2
C3—C4—C5118.1 (4)C13—C14—H14A119.2
C3—C4—C6123.8 (4)C16—C15—C14120.0 (4)
C5—C4—C6118.1 (4)C16—C15—H15A120.0
N1—C5—C4118.8 (4)C14—C15—H15A120.0
N1—C5—C9119.3 (4)C17—C16—C15119.4 (4)
C4—C5—C9121.9 (4)C17—C16—H16A120.3
C7—C6—C4120.4 (4)C15—C16—H16A120.3
C7—C6—H6A119.8C16—C17—C18121.2 (4)
C4—C6—H6A119.8C16—C17—H17A119.4
C6—C7—C8121.7 (4)C18—C17—H17A119.4
C6—C7—H7A119.1C17—C18—C13120.5 (4)
C8—C7—H7A119.1C17—C18—H18A119.8
C9—C8—C10115.3 (4)C13—C18—H18A119.8
C5—N1—C1—C20.2 (7)C4—C5—C9—N2178.4 (4)
N1—C1—C2—C30.9 (7)N1—C5—C9—C8179.9 (4)
C1—C2—C3—C41.3 (7)C4—C5—C9—C82.4 (6)
C2—C3—C4—C50.8 (7)C9—C8—C10—C111.5 (6)
C2—C3—C4—C6177.9 (5)C7—C8—C10—C11178.6 (4)
C1—N1—C5—C40.2 (6)C8—C10—C11—C120.1 (7)
C1—N1—C5—C9177.5 (4)C9—N2—C12—C111.2 (6)
C3—C4—C5—N10.1 (6)C9—N2—C12—C13178.5 (4)
C6—C4—C5—N1178.7 (4)C10—C11—C12—N21.5 (6)
C3—C4—C5—C9177.8 (4)C10—C11—C12—C13178.1 (4)
C6—C4—C5—C91.0 (6)N2—C12—C13—C14168.5 (4)
C3—C4—C6—C7179.0 (5)C11—C12—C13—C1411.8 (7)
C5—C4—C6—C70.3 (7)N2—C12—C13—C1811.5 (6)
C4—C6—C7—C80.0 (7)C11—C12—C13—C18168.1 (4)
C6—C7—C8—C91.5 (7)C18—C13—C14—C150.2 (7)
C6—C7—C8—C10178.4 (4)C12—C13—C14—C15179.8 (4)
C12—N2—C9—C80.5 (6)C13—C14—C15—C160.2 (8)
C12—N2—C9—C5178.6 (4)C14—C15—C16—C170.6 (7)
C10—C8—C9—N21.9 (6)C15—C16—C17—C181.5 (7)
C7—C8—C9—N2178.2 (4)C16—C17—C18—C131.6 (7)
C10—C8—C9—C5177.3 (4)C14—C13—C18—C170.7 (6)
C7—C8—C9—C52.6 (6)C12—C13—C18—C17179.3 (4)
N1—C5—C9—N20.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl21.02 (5)2.56 (5)3.323 (4)131 (4)
(V) 2-Phenyl-1,10-phenanthrolin-1-ium bromide dihydrate top
Crystal data top
C18H13N2+·Br·2H2OF(000) = 760
Mr = 373.25Dx = 1.547 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
Hall symbol: -P 2ynCell parameters from 4500 reflections
a = 7.2285 (11) Åθ = 3.0–28.7°
b = 19.897 (3) ŵ = 3.17 mm1
c = 11.2322 (16) ÅT = 150 K
β = 97.283 (2)°Block, colorless
V = 1602.4 (4) Å30.04 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2828 independent reflections
Radiation source: synchrotron2518 reflections with I > 2σ(I)
Si-<111> channel cut crystal monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 88
Tmin = 0.884, Tmax = 0.911k = 2323
15887 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: mixed
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0061P)2 + 9.1211P]
where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C18H13N2+·Br·2H2OV = 1602.4 (4) Å3
Mr = 373.25Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
a = 7.2285 (11) ŵ = 3.17 mm1
b = 19.897 (3) ÅT = 150 K
c = 11.2322 (16) Å0.04 × 0.03 × 0.03 mm
β = 97.283 (2)°
Data collection top
Bruker APEXII
diffractometer
2828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2518 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.911Rint = 0.046
15887 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 1.37 e Å3
2828 reflectionsΔρmin = 0.59 e Å3
223 parameters
Special details top

Experimental. Marginal quality crystals obtained from acetonitrile-diethyl ether.

A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data resolution to 0.84 Å in refinement.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H1 and the water H-atoms were located directly from the difference map and the coordinates refined. Uiso(H1)=1.2Ueq(N1), Uiso(Hsolvent)=1.5Ueq(O)

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

_vrf_PLAT926_V Reported and Calculated R1 Differ by ········· -0.0176 _vrf_PLAT927_V Reported and Calculated wR2 Differ by ········· -0.0329 _vrf_PLAT928_V Reported and Calculated S value Differ by. -0.290 RESPONSE: For each of the above listed alerts, the issue lies with checkcif incorrectly interpreting the wavelength of the experiment even though it is correctly identified in the CIF. When one uses incorrect Mo Kα radiation (λ = 0.71073 Å) instead of the correct wavelength of 0.77490 Å in the refinement, the alert goes away.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6028 (6)0.0548 (3)0.3217 (4)0.0360 (11)
H10.608 (8)0.005 (3)0.298 (5)0.043*
N20.7587 (6)0.0284 (2)0.5004 (4)0.0278 (10)
C10.5233 (7)0.0912 (3)0.2314 (5)0.0336 (12)
H1A0.48050.07070.15660.040*
C20.5028 (8)0.1607 (3)0.2473 (6)0.0433 (15)
H2A0.44250.18690.18310.052*
C30.5676 (8)0.1912 (3)0.3530 (6)0.0446 (15)
H3A0.55690.23850.36220.054*
C40.6501 (7)0.1513 (3)0.4474 (5)0.0335 (13)
C50.6693 (7)0.0825 (3)0.4349 (5)0.0279 (11)
C60.7218 (8)0.1812 (3)0.5658 (6)0.0403 (14)
H6A0.71070.22810.57960.048*
C70.8024 (7)0.1405 (3)0.6525 (5)0.0316 (12)
H7A0.84790.15900.72860.038*
C80.8210 (8)0.0707 (3)0.6333 (5)0.0370 (13)
C90.7531 (7)0.0393 (3)0.5258 (5)0.0306 (12)
C100.9131 (8)0.0247 (3)0.7278 (5)0.0412 (14)
H10A0.96520.04180.80360.049*
C110.9209 (8)0.0406 (3)0.7042 (5)0.0401 (14)
H11A0.97940.07010.76390.048*
C120.8437 (7)0.0670 (3)0.5917 (5)0.0331 (12)
C130.8487 (7)0.1413 (3)0.5652 (5)0.0338 (13)
C140.9224 (8)0.1877 (3)0.6532 (5)0.0390 (14)
H14A0.97440.17240.73040.047*
C150.9189 (8)0.2563 (3)0.6270 (6)0.0417 (14)
H15A0.96750.28790.68620.050*
C160.8439 (8)0.2776 (3)0.5141 (6)0.0425 (14)
H16A0.84290.32410.49490.051*
C170.7701 (8)0.2314 (3)0.4290 (6)0.0429 (14)
H17A0.71600.24690.35240.052*
C180.7735 (8)0.1632 (3)0.4528 (5)0.0370 (13)
H18A0.72490.13200.39290.044*
Br10.86250 (8)0.12250 (3)0.00993 (6)0.0403 (2)
O1W0.5609 (7)0.0664 (2)0.2021 (4)0.0446 (10)
H1W0.454 (11)0.062 (4)0.140 (7)0.067*
H2W0.655 (11)0.082 (4)0.164 (7)0.067*
O2W0.2722 (6)0.0428 (2)0.0064 (4)0.0445 (11)
H3W0.246 (10)0.003 (4)0.018 (7)0.067*
H4W0.181 (11)0.064 (4)0.016 (7)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.028 (2)0.046 (3)0.034 (3)0.001 (2)0.003 (2)0.002 (2)
N20.024 (2)0.028 (2)0.033 (2)0.0011 (18)0.0095 (18)0.0060 (19)
C10.028 (3)0.045 (3)0.029 (3)0.001 (2)0.003 (2)0.004 (2)
C20.036 (3)0.048 (4)0.047 (4)0.002 (3)0.009 (3)0.005 (3)
C30.038 (3)0.034 (3)0.063 (4)0.001 (3)0.016 (3)0.006 (3)
C40.023 (3)0.032 (3)0.048 (3)0.002 (2)0.014 (2)0.006 (2)
C50.021 (2)0.027 (3)0.038 (3)0.003 (2)0.010 (2)0.002 (2)
C60.032 (3)0.040 (3)0.050 (4)0.006 (3)0.010 (3)0.002 (3)
C70.035 (3)0.033 (3)0.026 (3)0.004 (2)0.002 (2)0.011 (2)
C80.035 (3)0.041 (3)0.037 (3)0.013 (3)0.014 (3)0.015 (3)
C90.024 (3)0.038 (3)0.030 (3)0.003 (2)0.005 (2)0.003 (2)
C100.035 (3)0.052 (4)0.038 (3)0.007 (3)0.007 (3)0.016 (3)
C110.037 (3)0.047 (4)0.035 (3)0.002 (3)0.001 (3)0.007 (3)
C120.031 (3)0.040 (3)0.029 (3)0.002 (2)0.007 (2)0.003 (2)
C130.027 (3)0.025 (3)0.054 (4)0.000 (2)0.018 (3)0.008 (2)
C140.037 (3)0.041 (3)0.039 (3)0.003 (3)0.008 (3)0.002 (3)
C150.039 (3)0.034 (3)0.053 (4)0.004 (3)0.011 (3)0.016 (3)
C160.039 (3)0.026 (3)0.062 (4)0.003 (2)0.006 (3)0.003 (3)
C170.039 (3)0.039 (3)0.049 (4)0.001 (3)0.002 (3)0.000 (3)
C180.033 (3)0.036 (3)0.042 (3)0.005 (2)0.007 (3)0.008 (3)
Br10.0375 (3)0.0304 (3)0.0509 (4)0.0003 (3)0.0025 (2)0.0069 (3)
O1W0.048 (3)0.045 (3)0.042 (3)0.004 (2)0.008 (2)0.001 (2)
O2W0.043 (2)0.036 (2)0.055 (3)0.001 (2)0.008 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C11.317 (7)C10—C111.328 (8)
N1—C51.412 (7)C10—H10A0.9500
N1—H11.03 (6)C11—C121.417 (8)
N2—C121.364 (7)C11—H11A0.9500
N2—C91.379 (7)C12—C131.510 (8)
C1—C21.405 (8)C13—C181.380 (8)
C1—H1A0.9500C13—C141.407 (8)
C2—C31.363 (9)C14—C151.395 (8)
C2—H2A0.9500C14—H14A0.9500
C3—C41.397 (8)C15—C161.381 (9)
C3—H3A0.9500C15—H15A0.9500
C4—C51.384 (7)C16—C171.384 (8)
C4—C61.489 (8)C16—H16A0.9500
C5—C91.410 (7)C17—C181.382 (8)
C6—C71.343 (8)C17—H17A0.9500
C6—H6A0.9500C18—H18A0.9500
C7—C81.415 (8)O1W—H1W0.98 (8)
C7—H7A0.9500O1W—H2W0.90 (8)
C8—C91.392 (7)O2W—H3W0.83 (8)
C8—C101.493 (9)O2W—H4W0.79 (8)
C1—N1—C5123.0 (5)C8—C9—C5115.3 (5)
C1—N1—H1111 (3)C11—C10—C8118.9 (5)
C5—N1—H1126 (3)C11—C10—H10A120.5
C12—N2—C9114.7 (5)C8—C10—H10A120.5
N1—C1—C2119.1 (6)C10—C11—C12121.3 (6)
N1—C1—H1A120.5C10—C11—H11A119.3
C2—C1—H1A120.5C12—C11—H11A119.3
C3—C2—C1121.3 (6)N2—C12—C11123.4 (5)
C3—C2—H2A119.4N2—C12—C13115.1 (5)
C1—C2—H2A119.4C11—C12—C13121.5 (5)
C2—C3—C4118.3 (6)C18—C13—C14120.4 (5)
C2—C3—H3A120.8C18—C13—C12118.2 (5)
C4—C3—H3A120.8C14—C13—C12121.4 (5)
C5—C4—C3121.6 (6)C15—C14—C13119.8 (6)
C5—C4—C6117.3 (5)C15—C14—H14A120.1
C3—C4—C6121.1 (5)C13—C14—H14A120.1
C4—C5—C9124.6 (5)C16—C15—C14119.3 (6)
C4—C5—N1116.7 (5)C16—C15—H15A120.4
C9—C5—N1118.7 (5)C14—C15—H15A120.4
C7—C6—C4118.4 (5)C15—C16—C17120.1 (6)
C7—C6—H6A120.8C15—C16—H16A119.9
C4—C6—H6A120.8C17—C16—H16A119.9
C6—C7—C8121.5 (5)C18—C17—C16121.5 (6)
C6—C7—H7A119.3C18—C17—H17A119.3
C8—C7—H7A119.2C16—C17—H17A119.3
C9—C8—C7122.9 (6)C13—C18—C17118.9 (5)
C9—C8—C10114.7 (5)C13—C18—H18A120.6
C7—C8—C10122.4 (5)C17—C18—H18A120.6
N2—C9—C8126.9 (5)H1W—O1W—H2W105 (6)
N2—C9—C5117.8 (5)H3W—O2W—H4W111 (8)
C5—N1—C1—C20.1 (8)N1—C5—C9—N22.6 (7)
N1—C1—C2—C31.7 (9)C4—C5—C9—C80.8 (8)
C1—C2—C3—C42.1 (9)N1—C5—C9—C8177.8 (5)
C2—C3—C4—C51.0 (8)C9—C8—C10—C111.0 (8)
C2—C3—C4—C6179.3 (5)C7—C8—C10—C11178.2 (6)
C3—C4—C5—C9179.1 (5)C8—C10—C11—C120.1 (9)
C6—C4—C5—C90.6 (8)C9—N2—C12—C110.0 (7)
C3—C4—C5—N10.5 (7)C9—N2—C12—C13179.4 (4)
C6—C4—C5—N1179.2 (4)C10—C11—C12—N20.6 (9)
C1—N1—C5—C41.0 (7)C10—C11—C12—C13178.8 (5)
C1—N1—C5—C9179.7 (5)N2—C12—C13—C181.6 (7)
C5—C4—C6—C70.8 (8)C11—C12—C13—C18178.9 (5)
C3—C4—C6—C7178.9 (5)N2—C12—C13—C14176.3 (5)
C4—C6—C7—C80.4 (8)C11—C12—C13—C143.1 (8)
C6—C7—C8—C92.0 (9)C18—C13—C14—C150.2 (8)
C6—C7—C8—C10178.9 (5)C12—C13—C14—C15177.7 (5)
C12—N2—C9—C81.3 (7)C13—C14—C15—C160.5 (9)
C12—N2—C9—C5179.2 (4)C14—C15—C16—C171.2 (9)
C7—C8—C9—N2177.4 (5)C15—C16—C17—C181.7 (9)
C10—C8—C9—N21.7 (8)C14—C13—C18—C170.7 (8)
C7—C8—C9—C52.1 (8)C12—C13—C18—C17177.3 (5)
C10—C8—C9—C5178.7 (5)C16—C17—C18—C131.4 (9)
C4—C5—C9—N2178.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2W0.98 (8)1.90 (8)2.871 (7)171 (7)
O1W—H2W···Br10.90 (8)2.56 (8)3.443 (5)166 (6)
O2W—H3W···Br1i0.83 (8)2.63 (8)3.428 (5)164 (7)
O2W—H4W···Br1ii0.79 (8)2.63 (8)3.364 (5)154 (7)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(VI) Trichlorido(2-phenyl-1,10-phenanthroline-κN10)gold(III) top
Crystal data top
[AuCl3(C18H12N2)]F(000) = 1056
Mr = 559.61Dx = 2.210 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 8557 reflections
a = 7.1497 (1) Åθ = 4.2–67.7°
b = 18.4625 (3) ŵ = 20.83 mm1
c = 13.0648 (2) ÅT = 150 K
β = 102.727 (1)°Plate, golden-yellow
V = 1682.20 (4) Å30.09 × 0.05 × 0.01 mm
Z = 4
Data collection top
Bruker SMART6000 CCD
diffractometer
2949 independent reflections
Radiation source: fine-focus sealed tube2672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 67.9°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 78
Tmin = 0.256, Tmax = 0.819k = 2121
14259 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.2779P]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[AuCl3(C18H12N2)]V = 1682.20 (4) Å3
Mr = 559.61Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.1497 (1) ŵ = 20.83 mm1
b = 18.4625 (3) ÅT = 150 K
c = 13.0648 (2) Å0.09 × 0.05 × 0.01 mm
β = 102.727 (1)°
Data collection top
Bruker SMART6000 CCD
diffractometer
2949 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2672 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.819Rint = 0.044
14259 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 1.16 e Å3
2949 reflectionsΔρmin = 0.63 e Å3
217 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Our standard practice is to collect a full sphere of data out to a theta angle of 67° (0.83 Å resolution).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.61946 (2)0.255111 (7)0.142802 (12)0.01728 (8)
Cl10.46392 (15)0.31020 (5)0.25622 (8)0.0288 (2)
Cl20.71561 (15)0.36489 (5)0.09566 (8)0.0298 (2)
Cl30.79301 (14)0.19870 (5)0.03755 (8)0.0267 (2)
N10.5524 (4)0.15577 (16)0.1970 (2)0.0192 (7)
N20.3043 (4)0.19790 (16)0.0101 (2)0.0169 (6)
C10.6375 (5)0.1392 (2)0.2964 (3)0.0208 (8)
H10.70430.17570.34120.025*
C20.6294 (6)0.0693 (2)0.3347 (3)0.0254 (9)
H20.68490.05890.40620.031*
C30.5419 (6)0.0157 (2)0.2699 (3)0.0242 (9)
H30.54520.03290.29420.029*
C40.4462 (5)0.0329 (2)0.1664 (3)0.0202 (8)
C50.4463 (5)0.1052 (2)0.1325 (3)0.0181 (8)
C60.3448 (6)0.0213 (2)0.0964 (3)0.0231 (8)
H60.35020.07060.11770.028*
C70.2421 (5)0.0024 (2)0.0008 (3)0.0215 (8)
H70.17930.03890.04540.026*
C80.2257 (6)0.0713 (2)0.0324 (3)0.0207 (8)
C90.3243 (5)0.1264 (2)0.0329 (3)0.0172 (7)
C100.1050 (6)0.0947 (2)0.1281 (3)0.0242 (9)
H100.03790.06000.17620.029*
C110.0850 (5)0.1657 (2)0.1512 (3)0.0218 (8)
H110.00310.18110.21500.026*
C120.1873 (5)0.2179 (2)0.0794 (3)0.0184 (8)
C130.1618 (6)0.2962 (2)0.1003 (3)0.0207 (8)
C140.1236 (5)0.3241 (2)0.2029 (3)0.0228 (9)
H140.11410.29190.26060.027*
C150.0997 (6)0.3976 (2)0.2208 (4)0.0275 (9)
H150.07400.41570.29060.033*
C160.1131 (6)0.4453 (2)0.1367 (4)0.0309 (10)
H160.09920.49600.14860.037*
C170.1471 (6)0.4177 (2)0.0350 (4)0.0331 (11)
H170.15360.44980.02260.040*
C180.1713 (6)0.3445 (2)0.0172 (3)0.0238 (9)
H180.19480.32660.05260.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01965 (12)0.01319 (11)0.01835 (12)0.00284 (5)0.00278 (7)0.00061 (5)
Cl10.0418 (6)0.0185 (5)0.0295 (5)0.0024 (4)0.0153 (4)0.0055 (4)
Cl20.0384 (6)0.0174 (5)0.0333 (6)0.0091 (4)0.0075 (4)0.0040 (4)
Cl30.0268 (5)0.0250 (5)0.0306 (5)0.0003 (4)0.0117 (4)0.0022 (4)
N10.0229 (18)0.0114 (15)0.0243 (18)0.0009 (12)0.0073 (13)0.0007 (13)
N20.0147 (16)0.0176 (15)0.0184 (16)0.0015 (12)0.0037 (12)0.0007 (12)
C10.025 (2)0.0188 (19)0.018 (2)0.0009 (14)0.0025 (15)0.0003 (15)
C20.029 (2)0.024 (2)0.022 (2)0.0034 (16)0.0037 (17)0.0064 (16)
C30.027 (2)0.0160 (19)0.030 (2)0.0037 (15)0.0071 (17)0.0054 (16)
C40.017 (2)0.0158 (18)0.029 (2)0.0009 (14)0.0069 (15)0.0005 (16)
C50.016 (2)0.0181 (19)0.021 (2)0.0003 (14)0.0044 (15)0.0006 (15)
C60.027 (2)0.0123 (19)0.032 (2)0.0012 (15)0.0106 (17)0.0015 (15)
C70.023 (2)0.0128 (18)0.030 (2)0.0046 (14)0.0081 (17)0.0069 (16)
C80.019 (2)0.021 (2)0.024 (2)0.0015 (14)0.0070 (15)0.0025 (16)
C90.016 (2)0.0171 (18)0.020 (2)0.0002 (13)0.0063 (14)0.0007 (15)
C100.023 (2)0.025 (2)0.024 (2)0.0064 (16)0.0036 (16)0.0061 (17)
C110.017 (2)0.024 (2)0.021 (2)0.0036 (15)0.0008 (15)0.0008 (16)
C120.014 (2)0.0179 (19)0.022 (2)0.0020 (14)0.0018 (15)0.0016 (16)
C130.0126 (19)0.020 (2)0.029 (2)0.0001 (15)0.0032 (15)0.0026 (16)
C140.014 (2)0.024 (2)0.030 (2)0.0014 (14)0.0047 (16)0.0009 (17)
C150.020 (2)0.026 (2)0.035 (2)0.0022 (16)0.0033 (17)0.0127 (18)
C160.025 (2)0.017 (2)0.047 (3)0.0030 (16)0.0001 (18)0.007 (2)
C170.033 (3)0.023 (2)0.039 (3)0.0010 (17)0.002 (2)0.0070 (19)
C180.021 (2)0.020 (2)0.028 (2)0.0028 (15)0.0016 (16)0.0016 (16)
Geometric parameters (Å, º) top
Au1—N12.060 (3)C7—H70.9500
Au1—Cl22.2686 (9)C8—C91.412 (5)
Au1—Cl12.2788 (10)C8—C101.421 (6)
Au1—Cl32.2950 (9)C10—C111.345 (6)
N1—C11.342 (5)C10—H100.9500
N1—C51.370 (5)C11—C121.429 (5)
N2—C121.331 (5)C11—H110.9500
N2—C91.355 (5)C12—C131.475 (6)
C1—C21.390 (5)C13—C181.394 (6)
C1—H10.9500C13—C141.405 (6)
C2—C31.361 (6)C14—C151.382 (6)
C2—H20.9500C14—H140.9500
C3—C41.411 (6)C15—C161.395 (6)
C3—H30.9500C15—H150.9500
C4—C51.407 (5)C16—C171.394 (7)
C4—C61.438 (5)C16—H160.9500
C5—C91.451 (5)C17—C181.376 (6)
C6—C71.348 (6)C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.425 (5)
N1—Au1—Cl2174.89 (9)C9—C8—C7120.4 (4)
N1—Au1—Cl189.43 (9)C10—C8—C7123.4 (4)
Cl2—Au1—Cl189.90 (4)N2—C9—C8123.6 (3)
N1—Au1—Cl389.96 (9)N2—C9—C5118.3 (3)
Cl2—Au1—Cl390.38 (4)C8—C9—C5118.0 (3)
Cl1—Au1—Cl3176.26 (4)C11—C10—C8120.5 (4)
C1—N1—C5120.7 (3)C11—C10—H10119.8
C1—N1—Au1116.5 (2)C8—C10—H10119.8
C5—N1—Au1122.3 (3)C10—C11—C12119.7 (4)
C12—N2—C9118.7 (3)C10—C11—H11120.1
N1—C1—C2121.0 (4)C12—C11—H11120.1
N1—C1—H1119.5N2—C12—C11121.4 (4)
C2—C1—H1119.5N2—C12—C13117.6 (3)
C3—C2—C1120.0 (4)C11—C12—C13121.0 (3)
C3—C2—H2120.0C18—C13—C14118.4 (4)
C1—C2—H2120.0C18—C13—C12120.0 (3)
C2—C3—C4119.5 (4)C14—C13—C12121.7 (3)
C2—C3—H3120.3C15—C14—C13120.8 (4)
C4—C3—H3120.3C15—C14—H14119.6
C5—C4—C3118.8 (4)C13—C14—H14119.6
C5—C4—C6119.6 (4)C14—C15—C16120.2 (4)
C3—C4—C6121.6 (3)C14—C15—H15119.9
N1—C5—C4119.5 (3)C16—C15—H15119.9
N1—C5—C9120.7 (3)C17—C16—C15119.2 (4)
C4—C5—C9119.7 (3)C17—C16—H16120.4
C7—C6—C4120.3 (3)C15—C16—H16120.4
C7—C6—H6119.8C18—C17—C16120.6 (4)
C4—C6—H6119.8C18—C17—H17119.7
C6—C7—C8121.4 (4)C16—C17—H17119.7
C6—C7—H7119.3C17—C18—C13120.9 (4)
C8—C7—H7119.3C17—C18—H18119.6
C9—C8—C10116.0 (3)C13—C18—H18119.6
Cl2—Au1—N1—C114.8 (12)C10—C8—C9—N22.0 (6)
Cl1—Au1—N1—C167.6 (3)C7—C8—C9—N2174.8 (3)
Cl3—Au1—N1—C1108.7 (3)C10—C8—C9—C5178.8 (3)
Cl2—Au1—N1—C5157.2 (8)C7—C8—C9—C51.9 (5)
Cl1—Au1—N1—C5120.3 (3)N1—C5—C9—N26.1 (5)
Cl3—Au1—N1—C563.4 (3)C4—C5—C9—N2169.7 (3)
C5—N1—C1—C23.6 (6)N1—C5—C9—C8177.0 (3)
Au1—N1—C1—C2168.6 (3)C4—C5—C9—C87.2 (5)
N1—C1—C2—C33.1 (6)C9—C8—C10—C111.8 (6)
C1—C2—C3—C45.2 (6)C7—C8—C10—C11175.0 (4)
C2—C3—C4—C50.9 (6)C8—C10—C11—C120.6 (6)
C2—C3—C4—C6177.3 (4)C9—N2—C12—C110.4 (5)
C1—N1—C5—C48.0 (5)C9—N2—C12—C13177.5 (3)
Au1—N1—C5—C4163.8 (3)C10—C11—C12—N20.6 (6)
C1—N1—C5—C9167.8 (3)C10—C11—C12—C13177.2 (4)
Au1—N1—C5—C920.4 (5)N2—C12—C13—C1832.0 (5)
C3—C4—C5—N15.7 (5)C11—C12—C13—C18145.9 (4)
C6—C4—C5—N1176.1 (3)N2—C12—C13—C14149.3 (4)
C3—C4—C5—C9170.2 (3)C11—C12—C13—C1432.7 (5)
C6—C4—C5—C98.1 (5)C18—C13—C14—C151.2 (6)
C5—C4—C6—C73.4 (6)C12—C13—C14—C15179.9 (3)
C3—C4—C6—C7174.8 (4)C13—C14—C15—C160.1 (6)
C4—C6—C7—C82.0 (6)C14—C15—C16—C171.2 (6)
C6—C7—C8—C92.8 (6)C15—C16—C17—C181.4 (7)
C6—C7—C8—C10173.9 (4)C16—C17—C18—C130.2 (7)
C12—N2—C9—C80.9 (5)C14—C13—C18—C171.1 (6)
C12—N2—C9—C5177.7 (3)C12—C13—C18—C17179.7 (4)
(VII) Dichlorido(2-phenyl-1,10-phenanthroline-κ2N,N')copper(II) top
Crystal data top
[CuCl2(C18H12N2)]F(000) = 788
Mr = 390.74Dx = 1.667 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 7410 reflections
a = 7.9946 (2) Åθ = 4.4–67.6°
b = 19.2773 (5) ŵ = 5.12 mm1
c = 10.3823 (2) ÅT = 150 K
β = 103.408 (1)°Blade, orange
V = 1556.45 (6) Å30.20 × 0.09 × 0.01 mm
Z = 4
Data collection top
Bruker SMART6000 CCD
diffractometer
2755 independent reflections
Radiation source: fine-focus sealed tube2444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 68.0°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.428, Tmax = 0.951k = 1821
13203 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.044P)2 + 0.9787P]
where P = (Fo2 + 2Fc2)/3
2755 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CuCl2(C18H12N2)]V = 1556.45 (6) Å3
Mr = 390.74Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.9946 (2) ŵ = 5.12 mm1
b = 19.2773 (5) ÅT = 150 K
c = 10.3823 (2) Å0.20 × 0.09 × 0.01 mm
β = 103.408 (1)°
Data collection top
Bruker SMART6000 CCD
diffractometer
2755 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2444 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.951Rint = 0.034
13203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
2755 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Our standard practice is to collect a full sphere of data out to a theta angle of 67° (0.83 Å resolution).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All C-bound H atoms were calculated based on geometric criteria, and treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26805 (4)0.547963 (15)0.87148 (3)0.02034 (12)
Cl10.34828 (7)0.53638 (3)1.08968 (5)0.02637 (14)
Cl20.14664 (7)0.65355 (3)0.85895 (5)0.02490 (14)
N10.1660 (2)0.45241 (9)0.82921 (18)0.0194 (4)
N20.2993 (2)0.54171 (9)0.68323 (17)0.0182 (4)
C10.0952 (3)0.41107 (12)0.9035 (2)0.0244 (5)
H10.10160.42360.99300.029*
C20.0112 (3)0.34939 (12)0.8546 (3)0.0292 (5)
H20.03940.32110.91020.035*
C30.0024 (3)0.33003 (12)0.7260 (2)0.0273 (5)
H30.05160.28770.69260.033*
C40.0744 (3)0.37363 (11)0.6438 (2)0.0227 (5)
C50.1560 (3)0.43456 (11)0.7007 (2)0.0191 (4)
C60.0666 (3)0.35997 (12)0.5069 (2)0.0281 (5)
H60.01290.31870.46760.034*
C70.1345 (3)0.40485 (13)0.4326 (2)0.0281 (5)
H70.12830.39440.34220.034*
C80.2156 (3)0.46797 (12)0.4878 (2)0.0226 (5)
C90.2276 (2)0.48253 (11)0.6227 (2)0.0191 (4)
C100.2806 (3)0.51850 (13)0.4144 (2)0.0257 (5)
H100.27440.51150.32280.031*
C110.3524 (3)0.57743 (12)0.4754 (2)0.0261 (5)
H110.39650.61140.42580.031*
C120.3624 (3)0.58885 (11)0.6120 (2)0.0207 (4)
C130.4401 (3)0.65285 (11)0.6773 (2)0.0224 (5)
C140.3999 (3)0.71634 (12)0.6127 (2)0.0278 (5)
H140.33090.71740.52490.033*
C150.4601 (3)0.77756 (13)0.6758 (3)0.0333 (6)
H150.42960.82070.63270.040*
C160.5651 (3)0.77571 (13)0.8022 (3)0.0324 (6)
H160.60560.81780.84600.039*
C170.6118 (3)0.71253 (13)0.8657 (2)0.0303 (5)
H170.68680.71160.95130.036*
C180.5491 (3)0.65125 (12)0.8042 (2)0.0261 (5)
H180.57960.60820.84770.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (2)0.01531 (19)0.01613 (18)0.00138 (12)0.00661 (13)0.00030 (11)
Cl10.0408 (3)0.0219 (3)0.0164 (3)0.0015 (2)0.0066 (2)0.00073 (18)
Cl20.0322 (3)0.0178 (3)0.0242 (3)0.00344 (19)0.0056 (2)0.00065 (19)
N10.0208 (9)0.0148 (9)0.0222 (9)0.0006 (6)0.0043 (7)0.0008 (7)
N20.0187 (9)0.0184 (9)0.0167 (9)0.0022 (6)0.0028 (7)0.0015 (6)
C10.0270 (11)0.0226 (12)0.0248 (11)0.0015 (9)0.0079 (9)0.0014 (9)
C20.0279 (12)0.0218 (12)0.0391 (14)0.0040 (9)0.0102 (10)0.0039 (10)
C30.0244 (11)0.0177 (12)0.0379 (13)0.0021 (8)0.0037 (10)0.0033 (9)
C40.0196 (10)0.0179 (11)0.0295 (12)0.0039 (8)0.0033 (9)0.0036 (9)
C50.0172 (10)0.0187 (11)0.0207 (11)0.0033 (8)0.0032 (8)0.0008 (8)
C60.0240 (12)0.0259 (13)0.0316 (13)0.0019 (9)0.0005 (9)0.0109 (10)
C70.0245 (12)0.0344 (14)0.0233 (11)0.0042 (9)0.0012 (9)0.0092 (10)
C80.0175 (10)0.0297 (13)0.0194 (11)0.0056 (8)0.0021 (8)0.0021 (9)
C90.0154 (10)0.0201 (11)0.0209 (11)0.0040 (8)0.0028 (8)0.0010 (8)
C100.0226 (11)0.0364 (14)0.0177 (11)0.0072 (9)0.0041 (9)0.0013 (9)
C110.0238 (11)0.0312 (13)0.0245 (11)0.0057 (9)0.0081 (9)0.0099 (9)
C120.0169 (10)0.0224 (12)0.0225 (11)0.0049 (8)0.0038 (8)0.0045 (8)
C130.0193 (11)0.0222 (12)0.0267 (11)0.0002 (8)0.0073 (9)0.0061 (9)
C140.0277 (12)0.0270 (13)0.0294 (12)0.0015 (9)0.0083 (10)0.0095 (9)
C150.0325 (13)0.0227 (13)0.0484 (16)0.0012 (9)0.0169 (11)0.0101 (11)
C160.0257 (12)0.0229 (13)0.0513 (16)0.0056 (9)0.0143 (11)0.0054 (11)
C170.0231 (12)0.0318 (14)0.0346 (13)0.0023 (9)0.0036 (10)0.0033 (10)
C180.0227 (11)0.0258 (13)0.0292 (12)0.0012 (9)0.0051 (9)0.0055 (9)
Geometric parameters (Å, º) top
Cu1—N12.0212 (17)C7—H70.9500
Cu1—N22.0306 (18)C8—C101.409 (3)
Cu1—Cl12.2180 (6)C8—C91.410 (3)
Cu1—Cl22.2458 (6)C10—C111.361 (3)
N1—C11.324 (3)C10—H100.9500
N1—C51.362 (3)C11—C121.420 (3)
N2—C121.341 (3)C11—H110.9500
N2—C91.363 (3)C12—C131.474 (3)
C1—C21.402 (3)C13—C141.397 (3)
C1—H10.9500C13—C181.401 (3)
C2—C31.372 (3)C14—C151.381 (4)
C2—H20.9500C14—H140.9500
C3—C41.412 (3)C15—C161.385 (4)
C3—H30.9500C15—H150.9500
C4—C51.406 (3)C16—C171.394 (4)
C4—C61.433 (3)C16—H160.9500
C5—C91.433 (3)C17—C181.381 (3)
C6—C71.354 (3)C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.434 (3)
N1—Cu1—N282.56 (7)C10—C8—C9116.8 (2)
N1—Cu1—Cl197.85 (5)C10—C8—C7124.0 (2)
N2—Cu1—Cl1154.97 (5)C9—C8—C7119.1 (2)
N1—Cu1—Cl2131.77 (5)N2—C9—C8123.3 (2)
N2—Cu1—Cl298.40 (5)N2—C9—C5117.39 (18)
Cl1—Cu1—Cl299.74 (2)C8—C9—C5119.3 (2)
C1—N1—C5118.86 (19)C11—C10—C8119.6 (2)
C1—N1—Cu1128.88 (15)C11—C10—H10120.2
C5—N1—Cu1111.83 (14)C8—C10—H10120.2
C12—N2—C9118.98 (18)C10—C11—C12121.0 (2)
C12—N2—Cu1129.50 (15)C10—C11—H11119.5
C9—N2—Cu1111.16 (14)C12—C11—H11119.5
N1—C1—C2122.2 (2)N2—C12—C11120.3 (2)
N1—C1—H1118.9N2—C12—C13119.09 (19)
C2—C1—H1118.9C11—C12—C13120.6 (2)
C3—C2—C1119.7 (2)C14—C13—C18119.6 (2)
C3—C2—H2120.1C14—C13—C12119.2 (2)
C1—C2—H2120.1C18—C13—C12121.18 (19)
C2—C3—C4119.3 (2)C15—C14—C13120.4 (2)
C2—C3—H3120.3C15—C14—H14119.8
C4—C3—H3120.3C13—C14—H14119.8
C5—C4—C3117.2 (2)C14—C15—C16119.7 (2)
C5—C4—C6118.7 (2)C14—C15—H15120.2
C3—C4—C6124.1 (2)C16—C15—H15120.2
N1—C5—C4122.6 (2)C15—C16—C17120.5 (2)
N1—C5—C9116.75 (19)C15—C16—H16119.7
C4—C5—C9120.6 (2)C17—C16—H16119.7
C7—C6—C4121.1 (2)C18—C17—C16120.0 (2)
C7—C6—H6119.4C18—C17—H17120.0
C4—C6—H6119.4C16—C17—H17120.0
C6—C7—C8121.2 (2)C17—C18—C13119.7 (2)
C6—C7—H7119.4C17—C18—H18120.1
C8—C7—H7119.4C13—C18—H18120.1
N2—Cu1—N1—C1177.1 (2)Cu1—N2—C9—C8173.68 (16)
Cl1—Cu1—N1—C128.13 (19)C12—N2—C9—C5177.77 (18)
Cl2—Cu1—N1—C182.5 (2)Cu1—N2—C9—C54.0 (2)
N2—Cu1—N1—C54.79 (14)C10—C8—C9—N20.7 (3)
Cl1—Cu1—N1—C5159.53 (13)C7—C8—C9—N2178.67 (19)
Cl2—Cu1—N1—C589.86 (14)C10—C8—C9—C5176.96 (18)
N1—Cu1—N2—C12177.69 (18)C7—C8—C9—C51.0 (3)
Cl1—Cu1—N2—C1289.7 (2)N1—C5—C9—N20.0 (3)
Cl2—Cu1—N2—C1246.41 (18)C4—C5—C9—N2177.69 (18)
N1—Cu1—N2—C94.74 (13)N1—C5—C9—C8177.79 (18)
Cl1—Cu1—N2—C997.38 (17)C4—C5—C9—C80.1 (3)
Cl2—Cu1—N2—C9126.54 (13)C9—C8—C10—C110.8 (3)
C5—N1—C1—C20.3 (3)C7—C8—C10—C11178.7 (2)
Cu1—N1—C1—C2172.20 (16)C8—C10—C11—C120.2 (3)
N1—C1—C2—C30.7 (3)C9—N2—C12—C110.7 (3)
C1—C2—C3—C41.7 (3)Cu1—N2—C12—C11171.73 (15)
C2—C3—C4—C51.6 (3)C9—N2—C12—C13179.94 (18)
C2—C3—C4—C6177.4 (2)Cu1—N2—C12—C137.6 (3)
C1—N1—C5—C40.4 (3)C10—C11—C12—N20.6 (3)
Cu1—N1—C5—C4173.61 (16)C10—C11—C12—C13179.9 (2)
C1—N1—C5—C9177.24 (18)N2—C12—C13—C14135.8 (2)
Cu1—N1—C5—C94.0 (2)C11—C12—C13—C1443.5 (3)
C3—C4—C5—N10.5 (3)N2—C12—C13—C1842.2 (3)
C6—C4—C5—N1178.51 (19)C11—C12—C13—C18138.5 (2)
C3—C4—C5—C9178.09 (19)C18—C13—C14—C153.2 (3)
C6—C4—C5—C90.9 (3)C12—C13—C14—C15174.9 (2)
C5—C4—C6—C70.7 (3)C13—C14—C15—C162.0 (4)
C3—C4—C6—C7178.3 (2)C14—C15—C16—C170.6 (4)
C4—C6—C7—C80.4 (3)C15—C16—C17—C182.0 (4)
C6—C7—C8—C10176.5 (2)C16—C17—C18—C130.8 (3)
C6—C7—C8—C91.3 (3)C14—C13—C18—C171.8 (3)
C12—N2—C9—C80.1 (3)C12—C13—C18—C17176.2 (2)
(VIII) Bromido[2-(phenanthrolin-2-yl)phenyl-κ3C1,N,N')palladium(II) top
Crystal data top
[PdBr(C18H11N2)]F(000) = 856
Mr = 441.60Dx = 2.049 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
Hall symbol: -P 2ynCell parameters from 6253 reflections
a = 7.8956 (7) Åθ = 3.3–33.2°
b = 9.6681 (8) ŵ = 5.05 mm1
c = 19.0436 (16) ÅT = 150 K
β = 99.960 (1)°Needle, yellow
V = 1431.8 (2) Å30.09 × 0.02 × 0.01 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
4329 independent reflections
Radiation source: synchrotron3673 reflections with I > 2σ(I)
Si-<111> channel cut crystal monochromatorRint = 0.049
ω scansθmax = 33.6°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1111
Tmin = 0.659, Tmax = 0.951k = 1313
19447 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0279P)2 + 2.2043P]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.97 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
[PdBr(C18H11N2)]V = 1431.8 (2) Å3
Mr = 441.60Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.77490 Å
a = 7.8956 (7) ŵ = 5.05 mm1
b = 9.6681 (8) ÅT = 150 K
c = 19.0436 (16) Å0.09 × 0.02 × 0.01 mm
β = 99.960 (1)°
Data collection top
Bruker APEXII
diffractometer
4329 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3673 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.951Rint = 0.049
19447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 1.97 e Å3
4329 reflectionsΔρmin = 1.32 e Å3
199 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

PLAT927_ALERT_1_C Reported and Calculated wR2 Differ by ········· -0.0019 RESPONSE: For the alert above, the issue lies with checkcif incorrectly interpreting the wavelength of the experiment even though it is correctly identified in the CIF. When one uses incorrect Mo Kα radiation (λ = 0.71073 Å) instead of the correct wavelength of 0.7749 Å in the refinement, the alert goes away.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.30417 (3)0.35433 (2)0.049625 (11)0.02670 (7)
Br10.36791 (5)0.13412 (4)0.11219 (2)0.04374 (10)
N10.1294 (3)0.2827 (2)0.04421 (13)0.0295 (5)
N20.2511 (3)0.5294 (2)0.00139 (12)0.0255 (4)
C10.0699 (4)0.1580 (3)0.06638 (18)0.0368 (6)
H10.10350.08020.03680.044*
C20.0401 (5)0.1375 (4)0.13169 (19)0.0421 (7)
H20.07890.04700.14570.051*
C30.0918 (4)0.2475 (4)0.17528 (18)0.0393 (7)
H30.16610.23370.21960.047*
C40.0340 (4)0.3814 (3)0.15402 (16)0.0322 (6)
C50.0773 (4)0.3931 (3)0.08795 (15)0.0274 (5)
C60.0795 (4)0.5056 (4)0.19475 (16)0.0385 (7)
H60.15390.49910.23950.046*
C70.0192 (4)0.6315 (3)0.17107 (17)0.0374 (7)
H70.05460.71130.19890.045*
C80.0977 (4)0.6467 (3)0.10438 (16)0.0308 (6)
C90.1420 (3)0.5260 (3)0.06472 (14)0.0263 (5)
C100.1745 (4)0.7708 (3)0.07658 (17)0.0360 (6)
H100.14970.85460.10240.043*
C110.2861 (4)0.7721 (3)0.01197 (17)0.0351 (6)
H110.33670.85650.00670.042*
C120.3244 (4)0.6473 (3)0.02629 (15)0.0284 (5)
C130.4378 (4)0.6226 (3)0.09449 (16)0.0301 (6)
C140.5294 (4)0.7276 (4)0.13469 (17)0.0376 (7)
H140.51950.82090.11880.045*
C150.6359 (4)0.6929 (4)0.19875 (18)0.0436 (8)
H150.70040.76280.22650.052*
C160.6477 (4)0.5561 (4)0.22202 (17)0.0438 (8)
H160.71980.53350.26580.053*
C170.5550 (4)0.4523 (4)0.18179 (16)0.0366 (6)
H170.56450.35960.19860.044*
C180.4486 (4)0.4818 (3)0.11746 (15)0.0301 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02900 (11)0.02766 (11)0.02409 (10)0.00047 (8)0.00645 (7)0.00217 (7)
Br10.0526 (2)0.03584 (18)0.04332 (19)0.00233 (14)0.00989 (15)0.01310 (13)
N10.0311 (12)0.0278 (11)0.0303 (12)0.0022 (9)0.0078 (9)0.0028 (9)
N20.0264 (10)0.0267 (10)0.0242 (10)0.0008 (9)0.0063 (8)0.0036 (8)
C10.0399 (16)0.0302 (14)0.0416 (17)0.0040 (12)0.0113 (13)0.0041 (12)
C20.0404 (17)0.0408 (17)0.0456 (18)0.0098 (14)0.0091 (14)0.0156 (14)
C30.0321 (15)0.0476 (18)0.0376 (16)0.0027 (13)0.0045 (12)0.0146 (14)
C40.0267 (13)0.0407 (16)0.0298 (14)0.0025 (11)0.0065 (11)0.0049 (11)
C50.0268 (12)0.0299 (13)0.0266 (12)0.0007 (10)0.0081 (10)0.0039 (10)
C60.0325 (15)0.0534 (19)0.0290 (14)0.0082 (14)0.0037 (11)0.0006 (13)
C70.0365 (16)0.0440 (17)0.0317 (15)0.0093 (13)0.0061 (12)0.0053 (12)
C80.0309 (13)0.0319 (14)0.0311 (13)0.0044 (11)0.0099 (11)0.0038 (11)
C90.0257 (12)0.0286 (12)0.0259 (12)0.0018 (10)0.0084 (10)0.0003 (10)
C100.0405 (16)0.0276 (14)0.0414 (16)0.0027 (12)0.0114 (13)0.0043 (12)
C110.0385 (16)0.0268 (13)0.0418 (16)0.0033 (12)0.0124 (13)0.0007 (12)
C120.0267 (12)0.0294 (13)0.0301 (13)0.0009 (10)0.0077 (10)0.0040 (10)
C130.0264 (13)0.0330 (14)0.0318 (14)0.0013 (10)0.0078 (10)0.0061 (11)
C140.0310 (14)0.0410 (17)0.0413 (17)0.0033 (12)0.0074 (12)0.0131 (13)
C150.0307 (15)0.059 (2)0.0398 (17)0.0063 (14)0.0037 (13)0.0214 (16)
C160.0321 (15)0.066 (2)0.0319 (15)0.0025 (15)0.0012 (12)0.0098 (15)
C170.0337 (15)0.0488 (18)0.0271 (13)0.0045 (13)0.0050 (11)0.0020 (12)
C180.0260 (12)0.0390 (15)0.0261 (13)0.0016 (11)0.0066 (10)0.0031 (11)
Geometric parameters (Å, º) top
Pd1—N21.961 (2)C7—C81.443 (4)
Pd1—C181.995 (3)C7—H70.9500
Pd1—N12.173 (2)C8—C91.401 (4)
Pd1—Br12.4490 (4)C8—C101.406 (4)
N1—C11.335 (4)C10—C111.384 (4)
N1—C51.373 (4)C10—H100.9500
N2—C121.344 (3)C11—C121.415 (4)
N2—C91.356 (3)C11—H110.9500
C1—C21.403 (5)C12—C131.464 (4)
C1—H10.9500C13—C141.396 (4)
C2—C31.367 (5)C13—C181.428 (4)
C2—H20.9500C14—C151.398 (5)
C3—C41.409 (4)C14—H140.9500
C3—H30.9500C15—C161.393 (6)
C4—C51.410 (4)C15—H150.9500
C4—C61.441 (5)C16—C171.392 (5)
C5—C91.424 (4)C16—H160.9500
C6—C71.355 (5)C17—C181.390 (4)
C6—H60.9500C17—H170.9500
N2—Pd1—C1880.61 (11)C9—C8—C10117.2 (3)
N2—Pd1—N179.44 (9)C9—C8—C7116.8 (3)
C18—Pd1—N1160.04 (11)C10—C8—C7125.9 (3)
N2—Pd1—Br1179.28 (7)N2—C9—C8121.3 (3)
C18—Pd1—Br1100.12 (9)N2—C9—C5115.9 (2)
N1—Pd1—Br199.83 (7)C8—C9—C5122.8 (3)
C1—N1—C5117.3 (3)C11—C10—C8120.6 (3)
C1—N1—Pd1133.3 (2)C11—C10—H10119.7
C5—N1—Pd1109.39 (18)C8—C10—H10119.7
C12—N2—C9122.3 (2)C10—C11—C12119.8 (3)
C12—N2—Pd1119.81 (19)C10—C11—H11120.1
C9—N2—Pd1117.90 (18)C12—C11—H11120.1
N1—C1—C2122.5 (3)N2—C12—C11118.8 (3)
N1—C1—H1118.7N2—C12—C13111.4 (2)
C2—C1—H1118.7C11—C12—C13129.7 (3)
C3—C2—C1120.2 (3)C14—C13—C18121.9 (3)
C3—C2—H2119.9C14—C13—C12123.2 (3)
C1—C2—H2119.9C18—C13—C12115.0 (2)
C2—C3—C4119.5 (3)C13—C14—C15118.7 (3)
C2—C3—H3120.2C13—C14—H14120.6
C4—C3—H3120.2C15—C14—H14120.6
C3—C4—C5116.8 (3)C16—C15—C14120.2 (3)
C3—C4—C6125.0 (3)C16—C15—H15119.9
C5—C4—C6118.2 (3)C14—C15—H15119.9
N1—C5—C4123.7 (3)C17—C16—C15120.7 (3)
N1—C5—C9117.4 (2)C17—C16—H16119.7
C4—C5—C9119.0 (3)C15—C16—H16119.7
C7—C6—C4121.9 (3)C18—C17—C16121.1 (3)
C7—C6—H6119.0C18—C17—H17119.4
C4—C6—H6119.0C16—C17—H17119.4
C6—C7—C8121.3 (3)C17—C18—C13117.4 (3)
C6—C7—H7119.4C17—C18—Pd1129.4 (2)
C8—C7—H7119.4C13—C18—Pd1113.2 (2)
N2—Pd1—N1—C1178.8 (3)C10—C8—C9—C5178.1 (3)
C18—Pd1—N1—C1176.9 (3)C7—C8—C9—C50.3 (4)
Br1—Pd1—N1—C11.3 (3)N1—C5—C9—N20.7 (4)
N2—Pd1—N1—C50.39 (18)C4—C5—C9—N2178.7 (2)
C18—Pd1—N1—C51.5 (4)N1—C5—C9—C8179.7 (2)
Br1—Pd1—N1—C5179.66 (17)C4—C5—C9—C80.9 (4)
C18—Pd1—N2—C120.3 (2)C9—C8—C10—C111.3 (4)
N1—Pd1—N2—C12179.1 (2)C7—C8—C10—C11179.5 (3)
Br1—Pd1—N2—C12177 (100)C8—C10—C11—C120.5 (5)
C18—Pd1—N2—C9179.3 (2)C9—N2—C12—C110.1 (4)
N1—Pd1—N2—C90.02 (19)Pd1—N2—C12—C11179.1 (2)
Br1—Pd1—N2—C94 (6)C9—N2—C12—C13179.4 (2)
C5—N1—C1—C20.5 (5)Pd1—N2—C12—C130.4 (3)
Pd1—N1—C1—C2177.8 (2)C10—C11—C12—N20.1 (4)
N1—C1—C2—C30.5 (5)C10—C11—C12—C13179.5 (3)
C1—C2—C3—C40.2 (5)N2—C12—C13—C14179.7 (3)
C2—C3—C4—C50.7 (4)C11—C12—C13—C140.9 (5)
C2—C3—C4—C6179.7 (3)N2—C12—C13—C180.2 (3)
C1—N1—C5—C40.0 (4)C11—C12—C13—C18179.2 (3)
Pd1—N1—C5—C4178.7 (2)C18—C13—C14—C150.8 (5)
C1—N1—C5—C9179.4 (3)C12—C13—C14—C15179.3 (3)
Pd1—N1—C5—C90.7 (3)C13—C14—C15—C160.9 (5)
C3—C4—C5—N10.6 (4)C14—C15—C16—C170.4 (5)
C6—C4—C5—N1179.7 (3)C15—C16—C17—C180.1 (5)
C3—C4—C5—C9178.8 (3)C16—C17—C18—C130.2 (4)
C6—C4—C5—C90.9 (4)C16—C17—C18—Pd1179.6 (2)
C3—C4—C6—C7180.0 (3)C14—C13—C18—C170.2 (4)
C5—C4—C6—C70.4 (4)C12—C13—C18—C17179.8 (3)
C4—C6—C7—C81.6 (5)C14—C13—C18—Pd1179.9 (2)
C6—C7—C8—C91.6 (4)C12—C13—C18—Pd10.0 (3)
C6—C7—C8—C10176.6 (3)N2—Pd1—C18—C17179.9 (3)
C12—N2—C9—C81.0 (4)N1—Pd1—C18—C17178.1 (2)
Pd1—N2—C9—C8180.0 (2)Br1—Pd1—C18—C170.1 (3)
C12—N2—C9—C5178.7 (2)N2—Pd1—C18—C130.1 (2)
Pd1—N2—C9—C50.4 (3)N1—Pd1—C18—C131.7 (4)
C10—C8—C9—N21.5 (4)Br1—Pd1—C18—C13179.91 (19)
C7—C8—C9—N2179.9 (3)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC18H12N2C18H13N2+·PF6C18H13N2+·CF3SO3(C18H13N2)[AuCl4]
Mr256.30402.27406.37596.07
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Triclinic, P1Monoclinic, C2/c
Temperature (K)150173150150
a, b, c (Å)10.8180 (4), 21.0893 (8), 12.2199 (5)7.5798 (8), 10.6930 (12), 10.9157 (12)7.6682 (2), 10.7446 (4), 11.1174 (4)14.7934 (3), 10.7307 (3), 23.3067 (5)
α, β, γ (°)90, 107.844 (2), 90103.713 (3), 90.801 (3), 104.707 (3)104.848 (2), 95.687 (2), 100.439 (2)90, 92.593 (2), 90
V3)2653.78 (18)828.75 (16)860.48 (5)3696.00 (15)
Z8228
Radiation typeCu KαSynchrotron, λ = 0.77500 ÅCu KαCu Kα
µ (mm1)0.590.292.1920.31
Crystal size (mm)0.27 × 0.15 × 0.080.08 × 0.04 × 0.010.11 × 0.10 × 0.050.13 × 0.04 × 0.01
Data collection
DiffractometerBruker SMART6000 CCD
diffractometer
Bruker Platinum 200
diffractometer
Bruker SMART6000 CCD
diffractometer
Bruker SMART6000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.856, 0.9540.977, 0.9970.794, 0.8980.178, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
22260, 4740, 3118 8626, 3316, 2793 7396, 2976, 2658 15346, 3259, 2946
Rint0.0560.0560.0210.042
(sin θ/λ)max1)0.6010.6250.6010.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 0.99 0.059, 0.174, 1.05 0.035, 0.102, 1.06 0.025, 0.066, 1.04
No. of reflections4740331629763259
No. of parameters361284256229
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.190.62, 0.330.32, 0.281.12, 0.58


(V)(VI)(VII)(VIII)
Crystal data
Chemical formulaC18H13N2+·Br·2H2O[AuCl3(C18H12N2)][CuCl2(C18H12N2)][PdBr(C18H11N2)]
Mr373.25559.61390.74441.60
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)150150150150
a, b, c (Å)7.2285 (11), 19.897 (3), 11.2322 (16)7.1497 (1), 18.4625 (3), 13.0648 (2)7.9946 (2), 19.2773 (5), 10.3823 (2)7.8956 (7), 9.6681 (8), 19.0436 (16)
α, β, γ (°)90, 97.283 (2), 9090, 102.727 (1), 9090, 103.408 (1), 9090, 99.960 (1), 90
V3)1602.4 (4)1682.20 (4)1556.45 (6)1431.8 (2)
Z4444
Radiation typeSynchrotron, λ = 0.77490 ÅCu KαCu KαSynchrotron, λ = 0.77490 Å
µ (mm1)3.1720.835.125.05
Crystal size (mm)0.04 × 0.03 × 0.030.09 × 0.05 × 0.010.20 × 0.09 × 0.010.09 × 0.02 × 0.01
Data collection
DiffractometerBruker APEXII
diffractometer
Bruker SMART6000 CCD
diffractometer
Bruker SMART6000 CCD
diffractometer
Bruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.884, 0.9110.256, 0.8190.428, 0.9510.659, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
15887, 2828, 2518 14259, 2949, 2672 13203, 2755, 2444 19447, 4329, 3673
Rint0.0460.0440.0340.049
(sin θ/λ)max1)0.5950.6010.6010.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.132, 1.17 0.023, 0.061, 1.03 0.029, 0.078, 1.03 0.033, 0.084, 1.05
No. of reflections2828294927554329
No. of parameters223217208199
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 0.591.16, 0.630.34, 0.261.97, 1.32

Computer programs: SMART (Bruker, 2003), APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008b) and DIAMOND (Brandenburg, 2012).

Hydrogen-bond geometry (Å, °) of the (I)H+ cation in compounds (II)–(V) top
CompoundD—H···AD—HH···AD···AD—H···A
(II)N1—H1···F10.80 (3)2.14 (3)2.806 (3)140 (3)
(III)N1—H1···O20.81 (2)2.06 (2)2.773 (2)147 (2)
(IV)N1—H1···Cl21.02 (5)2.56 (5)3.323 (4)131 (4)
(V)N1—H1···O1W1.03 (6)1.79 (6)2.759 (7)155 (5)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2W0.98 (8)1.90 (8)2.871 (7)171 (7)
O1W—H2W···Br10.90 (8)2.56 (8)3.443 (5)166 (6)
O2W—H3W···Br1i0.83 (8)2.63 (8)3.428 (5)164 (7)
O2W—H4W···Br1ii0.79 (8)2.63 (8)3.364 (5)154 (7)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Selected geometric parameters (Å, º) for (VI) top
Au1—N12.060 (3)Au1—Cl12.2788 (10)
Au1—Cl22.2686 (9)Au1—Cl32.2950 (9)
N1—Au1—Cl2174.89 (9)N1—Au1—Cl389.96 (9)
N1—Au1—Cl189.43 (9)Cl2—Au1—Cl390.38 (4)
Cl2—Au1—Cl189.90 (4)Cl1—Au1—Cl3176.26 (4)
Selected geometric parameters (Å, º) for (VII) top
Cu1—N12.0212 (17)Cu1—Cl12.2180 (6)
Cu1—N22.0306 (18)Cu1—Cl22.2458 (6)
N1—Cu1—N282.56 (7)N1—Cu1—Cl2131.77 (5)
N1—Cu1—Cl197.85 (5)N2—Cu1—Cl298.40 (5)
N2—Cu1—Cl1154.97 (5)Cl1—Cu1—Cl299.74 (2)
Selected geometric parameters (Å, º) for (VIII) top
Pd1—N21.961 (2)Pd1—N12.173 (2)
Pd1—C181.995 (3)Pd1—Br12.4490 (4)
N2—Pd1—C1880.61 (11)N2—Pd1—Br1179.28 (7)
N2—Pd1—N179.44 (9)N1—Pd1—Br199.83 (7)
C18—Pd1—N1160.04 (11)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds