Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [(C2H5)4N][FeCl4], has at room temperature a disordered structure in the high-hexa­gonal space group P63mc. At 230 K, the structure is merohedrally twinned in the low-hexa­gonal space group P63. The volume has increased by a factor of 9 with respect to the room-temperature structure. At 170 and 110 K, the structure is identical in the ortho­rhom­bic space group Pca21 and twinned by reticular pseudomero­hedry. The volume has doubled with respect to the room-temperature structure. All three space groups, viz. P63mc, P63 and Pca21, are polar and the direction of the polar axis is not affected by the twinning. In the P63 and Pca21 structures, all cations and anions are well ordered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614007955/gz3264sup1.cif
Contains datablocks Ia, Ib, Ic, Id, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614007955/gz3264Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614007955/gz3264Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614007955/gz3264Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614007955/gz3264Idsup5.hkl
Contains datablock Id

CCDC references: 996405; 996406; 996407; 996408

Computing details top

For all structures, data collection: APEX2 (Bruker, 2007). Cell refinement: Peakref (Schreurs, 2013) for (Ia); Peakref (Schreurs, 2013) for (Ib), (Ic), (Id). Data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012) for (Ia); Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012) for (Ib); Eval15 (Schreurs et al., 2010) and TWINABS (Sheldrick, 2012) for (Ic), (Id). Program(s) used to solve structure: coordinates from the literature (Evans et al., 1990) for (Ia); SHELXT (Sheldrick, 2014) for (Ib); SHELXD (Sheldrick, 2008) for (Ic), (Id). For all structures, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008). Molecular graphics: PLATON (Spek, 2009) for (Ia), (Ib), (Ic); PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007) for (Id). For all structures, software used to prepare material for publication: manual editing of the SHELXL output.

Tetraethylammonium tetrachloridoferrate(III) (Ia) top
Crystal data top
(C8H20N)[FeCl4]Dx = 1.412 Mg m3
Mr = 327.90Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63mcCell parameters from 6539 reflections
a = 8.2154 (4) Åθ = 1.5–27.4°
c = 13.1972 (8) ŵ = 1.64 mm1
V = 771.38 (10) Å3T = 290 K
Z = 2Block, yellow
F(000) = 3380.43 × 0.34 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
630 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
φ and ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 910
Tmin = 0.655, Tmax = 0.746k = 1010
7971 measured reflectionsl = 1717
723 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.17 e Å3
723 reflectionsΔρmin = 0.12 e Å3
89 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
67 restraintsExtinction coefficient: 0.029 (5)
Primary atom site location: heavy-atom methodAbsolute structure: Flack x determined using 279 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.037 (8)
Special details top

Experimental. loop_ _diffrn_orient_matrix_type _diffrn_orient_matrix_UB_11 _diffrn_orient_matrix_UB_12 _diffrn_orient_matrix_UB_13 _diffrn_orient_matrix_UB_21 _diffrn_orient_matrix_UB_22 _diffrn_orient_matrix_UB_23 _diffrn_orient_matrix_UB_31 _diffrn_orient_matrix_UB_32 _diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.1081025 -0.1109448 -0.0330182 0.0870893 -0.0431466 -0.0249854 -0.0219582 -0.0747162 0.0634565

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.66670.33330.2509 (4)0.0514 (9)
C10.506 (2)0.1351 (13)0.2329 (13)0.070 (5)0.1667
H1A0.39140.12840.25640.084*0.1667
H1B0.49390.11320.16030.084*0.1667
C20.521 (4)0.0216 (18)0.2812 (14)0.062 (7)0.1667
H2A0.41050.13910.26550.093*0.1667
H2B0.53110.00400.35330.093*0.1667
H2C0.62990.02230.25590.093*0.1667
C30.8493 (18)0.319 (2)0.2650 (13)0.071 (5)0.1667
H3A0.81500.19750.29350.085*0.1667
H3B0.90550.32810.19910.085*0.1667
C40.992 (3)0.470 (3)0.333 (3)0.061 (10)0.1667
H4A1.09980.45510.33890.092*0.1667
H4B0.93770.46120.39830.092*0.1667
H4C1.02890.59130.30390.092*0.1667
C50.643 (2)0.422 (2)0.3435 (8)0.065 (5)0.1667
H5A0.76140.48160.37970.078*0.1667
H5B0.55140.32280.38660.078*0.1667
C60.582 (6)0.565 (5)0.330 (3)0.086 (12)0.1667
H6A0.57130.61090.39550.128*0.1667
H6B0.46260.50870.29660.128*0.1667
H6C0.67360.66820.29040.128*0.1667
C70.6973 (19)0.4544 (16)0.1589 (7)0.057 (4)0.1667
H7A0.58580.46490.14930.068*0.1667
H7B0.80070.57950.17330.068*0.1667
C80.739 (2)0.390 (5)0.0602 (7)0.077 (7)0.1667
H8A0.75780.47830.00780.115*0.1667
H8B0.63500.26870.04260.115*0.1667
H8C0.85030.38050.06760.115*0.1667
Fe10.00000.00000.50819 (8)0.0649 (3)
Cl10.00000.00000.34260 (12)0.0928 (8)
Cl20.14530 (8)0.14530 (8)0.56231 (13)0.1007 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0534 (12)0.0534 (12)0.047 (2)0.0267 (6)0.0000.000
C10.062 (8)0.059 (8)0.079 (10)0.022 (6)0.008 (7)0.003 (7)
C20.049 (15)0.054 (8)0.090 (12)0.031 (7)0.032 (10)0.034 (7)
C30.059 (8)0.073 (8)0.089 (11)0.040 (7)0.010 (8)0.015 (9)
C40.084 (14)0.03 (2)0.089 (15)0.045 (10)0.033 (11)0.024 (10)
C50.069 (11)0.058 (10)0.055 (6)0.022 (9)0.007 (5)0.018 (6)
C60.07 (2)0.10 (3)0.089 (18)0.05 (2)0.009 (14)0.013 (15)
C70.050 (9)0.062 (6)0.062 (6)0.032 (5)0.002 (5)0.018 (5)
C80.100 (11)0.089 (15)0.053 (4)0.055 (9)0.003 (6)0.003 (9)
Fe10.0668 (4)0.0668 (4)0.0613 (5)0.03339 (18)0.0000.000
Cl10.1090 (13)0.1090 (13)0.0606 (13)0.0545 (6)0.0000.000
Cl20.1134 (7)0.1134 (7)0.1018 (7)0.0767 (7)0.0080 (3)0.0080 (3)
Geometric parameters (Å, º) top
N1—C51.486 (9)C5—C61.500 (14)
N1—C71.509 (9)C5—H5A0.9700
N1—C11.516 (10)C5—H5B0.9700
N1—C31.572 (10)C6—H6A0.9600
C1—C21.493 (13)C6—H6B0.9600
C1—H1A0.9700C6—H6C0.9600
C1—H1B0.9700C7—C81.509 (15)
C2—H2A0.9600C7—H7A0.9700
C2—H2B0.9600C7—H7B0.9700
C2—H2C0.9600C8—H8A0.9600
C3—C41.502 (13)C8—H8B0.9600
C3—H3A0.9700C8—H8C0.9600
C3—H3B0.9700Fe1—Cl12.1853 (18)
C4—H4A0.9600Fe1—Cl2i2.1874 (12)
C4—H4B0.9600Fe1—Cl2ii2.1874 (12)
C4—H4C0.9600Fe1—Cl22.1874 (12)
C5—N1—C7111.0 (6)N1—C5—C6117.8 (13)
C5—N1—C1113.6 (9)N1—C5—H5A107.9
C7—N1—C1110.5 (8)C6—C5—H5A107.9
C5—N1—C3107.7 (8)N1—C5—H5B107.9
C7—N1—C3107.0 (8)C6—C5—H5B107.9
C1—N1—C3106.7 (7)H5A—C5—H5B107.2
C2—C1—N1117.3 (11)C5—C6—H6A109.5
C2—C1—H1A108.0C5—C6—H6B109.5
N1—C1—H1A108.0H6A—C6—H6B109.5
C2—C1—H1B108.0C5—C6—H6C109.5
N1—C1—H1B108.0H6A—C6—H6C109.5
H1A—C1—H1B107.2H6B—C6—H6C109.5
C1—C2—H2A109.5C8—C7—N1117.0 (13)
C1—C2—H2B109.5C8—C7—H7A108.0
H2A—C2—H2B109.5N1—C7—H7A108.0
C1—C2—H2C109.5C8—C7—H7B108.0
H2A—C2—H2C109.5N1—C7—H7B108.0
H2B—C2—H2C109.5H7A—C7—H7B107.3
C4—C3—N1112.8 (11)C7—C8—H8A109.5
C4—C3—H3A109.0C7—C8—H8B109.5
N1—C3—H3A109.0H8A—C8—H8B109.5
C4—C3—H3B109.0C7—C8—H8C109.5
N1—C3—H3B109.0H8A—C8—H8C109.5
H3A—C3—H3B107.8H8B—C8—H8C109.5
C3—C4—H4A109.5Cl1—Fe1—Cl2i109.06 (6)
C3—C4—H4B109.5Cl1—Fe1—Cl2ii109.06 (5)
H4A—C4—H4B109.5Cl2i—Fe1—Cl2ii109.88 (5)
C3—C4—H4C109.5Cl1—Fe1—Cl2109.06 (5)
H4A—C4—H4C109.5Cl2i—Fe1—Cl2109.88 (5)
H4B—C4—H4C109.5Cl2ii—Fe1—Cl2109.88 (5)
C5—N1—C1—C288.2 (16)C7—N1—C5—C622 (2)
C7—N1—C1—C2146.3 (15)C1—N1—C5—C6103 (2)
C3—N1—C1—C230 (2)C3—N1—C5—C6139 (2)
C5—N1—C3—C428 (2)C5—N1—C7—C8175.4 (11)
C7—N1—C3—C491 (2)C1—N1—C7—C857.7 (14)
C1—N1—C3—C4150.6 (19)C3—N1—C7—C858.1 (13)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z.
Tetraethylammonium tetrachloridoferrate(III) (Ib) top
Crystal data top
(C8H20N)[FeCl4]Dx = 1.445 Mg m3
Mr = 327.90Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 54564 reflections
a = 24.5130 (6) Åθ = 1.6–27.5°
c = 13.0356 (5) ŵ = 1.68 mm1
V = 6783.5 (5) Å3T = 230 K
Z = 18Block, yellow
F(000) = 30420.43 × 0.34 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
8945 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 2731
Tmin = 0.660, Tmax = 0.746k = 3030
75629 measured reflectionsl = 1616
10366 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.8713P]
where P = (Fo2 + 2Fc2)/3
10366 reflections(Δ/σ)max = 0.019
392 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.28 e Å3
Special details top

Experimental. loop_ _diffrn_orient_matrix_type _diffrn_orient_matrix_UB_11 _diffrn_orient_matrix_UB_12 _diffrn_orient_matrix_UB_13 _diffrn_orient_matrix_UB_21 _diffrn_orient_matrix_UB_22 _diffrn_orient_matrix_UB_23 _diffrn_orient_matrix_UB_31 _diffrn_orient_matrix_UB_32 _diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0007468 0.0364094 -0.0331586 -0.0437700 -0.0289410 -0.0250654 -0.0173985 0.0074731 0.0644811

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4403 (2)0.2207 (2)0.5833 (5)0.0306 (13)
C110.3821 (3)0.1560 (3)0.5953 (5)0.0551 (18)
H11A0.37840.13090.53450.066*
H11B0.38830.13520.65470.066*
C210.3212 (4)0.1560 (3)0.6091 (6)0.065 (3)
H21A0.32760.18930.65640.097*
H21B0.28950.11570.63650.097*
H21C0.30720.16310.54340.097*
C310.4484 (4)0.2584 (3)0.6780 (5)0.0600 (17)
H31A0.45260.23600.73690.072*
H31B0.41020.26110.68830.072*
C410.5046 (3)0.3245 (4)0.6758 (7)0.068 (2)
H41A0.54310.32250.67880.102*
H41B0.50270.34800.73430.102*
H41C0.50390.34530.61290.102*
C510.4964 (3)0.2122 (3)0.5650 (5)0.0502 (15)
H51A0.53350.25360.55210.060*
H51B0.48870.18670.50300.060*
C610.5117 (4)0.1801 (4)0.6554 (7)0.079 (3)
H61A0.51050.19940.71970.119*
H61B0.55330.18550.64570.119*
H61C0.48070.13560.65700.119*
C710.4329 (3)0.2544 (3)0.4953 (4)0.0529 (17)
H71A0.47170.29520.48750.063*
H71B0.39860.26270.51000.063*
C810.4186 (5)0.2170 (4)0.3908 (6)0.068 (2)
H81A0.45530.21460.36980.101*
H81B0.40840.23860.33840.101*
H81C0.38320.17470.40010.101*
N20.2260 (2)0.10845 (19)0.0871 (4)0.0263 (12)
C120.2195 (3)0.1384 (3)0.1860 (4)0.0383 (13)
H12A0.21710.11190.24390.046*
H12B0.25770.17950.19480.046*
C220.1629 (3)0.1479 (4)0.1904 (5)0.058 (2)
H22A0.16840.18010.14160.088*
H22B0.15900.16090.25900.088*
H22C0.12510.10860.17350.088*
C320.2836 (2)0.1016 (2)0.0990 (4)0.0308 (12)
H32A0.28510.07720.04060.037*
H32B0.27820.07670.16100.037*
C420.3474 (3)0.1622 (3)0.1062 (5)0.0462 (17)
H42A0.35210.18950.04910.069*
H42B0.38080.15190.10400.069*
H42C0.34980.18350.17020.069*
C520.1688 (3)0.0441 (3)0.0678 (5)0.0374 (13)
H52A0.13230.04960.05720.045*
H52B0.17570.02720.00410.045*
C620.1532 (3)0.0035 (4)0.1507 (4)0.0465 (15)
H62A0.19070.00520.16900.070*
H62B0.12090.04450.12650.070*
H62C0.13780.00830.21040.070*
C720.2332 (3)0.1518 (2)0.0031 (4)0.0332 (13)
H72A0.19420.15360.00880.040*
H72B0.26720.19440.01320.040*
C820.2465 (3)0.1341 (3)0.1035 (5)0.0443 (16)
H82A0.28490.13190.09940.066*
H82B0.25170.16530.15420.066*
H82C0.21180.09330.12340.066*
N30.5579 (2)0.1076 (2)0.0842 (4)0.0273 (12)
C130.5644 (3)0.0495 (3)0.0986 (5)0.0533 (18)
H13A0.58940.05480.16030.064*
H13B0.58710.04550.03980.064*
C230.5005 (4)0.0111 (4)0.1086 (5)0.066 (3)
H23A0.47520.00510.15970.098*
H23B0.50700.04540.12940.098*
H23C0.47890.02100.04300.098*
C330.5298 (3)0.1180 (3)0.1804 (5)0.0462 (15)
H33A0.48940.07990.19420.055*
H33B0.55790.12400.23820.055*
C430.5193 (3)0.1730 (3)0.1758 (7)0.058 (2)
H43A0.55920.21170.18530.086*
H43B0.49030.16920.22950.086*
H43C0.50180.17380.10950.086*
C530.6236 (2)0.1631 (3)0.0666 (5)0.0461 (14)
H53A0.64030.15530.00340.055*
H53B0.62010.20070.05540.055*
C630.6709 (4)0.1771 (4)0.1517 (6)0.067 (3)
H63A0.65050.17160.21760.101*
H63B0.70530.22010.14530.101*
H63C0.68740.14850.14660.101*
C730.5187 (3)0.1018 (3)0.0061 (4)0.0452 (14)
H73A0.51790.14120.01390.054*
H73B0.47540.06820.00710.054*
C830.5414 (4)0.0874 (6)0.1086 (6)0.065 (2)
H83A0.58290.12200.12540.098*
H83B0.51210.08210.16300.098*
H83C0.54330.04900.10130.098*
Fe10.33737 (4)0.00273 (4)0.33582 (7)0.0309 (3)
Cl110.34314 (9)0.00199 (9)0.16880 (12)0.0561 (5)
Cl210.28054 (8)0.04653 (8)0.37520 (14)0.0416 (4)
Cl310.29398 (9)0.09301 (9)0.39937 (15)0.0476 (4)
Cl410.43228 (9)0.06036 (9)0.39996 (15)0.0495 (5)
Fe20.33198 (4)0.00257 (4)0.83363 (8)0.0343 (3)
Cl120.31821 (9)0.00591 (9)0.66663 (12)0.0527 (4)
Cl220.23922 (8)0.03776 (9)0.90686 (15)0.0445 (4)
Cl320.37979 (9)0.04888 (9)0.87898 (15)0.0477 (5)
Cl420.38968 (9)0.10216 (8)0.87606 (16)0.0490 (5)
Fe30.66670.33330.35736 (15)0.0378 (5)
Cl130.66670.33330.1895 (3)0.0494 (11)
Cl230.62767 (10)0.23610 (10)0.41246 (14)0.0596 (6)
Fe40.00000.00000.86279 (12)0.0346 (4)
Cl140.00000.00000.6938 (2)0.0467 (8)
Cl240.06233 (8)0.09662 (9)0.91781 (13)0.0459 (4)
Fe50.66670.33330.85790 (15)0.0395 (5)
Cl150.66670.33330.6898 (3)0.0532 (11)
Cl250.56964 (10)0.27434 (10)0.91285 (14)0.0594 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.036 (3)0.024 (3)0.031 (3)0.014 (2)0.007 (2)0.006 (2)
C110.048 (4)0.042 (4)0.053 (4)0.006 (3)0.000 (3)0.000 (3)
C210.041 (5)0.055 (5)0.073 (6)0.005 (3)0.013 (4)0.007 (4)
C310.076 (5)0.067 (4)0.045 (3)0.042 (4)0.006 (4)0.023 (3)
C410.050 (4)0.046 (4)0.098 (6)0.017 (4)0.000 (4)0.027 (5)
C510.043 (4)0.046 (4)0.065 (4)0.025 (3)0.012 (3)0.000 (3)
C610.092 (7)0.089 (7)0.090 (6)0.070 (6)0.026 (5)0.007 (5)
C710.064 (5)0.042 (4)0.043 (3)0.020 (3)0.002 (3)0.006 (3)
C810.095 (8)0.075 (6)0.032 (4)0.042 (6)0.003 (4)0.007 (4)
N20.030 (3)0.023 (2)0.025 (2)0.013 (2)0.001 (2)0.006 (2)
C120.036 (3)0.039 (3)0.035 (3)0.016 (3)0.008 (3)0.008 (3)
C220.068 (5)0.062 (5)0.050 (3)0.036 (4)0.007 (3)0.006 (3)
C320.024 (3)0.029 (3)0.040 (3)0.013 (2)0.012 (2)0.002 (2)
C420.036 (4)0.036 (3)0.058 (4)0.012 (3)0.008 (3)0.003 (3)
C520.033 (3)0.035 (3)0.040 (3)0.014 (3)0.001 (3)0.000 (3)
C620.033 (4)0.040 (3)0.063 (4)0.016 (3)0.001 (3)0.001 (4)
C720.030 (3)0.023 (3)0.041 (3)0.009 (2)0.010 (3)0.006 (2)
C820.058 (4)0.034 (3)0.041 (3)0.023 (3)0.003 (3)0.007 (3)
N30.031 (3)0.024 (3)0.028 (3)0.015 (2)0.002 (2)0.001 (2)
C130.079 (5)0.069 (5)0.038 (3)0.058 (4)0.010 (3)0.007 (3)
C230.100 (7)0.028 (4)0.069 (6)0.031 (4)0.003 (4)0.011 (4)
C330.051 (4)0.061 (4)0.037 (3)0.035 (3)0.013 (3)0.006 (3)
C430.043 (4)0.044 (4)0.089 (5)0.025 (3)0.005 (4)0.018 (4)
C530.028 (3)0.041 (3)0.061 (4)0.011 (3)0.009 (3)0.007 (3)
C630.040 (4)0.081 (6)0.057 (4)0.013 (4)0.018 (4)0.002 (4)
C730.044 (4)0.059 (4)0.042 (3)0.033 (3)0.011 (3)0.000 (3)
C830.067 (5)0.109 (7)0.032 (4)0.053 (5)0.004 (3)0.013 (5)
Fe10.0328 (5)0.0332 (5)0.0268 (4)0.0165 (4)0.0002 (4)0.0014 (4)
Cl110.0794 (12)0.0780 (13)0.0277 (8)0.0518 (12)0.0004 (7)0.0016 (8)
Cl210.0432 (10)0.0404 (9)0.0459 (9)0.0243 (8)0.0004 (7)0.0003 (7)
Cl310.0504 (9)0.0358 (9)0.0573 (11)0.0221 (8)0.0105 (8)0.0082 (7)
Cl410.0374 (9)0.0486 (10)0.0571 (10)0.0176 (8)0.0069 (8)0.0024 (9)
Fe20.0337 (6)0.0336 (5)0.0368 (5)0.0177 (4)0.0006 (3)0.0005 (4)
Cl120.0534 (9)0.0697 (12)0.0363 (8)0.0318 (8)0.0007 (7)0.0003 (8)
Cl220.0379 (9)0.0491 (10)0.0438 (8)0.0198 (8)0.0093 (8)0.0003 (8)
Cl320.0459 (10)0.0447 (9)0.0596 (11)0.0279 (8)0.0059 (8)0.0020 (8)
Cl420.0452 (10)0.0340 (9)0.0617 (11)0.0151 (8)0.0001 (8)0.0057 (8)
Fe30.0386 (8)0.0386 (8)0.0361 (13)0.0193 (4)0.0000.000
Cl130.0560 (16)0.0560 (16)0.036 (2)0.0280 (8)0.0000.000
Cl230.0746 (13)0.0447 (10)0.0542 (11)0.0260 (10)0.0034 (10)0.0066 (9)
Fe40.0342 (5)0.0342 (5)0.0354 (10)0.0171 (3)0.0000.000
Cl140.0519 (11)0.0519 (11)0.0364 (16)0.0260 (6)0.0000.000
Cl240.0437 (10)0.0397 (9)0.0483 (9)0.0164 (8)0.0039 (9)0.0083 (8)
Fe50.0412 (8)0.0412 (8)0.0360 (12)0.0206 (4)0.0000.000
Cl150.0615 (16)0.0615 (16)0.037 (2)0.0308 (8)0.0000.000
Cl250.0461 (9)0.0654 (13)0.0559 (11)0.0197 (9)0.0096 (9)0.0039 (10)
Geometric parameters (Å, º) top
N1—C711.476 (8)C72—H72B0.9800
N1—C311.494 (8)C82—H82A0.9700
N1—C511.511 (7)C82—H82B0.9700
N1—C111.521 (7)C82—H82C0.9700
C11—C211.505 (10)N3—C731.481 (7)
C11—H11A0.9800N3—C331.512 (7)
C11—H11B0.9800N3—C531.518 (7)
C21—H21A0.9700N3—C131.523 (7)
C21—H21B0.9700C13—C231.532 (10)
C21—H21C0.9700C13—H13A0.9800
C31—C411.514 (10)C13—H13B0.9800
C31—H31A0.9800C23—H23A0.9700
C31—H31B0.9800C23—H23B0.9700
C41—H41A0.9700C23—H23C0.9700
C41—H41B0.9700C33—C431.495 (9)
C41—H41C0.9700C33—H33A0.9800
C51—C611.562 (10)C33—H33B0.9800
C51—H51A0.9800C43—H43A0.9700
C51—H51B0.9800C43—H43B0.9700
C61—H61A0.9700C43—H43C0.9700
C61—H61B0.9700C53—C631.515 (9)
C61—H61C0.9700C53—H53A0.9800
C71—C811.581 (9)C53—H53B0.9800
C71—H71A0.9800C63—H63A0.9700
C71—H71B0.9800C63—H63B0.9700
C81—H81A0.9700C63—H63C0.9700
C81—H81B0.9700C73—C831.555 (9)
C81—H81C0.9700C73—H73A0.9800
N2—C321.511 (6)C73—H73B0.9800
N2—C521.518 (6)C83—H83A0.9700
N2—C121.531 (7)C83—H83B0.9700
N2—C721.536 (7)C83—H83C0.9700
C12—C221.519 (9)Fe1—Cl112.1886 (17)
C12—H12A0.9800Fe1—Cl412.196 (2)
C12—H12B0.9800Fe1—Cl312.198 (2)
C22—H22A0.9700Fe1—Cl212.2026 (18)
C22—H22B0.9700Fe2—Cl322.189 (2)
C22—H22C0.9700Fe2—Cl222.1933 (18)
C32—C421.528 (8)Fe2—Cl422.1940 (19)
C32—H32A0.9800Fe2—Cl122.1968 (19)
C32—H32B0.9800Fe3—Cl132.188 (4)
C42—H42A0.9700Fe3—Cl232.198 (2)
C42—H42B0.9700Fe3—Cl23i2.198 (2)
C42—H42C0.9700Fe3—Cl23ii2.198 (2)
C52—C621.493 (8)Fe4—Cl242.1999 (19)
C52—H52A0.9800Fe4—Cl24iii2.1999 (19)
C52—H52B0.9800Fe4—Cl24iv2.1999 (19)
C62—H62A0.9700Fe4—Cl142.202 (4)
C62—H62B0.9700Fe5—Cl152.191 (4)
C62—H62C0.9700Fe5—Cl25i2.196 (2)
C72—C821.467 (8)Fe5—Cl25ii2.196 (2)
C72—H72A0.9800Fe5—Cl252.196 (2)
C71—N1—C31108.2 (4)C82—C72—N2116.3 (4)
C71—N1—C51109.3 (5)C82—C72—H72A108.2
C31—N1—C51111.6 (5)N2—C72—H72A108.2
C71—N1—C11110.5 (5)C82—C72—H72B108.2
C31—N1—C11108.9 (5)N2—C72—H72B108.2
C51—N1—C11108.4 (4)H72A—C72—H72B107.4
C21—C11—N1115.2 (5)C72—C82—H82A109.5
C21—C11—H11A108.5C72—C82—H82B109.5
N1—C11—H11A108.5H82A—C82—H82B109.5
C21—C11—H11B108.5C72—C82—H82C109.5
N1—C11—H11B108.5H82A—C82—H82C109.5
H11A—C11—H11B107.5H82B—C82—H82C109.5
C11—C21—H21A109.5C73—N3—C33110.3 (4)
C11—C21—H21B109.5C73—N3—C53108.2 (5)
H21A—C21—H21B109.5C33—N3—C53110.1 (5)
C11—C21—H21C109.5C73—N3—C13112.0 (5)
H21A—C21—H21C109.5C33—N3—C13109.0 (5)
H21B—C21—H21C109.5C53—N3—C13107.2 (4)
N1—C31—C41114.5 (6)N3—C13—C23112.5 (5)
N1—C31—H31A108.6N3—C13—H13A109.1
C41—C31—H31A108.6C23—C13—H13A109.1
N1—C31—H31B108.6N3—C13—H13B109.1
C41—C31—H31B108.6C23—C13—H13B109.1
H31A—C31—H31B107.6H13A—C13—H13B107.8
C31—C41—H41A109.5C13—C23—H23A109.5
C31—C41—H41B109.5C13—C23—H23B109.5
H41A—C41—H41B109.5H23A—C23—H23B109.5
C31—C41—H41C109.5C13—C23—H23C109.5
H41A—C41—H41C109.5H23A—C23—H23C109.5
H41B—C41—H41C109.5H23B—C23—H23C109.5
N1—C51—C61114.5 (6)C43—C33—N3114.6 (6)
N1—C51—H51A108.6C43—C33—H33A108.6
C61—C51—H51A108.6N3—C33—H33A108.6
N1—C51—H51B108.6C43—C33—H33B108.6
C61—C51—H51B108.6N3—C33—H33B108.6
H51A—C51—H51B107.6H33A—C33—H33B107.6
C51—C61—H61A109.5C33—C43—H43A109.5
C51—C61—H61B109.5C33—C43—H43B109.5
H61A—C61—H61B109.5H43A—C43—H43B109.5
C51—C61—H61C109.5C33—C43—H43C109.5
H61A—C61—H61C109.5H43A—C43—H43C109.5
H61B—C61—H61C109.5H43B—C43—H43C109.5
N1—C71—C81113.5 (5)C63—C53—N3116.2 (5)
N1—C71—H71A108.9C63—C53—H53A108.2
C81—C71—H71A108.9N3—C53—H53A108.2
N1—C71—H71B108.9C63—C53—H53B108.2
C81—C71—H71B108.9N3—C53—H53B108.2
H71A—C71—H71B107.7H53A—C53—H53B107.4
C71—C81—H81A109.5C53—C63—H63A109.5
C71—C81—H81B109.5C53—C63—H63B109.5
H81A—C81—H81B109.5H63A—C63—H63B109.5
C71—C81—H81C109.5C53—C63—H63C109.5
H81A—C81—H81C109.5H63A—C63—H63C109.5
H81B—C81—H81C109.5H63B—C63—H63C109.5
C32—N2—C52109.3 (4)N3—C73—C83114.6 (5)
C32—N2—C12107.1 (5)N3—C73—H73A108.6
C52—N2—C12112.0 (5)C83—C73—H73A108.6
C32—N2—C72111.5 (4)N3—C73—H73B108.6
C52—N2—C72108.6 (4)C83—C73—H73B108.6
C12—N2—C72108.4 (4)H73A—C73—H73B107.6
C22—C12—N2115.3 (5)C73—C83—H83A109.5
C22—C12—H12A108.4C73—C83—H83B109.5
N2—C12—H12A108.4H83A—C83—H83B109.5
C22—C12—H12B108.4C73—C83—H83C109.5
N2—C12—H12B108.4H83A—C83—H83C109.5
H12A—C12—H12B107.5H83B—C83—H83C109.5
C12—C22—H22A109.5Cl11—Fe1—Cl41109.70 (9)
C12—C22—H22B109.5Cl11—Fe1—Cl31109.15 (8)
H22A—C22—H22B109.5Cl41—Fe1—Cl31109.56 (8)
C12—C22—H22C109.5Cl11—Fe1—Cl21109.33 (8)
H22A—C22—H22C109.5Cl41—Fe1—Cl21108.82 (8)
H22B—C22—H22C109.5Cl31—Fe1—Cl21110.26 (7)
N2—C32—C42117.3 (5)Cl32—Fe2—Cl22110.84 (8)
N2—C32—H32A108.0Cl32—Fe2—Cl42109.88 (7)
C42—C32—H32A108.0Cl22—Fe2—Cl42109.76 (8)
N2—C32—H32B108.0Cl32—Fe2—Cl12108.32 (8)
C42—C32—H32B108.0Cl22—Fe2—Cl12108.24 (8)
H32A—C32—H32B107.2Cl42—Fe2—Cl12109.76 (8)
C32—C42—H42A109.5Cl13—Fe3—Cl23109.07 (7)
C32—C42—H42B109.5Cl13—Fe3—Cl23i109.07 (7)
H42A—C42—H42B109.5Cl23—Fe3—Cl23i109.87 (7)
C32—C42—H42C109.5Cl13—Fe3—Cl23ii109.07 (7)
H42A—C42—H42C109.5Cl23—Fe3—Cl23ii109.87 (7)
H42B—C42—H42C109.5Cl23i—Fe3—Cl23ii109.87 (7)
C62—C52—N2115.8 (5)Cl24—Fe4—Cl24iii109.91 (6)
C62—C52—H52A108.3Cl24—Fe4—Cl24iv109.91 (6)
N2—C52—H52A108.3Cl24iii—Fe4—Cl24iv109.91 (6)
C62—C52—H52B108.3Cl24—Fe4—Cl14109.03 (6)
N2—C52—H52B108.3Cl24iii—Fe4—Cl14109.03 (6)
H52A—C52—H52B107.4Cl24iv—Fe4—Cl14109.03 (6)
C52—C62—H62A109.5Cl15—Fe5—Cl25i109.04 (8)
C52—C62—H62B109.5Cl15—Fe5—Cl25ii109.04 (8)
H62A—C62—H62B109.5Cl25i—Fe5—Cl25ii109.90 (7)
C52—C62—H62C109.5Cl15—Fe5—Cl25109.04 (8)
H62A—C62—H62C109.5Cl25i—Fe5—Cl25109.90 (7)
H62B—C62—H62C109.5Cl25ii—Fe5—Cl25109.90 (7)
C71—N1—C11—C2157.5 (8)C32—N2—C52—C6260.7 (7)
C31—N1—C11—C2161.2 (8)C12—N2—C52—C6257.9 (7)
C51—N1—C11—C21177.2 (6)C72—N2—C52—C62177.5 (5)
C71—N1—C31—C4159.3 (8)C32—N2—C72—C8256.3 (6)
C51—N1—C31—C4160.9 (7)C52—N2—C72—C8264.2 (6)
C11—N1—C31—C41179.4 (6)C12—N2—C72—C82174.0 (5)
C71—N1—C51—C61176.9 (6)C73—N3—C13—C2356.9 (7)
C31—N1—C51—C6157.4 (7)C33—N3—C13—C2365.5 (6)
C11—N1—C51—C6162.6 (8)C53—N3—C13—C23175.4 (5)
C31—N1—C71—C81175.4 (7)C73—N3—C33—C4355.2 (7)
C51—N1—C71—C8162.9 (8)C53—N3—C33—C4364.1 (6)
C11—N1—C71—C8156.3 (8)C13—N3—C33—C43178.5 (6)
C32—N2—C12—C22178.5 (5)C73—N3—C53—C63179.5 (6)
C52—N2—C12—C2258.7 (7)C33—N3—C53—C6358.9 (7)
C72—N2—C12—C2261.1 (6)C13—N3—C53—C6359.5 (7)
C52—N2—C32—C42172.9 (5)C33—N3—C73—C83176.9 (7)
C12—N2—C32—C4265.6 (6)C53—N3—C73—C8362.7 (8)
C72—N2—C32—C4252.8 (7)C13—N3—C73—C8355.3 (8)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y, xy, z; (iv) x+y, x, z.
Tetraethylammonium tetrachloridoferrate(III) (Ic) top
Crystal data top
(C8H20N)[FeCl4]Dx = 1.481 Mg m3
Mr = 327.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 6968 reflections
a = 14.0182 (8) Åθ = 2.2–27.5°
b = 8.1493 (5) ŵ = 1.72 mm1
c = 12.8767 (8) ÅT = 170 K
V = 1471.01 (15) Å3Block, yellow
Z = 40.43 × 0.34 × 0.10 mm
F(000) = 676
Data collection top
Bruker Kappa APEXII
diffractometer
7535 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
φ and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 1818
Tmin = 0.639, Tmax = 0.746k = 1010
32765 measured reflectionsl = 1616
7746 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.034H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0132P)2 + 0.0367P]
where P = (Fo2 + 2Fc2)/3
7746 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.27 e Å3
Special details top

Experimental. loop_ _diffrn_orient_matrix_type _diffrn_orient_matrix_UB_11 _diffrn_orient_matrix_UB_12 _diffrn_orient_matrix_UB_13 _diffrn_orient_matrix_UB_21 _diffrn_orient_matrix_UB_22 _diffrn_orient_matrix_UB_23 _diffrn_orient_matrix_UB_31 _diffrn_orient_matrix_UB_32 _diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0552117 0.0570192 0.0335576 0.0438346 0.0881353 0.0255620 -0.0112121 0.0637923 -0.0653109 'Nonius RMAT' 0.0010845 0.1107900 0.0335563 0.0662764 -0.0212420 0.0255569 0.0264909 0.0486090 -0.0653135 'Nonius RMAT' 0.0562913 0.0537792 0.0335726 0.0224478 -0.1093919 0.0255528 0.0377212 -0.0151557 -0.0653067

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41494 (16)0.7816 (2)0.48126 (18)0.0184 (4)
C10.46102 (16)0.6995 (3)0.38735 (17)0.0225 (4)
H1A0.42000.71960.32610.027*
H1B0.52310.75360.37410.027*
C20.47780 (17)0.5180 (3)0.39615 (19)0.0293 (5)
H2A0.52030.49610.45500.044*
H2B0.50730.47760.33210.044*
H2C0.41680.46200.40710.044*
C30.31528 (16)0.7135 (3)0.5002 (2)0.0245 (5)
H3A0.32050.59390.51230.029*
H3B0.28970.76350.56450.029*
C40.2441 (3)0.7420 (3)0.4132 (4)0.0372 (10)
H4A0.23270.86000.40550.056*
H4B0.18400.68660.42990.056*
H4C0.26980.69780.34820.056*
C50.40883 (13)0.9645 (2)0.46156 (18)0.0224 (4)
H5A0.37530.98230.39480.027*
H5B0.36941.01450.51700.027*
C60.50356 (15)1.0537 (3)0.45750 (19)0.0290 (5)
H6A0.53771.03740.52310.044*
H6B0.49241.17120.44660.044*
H6C0.54191.01020.40010.044*
C70.4758 (2)0.7440 (2)0.5762 (2)0.0236 (6)
H7A0.47420.62410.58860.028*
H7B0.54270.77420.56040.028*
C80.44635 (17)0.8304 (3)0.67549 (18)0.0325 (5)
H8A0.45010.94940.66540.049*
H8B0.48920.79780.73200.049*
H8C0.38070.79980.69320.049*
Fe10.24092 (2)0.27786 (4)0.22244 (3)0.02156 (8)
Cl10.23050 (5)0.27656 (9)0.39273 (5)0.03161 (15)
Cl20.30246 (4)0.04137 (8)0.17363 (5)0.03122 (13)
Cl30.09746 (4)0.30823 (8)0.15619 (5)0.02864 (12)
Cl40.33085 (4)0.48244 (7)0.16997 (5)0.02879 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (9)0.0192 (7)0.0187 (10)0.0009 (9)0.0009 (8)0.0020 (9)
C10.0224 (11)0.0245 (12)0.0206 (11)0.0022 (10)0.0032 (9)0.0034 (11)
C20.0339 (12)0.0241 (13)0.0299 (12)0.0044 (10)0.0034 (10)0.0040 (9)
C30.0178 (11)0.0259 (10)0.0299 (13)0.0024 (10)0.0054 (10)0.0006 (11)
C40.0213 (16)0.044 (2)0.046 (3)0.0027 (10)0.0035 (12)0.0027 (11)
C50.0278 (10)0.0173 (9)0.0222 (10)0.0027 (8)0.0001 (9)0.0040 (9)
C60.0339 (12)0.0219 (11)0.0314 (12)0.0048 (9)0.0023 (11)0.0026 (11)
C70.0242 (17)0.0263 (18)0.0202 (14)0.0035 (8)0.0030 (11)0.0056 (7)
C80.0401 (12)0.0347 (14)0.0227 (12)0.0053 (10)0.0017 (10)0.0020 (11)
Fe10.02122 (17)0.02333 (14)0.02012 (15)0.00090 (12)0.00028 (16)0.0004 (2)
Cl10.0327 (4)0.0415 (4)0.0206 (3)0.0014 (2)0.0002 (3)0.0020 (3)
Cl20.0304 (3)0.0252 (3)0.0380 (3)0.0024 (2)0.0019 (3)0.0045 (3)
Cl30.0249 (3)0.0325 (3)0.0285 (3)0.0019 (2)0.0044 (2)0.0007 (3)
Cl40.0292 (2)0.0274 (3)0.0297 (3)0.0028 (2)0.0012 (3)0.0010 (3)
Geometric parameters (Å, º) top
N1—C51.515 (3)C5—C61.515 (3)
N1—C71.522 (4)C5—H5A0.9900
N1—C31.523 (3)C5—H5B0.9900
N1—C11.525 (3)C6—H6A0.9800
C1—C21.502 (4)C6—H6B0.9800
C1—H1A0.9900C6—H6C0.9800
C1—H1B0.9900C7—C81.517 (4)
C2—H2A0.9800C7—H7A0.9900
C2—H2B0.9800C7—H7B0.9900
C2—H2C0.9800C8—H8A0.9800
C3—C41.517 (5)C8—H8B0.9800
C3—H3A0.9900C8—H8C0.9800
C3—H3B0.9900Fe1—Cl42.1966 (7)
C4—H4A0.9800Fe1—Cl12.1977 (7)
C4—H4B0.9800Fe1—Cl32.1985 (6)
C4—H4C0.9800Fe1—Cl22.2030 (7)
C5—N1—C7111.36 (17)C6—C5—N1115.37 (17)
C5—N1—C3109.48 (17)C6—C5—H5A108.4
C7—N1—C3108.2 (2)N1—C5—H5A108.4
C5—N1—C1108.83 (18)C6—C5—H5B108.4
C7—N1—C1108.13 (19)N1—C5—H5B108.4
C3—N1—C1110.82 (18)H5A—C5—H5B107.5
C2—C1—N1116.00 (19)C5—C6—H6A109.5
C2—C1—H1A108.3C5—C6—H6B109.5
N1—C1—H1A108.3H6A—C6—H6B109.5
C2—C1—H1B108.3C5—C6—H6C109.5
N1—C1—H1B108.3H6A—C6—H6C109.5
H1A—C1—H1B107.4H6B—C6—H6C109.5
C1—C2—H2A109.5C8—C7—N1115.5 (2)
C1—C2—H2B109.5C8—C7—H7A108.4
H2A—C2—H2B109.5N1—C7—H7A108.4
C1—C2—H2C109.5C8—C7—H7B108.4
H2A—C2—H2C109.5N1—C7—H7B108.4
H2B—C2—H2C109.5H7A—C7—H7B107.5
C4—C3—N1115.4 (2)C7—C8—H8A109.5
C4—C3—H3A108.4C7—C8—H8B109.5
N1—C3—H3A108.4H8A—C8—H8B109.5
C4—C3—H3B108.4C7—C8—H8C109.5
N1—C3—H3B108.4H8A—C8—H8C109.5
H3A—C3—H3B107.5H8B—C8—H8C109.5
C3—C4—H4A109.5Cl4—Fe1—Cl1110.41 (3)
C3—C4—H4B109.5Cl4—Fe1—Cl3108.67 (3)
H4A—C4—H4B109.5Cl1—Fe1—Cl3109.08 (3)
C3—C4—H4C109.5Cl4—Fe1—Cl2110.58 (3)
H4A—C4—H4C109.5Cl1—Fe1—Cl2107.85 (3)
H4B—C4—H4C109.5Cl3—Fe1—Cl2110.24 (3)
C5—N1—C1—C2176.68 (18)C7—N1—C5—C651.5 (3)
C7—N1—C1—C255.6 (2)C3—N1—C5—C6171.2 (2)
C3—N1—C1—C262.9 (3)C1—N1—C5—C667.6 (2)
C5—N1—C3—C457.7 (3)C5—N1—C7—C854.5 (3)
C7—N1—C3—C4179.3 (2)C3—N1—C7—C865.9 (2)
C1—N1—C3—C462.3 (3)C1—N1—C7—C8174.0 (2)
Tetraethylammonium tetrachloridoferrate(III) (Id) top
Crystal data top
(C8H20N)[FeCl4]Dx = 1.497 Mg m3
Mr = 327.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 10389 reflections
a = 13.9816 (6) Åθ = 2.2–27.5°
b = 8.1243 (3) ŵ = 1.74 mm1
c = 12.8097 (6) ÅT = 110 K
V = 1455.06 (11) Å3Block, yellow
Z = 40.43 × 0.34 × 0.10 mm
F(000) = 676
Data collection top
Bruker Kappa APEXII
diffractometer
7776 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
φ and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
h = 1818
Tmin = 0.655, Tmax = 0.746k = 1010
49619 measured reflectionsl = 1616
7924 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012Hydrogen site location: difference Fourier map
wR(F2) = 0.030H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0121P)2 + 0.0465P]
where P = (Fo2 + 2Fc2)/3
7924 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.32 e Å3
Special details top

Experimental. loop_ _diffrn_orient_matrix_type _diffrn_orient_matrix_UB_11 _diffrn_orient_matrix_UB_12 _diffrn_orient_matrix_UB_13 _diffrn_orient_matrix_UB_21 _diffrn_orient_matrix_UB_22 _diffrn_orient_matrix_UB_23 _diffrn_orient_matrix_UB_31 _diffrn_orient_matrix_UB_32 _diffrn_orient_matrix_UB_33 'Nonius RMAT' -0.0550213 0.0579395 0.0339429 0.0444204 0.0879475 0.0254721 -0.0112145 0.0640910 -0.0656385 'Nonius RMAT' 0.0016187 0.1110194 0.0339428 0.0664469 -0.0222439 0.0254671 0.0266171 0.0487782 -0.0656404 'Nonius RMAT' 0.0566363 0.0530991 0.0339597 0.0220348 -0.1102092 0.0254684 0.0378561 -0.0152918 -0.0656312

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41526 (14)0.7829 (2)0.48117 (16)0.0114 (3)
C10.46138 (14)0.7009 (3)0.38642 (15)0.0145 (4)
H1A0.42010.72090.32490.017*
H1B0.52360.75520.37300.017*
C20.47826 (15)0.5183 (3)0.39556 (16)0.0188 (4)
H2A0.52170.49660.45400.028*
H2B0.50690.47720.33080.028*
H2C0.41720.46220.40790.028*
C30.31523 (15)0.7143 (3)0.50026 (17)0.0157 (4)
H3A0.32050.59430.51220.019*
H3B0.28970.76420.56500.019*
C40.2438 (2)0.7432 (2)0.4133 (3)0.0237 (7)
H4A0.23360.86170.40440.036*
H4B0.18300.68990.43100.036*
H4C0.26860.69650.34810.036*
C50.40905 (12)0.9664 (2)0.46133 (16)0.0143 (4)
H5A0.36921.01650.51680.017*
H5B0.37580.98410.39410.017*
C60.50418 (13)1.0561 (2)0.45783 (16)0.0184 (4)
H6A0.53781.04050.52420.028*
H6B0.49301.17380.44630.028*
H6C0.54311.01190.40080.028*
C70.4765 (2)0.7451 (2)0.5765 (2)0.0152 (5)
H7A0.47490.62490.58900.018*
H7B0.54350.77540.56050.018*
C80.44684 (15)0.8322 (3)0.67645 (15)0.0205 (4)
H8A0.44950.95150.66590.031*
H8B0.49040.80110.73300.031*
H8C0.38140.80000.69490.031*
Fe10.24106 (2)0.27936 (4)0.22245 (3)0.01356 (7)
Cl10.23031 (4)0.27868 (8)0.39388 (4)0.02016 (12)
Cl20.30236 (3)0.04105 (7)0.17389 (4)0.01970 (10)
Cl30.09726 (3)0.31002 (6)0.15535 (4)0.01782 (10)
Cl40.33172 (3)0.48432 (6)0.16960 (4)0.01817 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0105 (8)0.0126 (7)0.0112 (8)0.0005 (8)0.0000 (7)0.0015 (8)
C10.0150 (9)0.0162 (11)0.0122 (9)0.0009 (8)0.0022 (7)0.0026 (9)
C20.0220 (10)0.0165 (11)0.0179 (9)0.0023 (8)0.0021 (8)0.0022 (8)
C30.0118 (9)0.0162 (8)0.0190 (10)0.0016 (9)0.0037 (8)0.0004 (9)
C40.0140 (13)0.0274 (15)0.030 (2)0.0021 (8)0.0015 (10)0.0005 (8)
C50.0188 (9)0.0103 (8)0.0138 (9)0.0017 (7)0.0004 (7)0.0026 (8)
C60.0218 (10)0.0146 (9)0.0187 (10)0.0032 (8)0.0005 (8)0.0010 (9)
C70.0150 (14)0.0182 (16)0.0123 (11)0.0017 (7)0.0025 (9)0.0039 (6)
C80.0252 (10)0.0222 (11)0.0141 (9)0.0027 (8)0.0011 (8)0.0013 (9)
Fe10.01334 (15)0.01485 (12)0.01249 (12)0.00061 (11)0.00019 (13)0.00033 (18)
Cl10.0209 (3)0.0266 (3)0.0129 (2)0.0008 (2)0.0001 (2)0.0009 (2)
Cl20.0195 (2)0.0161 (2)0.0235 (2)0.00146 (19)0.0012 (2)0.0027 (2)
Cl30.0161 (2)0.0197 (3)0.0177 (2)0.00132 (19)0.00278 (18)0.0002 (2)
Cl40.0182 (2)0.0177 (2)0.0186 (2)0.0018 (2)0.0007 (2)0.0004 (2)
Geometric parameters (Å, º) top
N1—C51.515 (2)C5—C61.517 (2)
N1—C71.523 (3)C5—H5A0.9900
N1—C31.525 (3)C5—H5B0.9900
N1—C11.527 (3)C6—H6A0.9800
C1—C21.507 (3)C6—H6B0.9800
C1—H1A0.9900C6—H6C0.9800
C1—H1B0.9900C7—C81.520 (3)
C2—H2A0.9800C7—H7A0.9900
C2—H2B0.9800C7—H7B0.9900
C2—H2C0.9800C8—H8A0.9800
C3—C41.514 (4)C8—H8B0.9800
C3—H3A0.9900C8—H8C0.9800
C3—H3B0.9900Fe1—Cl42.1995 (6)
C4—H4A0.9800Fe1—Cl32.2007 (5)
C4—H4B0.9800Fe1—Cl12.2011 (6)
C4—H4C0.9800Fe1—Cl22.2068 (6)
C5—N1—C7111.42 (15)N1—C5—C6115.30 (15)
C5—N1—C3109.48 (15)N1—C5—H5A108.4
C7—N1—C3108.28 (18)C6—C5—H5A108.4
C5—N1—C1108.66 (16)N1—C5—H5B108.4
C7—N1—C1108.18 (17)C6—C5—H5B108.4
C3—N1—C1110.83 (16)H5A—C5—H5B107.5
C2—C1—N1115.70 (17)C5—C6—H6A109.5
C2—C1—H1A108.4C5—C6—H6B109.5
N1—C1—H1A108.4H6A—C6—H6B109.5
C2—C1—H1B108.4C5—C6—H6C109.5
N1—C1—H1B108.4H6A—C6—H6C109.5
H1A—C1—H1B107.4H6B—C6—H6C109.5
C1—C2—H2A109.5C8—C7—N1115.35 (18)
C1—C2—H2B109.5C8—C7—H7A108.4
H2A—C2—H2B109.5N1—C7—H7A108.4
C1—C2—H2C109.5C8—C7—H7B108.4
H2A—C2—H2C109.5N1—C7—H7B108.4
H2B—C2—H2C109.5H7A—C7—H7B107.5
C4—C3—N1115.5 (2)C7—C8—H8A109.5
C4—C3—H3A108.4C7—C8—H8B109.5
N1—C3—H3A108.4H8A—C8—H8B109.5
C4—C3—H3B108.4C7—C8—H8C109.5
N1—C3—H3B108.4H8A—C8—H8C109.5
H3A—C3—H3B107.5H8B—C8—H8C109.5
C3—C4—H4A109.5Cl4—Fe1—Cl3108.70 (2)
C3—C4—H4B109.5Cl4—Fe1—Cl1110.38 (3)
H4A—C4—H4B109.5Cl3—Fe1—Cl1109.12 (3)
C3—C4—H4C109.5Cl4—Fe1—Cl2110.71 (3)
H4A—C4—H4C109.5Cl3—Fe1—Cl2110.12 (2)
H4B—C4—H4C109.5Cl1—Fe1—Cl2107.79 (3)
C5—N1—C1—C2176.67 (16)C7—N1—C5—C651.1 (2)
C7—N1—C1—C255.6 (2)C3—N1—C5—C6170.84 (17)
C3—N1—C1—C263.0 (2)C1—N1—C5—C668.0 (2)
C5—N1—C3—C457.5 (2)C5—N1—C7—C854.5 (2)
C7—N1—C3—C4179.18 (18)C3—N1—C7—C866.0 (2)
C1—N1—C3—C462.3 (2)C1—N1—C7—C8173.87 (17)
Twinned reflection data at 110 (2) K. Analysis of systematic absences with PLATON (Spek, 2009). The corresponding unit cell is in the hexagonal setting (twin lattice) with a = b = 16.1794 (10), c = 12.7974 (5) Å, α = β = 90, γ = 120°, V = 2901.2 (4) Å3. top
Condition<I/σ> true<I/σ> false
0kl, k=2n26.270.21
h0l, h==2n26.300.23
h00, h=2n27.290.31
0k0, k==2n27.800.26
00l, l=2n31.900.79
h-hl, h=2n26.570.21
Coset decomposition of point group G = 6mm with respect to H1 = mm2, G = H1 + g2H1 + g3H1. Matrices are given for a hexagonal base. They were retrieved from the Bilbao Crystallographic Server (Aroyo et al., 2006). For the creation of the orientation matrices for the integration, only rotational operations can be selected to avoid left-handed coordinate systems. top
H1g2H1g3H1
1 (100/010/001)3+0,0,z (0-10/1-10/001)m2x,x,z (100/1-10/001)
20,0,z (-100/0-10/001)6-0,0,z (010/-110/001)m0,y,z (-100/-110/001)
mx,2x,z (-110/010/001)mx,-x,z (0-10/-100/001)3-0,0,z (-110/-100/001)
mx,0,z (1-10/0-10/001)mx,x,z (010/100/001)6+0,0,z (1-10/100/001)
Unit-cell parameters during the cooling of a single crystal of (I). In the temperature range 220–110 K, the unit cell of the twin lattice is presented. The last column gives the number of reflections used for the cell refinement with the Peakref software (Schreurs, 2013). The detector position was kept fixed during the experiment. At each temperature, 3 ω scans of 6° were measured, respectively (0.5° scan angle). top
T (K)a, b (Å)c (Å)V3)Number of reflections
2908.230 (6)13.217 (14)775.3 (14)126
2808.223 (6)13.202 (15)773.1 (16)126
2708.220 (6)13.190 (12)771.7 (15)124
2608.213 (6)13.176 (14)769.6 (16)127
2508.206 (5)13.164 (14)767.8 (16)127
2408.200 (6)13.149 (11)765.7 (15)127
23024.566 (12)13.065 (6)6829 (9)581
22016.328 (11)12.972 (8)2995 (5)404
21016.311 (8)12.957 (7)2985 (3)416
20016.299 (11)12.944 (7)2978 (5)419
19016.289 (8)12.931 (7)2971 (3)426
18016.278 (10)12.916 (7)2964 (4)427
17016.269 (9)12.900 (7)2957 (4)440
16016.259 (7)12.890 (7)2951 (3)447
15016.249 (10)12.881 (7)2945 (4)448
14016.241 (10)12.863 (7)2938 (4)441
13016.229 (10)12.849 (7)2931 (4)449
12016.218 (9)12.838 (7)2924 (4)435
11016.213 (8)12.826 (7)2920 (3)438
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds