Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In 1-(4-chloro­anilinometh­yl)-5-(4-chloro­phen­yl)-1,3,5-tri­az­in­ane-2-thione, C16H16Cl2N4S, there are two independent mol­ecules in the asymmetric unit which form inversion dimers via two weak N—H...S hydrogen bonds. The dimers are then linked into C(9)C(14) chains by a C—H...S hydrogen bond and a C—H...Cl contact. In 1-(an­il­ino­methyl)-5-phenyl-1,3,5-triazinane-2-thione, C16H18N4S, mol­ecules are linked into complex sheets via a combination of N—H...S and C—H...π hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108002096/hj3065sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002096/hj3065Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002096/hj3065IIsup3.hkl
Contains datablock II

CCDC references: 686426; 686427

Comment top

Heterocyclic compounds containing the thiourea structural unit have been found to have powerful bioactivity, such as powerful ectoparasiticidal action (Enders et al., 1979), potent antidiabetic properties (Lenzen & Ahmad, 2001) and anti-HIV activity (Lam et al., 1994; Acharya et al., 2001). In addition, some of these compounds can serve as calcium channel blockers, antihypertensive agents and α-1a-antagonists (Atwal et al. 1990). Therefore, it is not surprising that the search for new methods to synthesize heterocyclic compounds starting from thiourea has received special attention. Burke and Petersen gave early reports of synthetic studies of 5-alkyl- or 4,6-dialkyl-substituted 1,3,5-triazinane-2-thiones (Burke, 1947; Petersen, 1973). In our research to develop new routes to diversely substituted 1,3,5-triazinane-2-thiones, several novel 1,5-disubstituted 1,3,5-triazinane-2-thiones have been synthesized by a one-pot three-component condensation of thiourea, aniline and formaldehyde (Zhang et al., 2008). We report here the molecular and supramolecular structures of two such compounds, namely 5-(4-chlorophenyl)-1-[(4-chlorophenylanilino)methyl]-1,3,5-triazinane-2-thione, (I), and 5-phenyl-1-[(phenylamino)methyl]-1,3,5-triazinane-2-thione, (II) (Figs. 1 and 2).

Compound (I) crystallizes with Z' = 2 in the space group P21 and the molecular geometries of the two independent molecules, (Ia) and (Ib) (Fig. 1), are very similar. The triazinane-2-thione rings adopt envelope conformations; atoms N1 and N5 are the flap atoms, displaced by 0.652 and 0.665 Å, respectively, from the planes of the other five atoms. The conformations of the two heterocyclic structural units and the coplanarity of the S1/C9/N2/N3/C7/C8 and S2/C24/N6/N7/C23/C25 fragments in (Ia) and (Ib) are similar to the situation found in other cyclic thiones (Zhang, Zhang et al., 2007; Pavlović et al., 2000).

The intramolecular geometries in molecules (Ia) and (Ib) present some unexpected features. Within the aryl rings, the C12—C13, C18—C19 and C17—C22 bonds are significantly shorter than those found in similar structural units [1.373 (3)–1.398 (3) Å; Zhang, Qin et al., 2007], while the C2—C3, C4—C5, C11—C12, C27—C28, C17—C18 and C20—C21 bonds all are longer than the remainder (Table 1). Within the two heterocyclic rings, the N3—C9 and N7—C24 bonds are significantly longer than the N2—C9 and N6—C24 bonds, respectively. In addition, both the N1—C4 and N5—C20 bonds are significantly longer than the N4—C11 and N8—C27 bonds. For the N1—C4 and N5—C20 bonds, these large differences in bond length are probably due to the different hybridized states between atoms N1 and N4, N5 and N8, N2 and N3 or N6 and N7. This can be confirmed by the fact that the sums of the interbond angles at atoms N1 and N5 deviate by 20 and 15°, respectively, from 360°, indicating that these two atoms have sp3 character, although they are bonded to the corresponding phenyl rings.

Interestingly, all the molecules for (Ia), (Ib) and (II) adopt cis conformations (Figs. 1 and 2); the phenyl and phenylanilinomethyl groups lie on the same sides of the heterocycle and the dihedral angles between the two aromatic rings in (Ia), (Ib) and (II) are 71.13, 67.35 and 71.89°, respectively, indicating that these benzene rings are nearly perpendicular to one another.

In (II), the heterocycle adopts an envelope conformation; atom N1 is the flap atom, displaced by 0.637 Å from the plane of the other five atoms. The C1—N1 bond is significantly longer than the C11—N4 bond (Table 1). The sum of the three angles around atom N1 is 341.61 (6)° (Table 1), which is significantly smaller than those around atoms N2, N3 or N4. These three features for (II) are similar to the situation in (I).

Within the selected asymmetric unit of (I), the two independent molecules are linked by two weak N—H···S hydrogen bonds (Fig. 1 and Table 2), forming an R22(8) (Bernstein et al., 1995) dimer centred at (1/6, 1/4, 1/5). Dimers of this type are further linked by two weak intermolecular interactions [a C—H···S hydrogen bond and a C—H···Cl contact (Table 2)] to form a zigzag chain (Fig. 3). Aromatic ring atom C2 and atom Cl1 in the dimeric unit at (x, y, z) act as hydrogen-bond donors and form intermolecular contacts to, respectively, thiocarbonyl atom S1 and atom H23A in the molecule at (-x, y + 1/2, -z) (Table 2), so generating by inversion a C(9)C(14) chain of R22(8) rings along the [010] direction (Fig. 3). Two such chains pass through each unit cell, and they are related to one another by propagation and hence parallel. There are no direction-specific interactions between the two chains.

In compound (II) (Fig. 2 and Table 3), the molecules are linked into sheets of considerable complexity by two hydrogen bonds, one of N—H···S type and one of C—H···π(arene) type (Table 4). However, the two-dimensional structure is readily analysed in terms of two relatively simple one-dimensional substructures. In the first substructure, atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom S1 in the molecule at (-x, -y, -z + 1), so generating by inversion a dimer centred at (0, 0, 1/2) and characterized by the usual R22(8) motif (Fig. 1) [Should this not rather refer to Fig. 4 or 5?]. The dimer can be regarded as the backone building unit, from which the first substructure is built by only one C—H···π hydrogen bond. Atom C2 in the molecule at (x, y, z), part of the dimer at (0, 0, 1/2), acts as hydrogen-bond donor to the C11–C16 ring in the molecule at (-1/2 + x, 1/2 - y, 1/2 + z), which is part of the dimer centred at (-1/2, 1/2, 1). Propagation by inversion then generates a C22(8) chain along (-1/4, y, 3/4) (Fig. 4). In the second substructure, atom C2 in the molecule at (x, y, z) acts as hydrogen-bond donor to the C11–C16 ring in the molecule at (x - 1/2, -y + 1/2, z + 1/2), so forming a hydrogen-bonded chain running along the [101] direction and generated by a 21 screw axis along [101] (Fig. 5). The combination of these two chain motifs is sufficient to link all the molecules into a two-demensional sheet parallel to [101]. Two such sheets pass through each unit cell, in the domains 0 < x < 1, 0 < z < 1 and 1 < x < 2, 1 < z < 2, and there are no direction-specific interactions between the two sheets.

Related literature top

For related literature, see: Acharya et al. (2001); Atwal et al. (1990); Bernstein et al. (1995); Burke (1947); Enders et al. (1979); Lam et al. (1994); Lenzen & Ahmad (2001); Pavlović et al. (2000); Petersen (1973); Zhang et al. (2008); Zhang, Qin, Wang & Qu (2007); Zhang, Zhang, Guo & Qu (2007).

Experimental top

Brief details of the syntheses of the title compounds, (I) and (II), will be reported elsewhere (Zhang et al., 2008). Crystals of (I) were obtained by recrystallization from dimethyl sulfoxide. Spectroscopic analysis: 1H NMR (DMSO, 400 MHz, δ, p.p.m.): 8.37 (s, 1H), 6.796–7.076 (m, 8H), 6.59 (t, J = 6.8 Hz, 1H), 5.20–5.19 (d, J = 6.8 Hz, 2H), 4.78 (s, 2H), 4.57 (s, 2H). Crystals of (II) were obtained by recrystallization from acetonitrile. Spectroscopic analysis: 1H NMR (DMSO, 400 MHz, δ, p.p.m.): 8.30 (s, 1H), 7.10–6.58 (m, 10H), 6.45 (t, J = 7.2 Hz, 1H), 5.23 (d, J = 6.8 Hz, 2H), 4.79 (s, 2H), 4.57 (s, 2H).

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.98 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules in compound (I), viz. (a) a type A molecule and (b) a type B molecule. [Molecules A and B are not distinguished - please clarify.] Displacement ellipsoids are drawn at the 16% [Very low?] probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), showing the the atom-labelling scheme. Displacement ellipsoids are drawn at the 16% [Very low?] probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C(9) C(14) chain parallel to the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been ommited. Selected atoms are labelled. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) -x, -1/2 + y, -z; (ii) -x, 1/2 + y, -z].
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of a hydogen-bonded chain along the (-1/4, y, 3/4) direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Selected atoms are labelled. Dashed lines indicate hydrogen bonds. Cg is the centroid of the C11–C16 ring. [Symmetry codes: (i) -x, -y, 1 - z; (ii) -1/2 + x, 1/2 - y, 1/2 + z.]
[Figure 5] Fig. 5. Part of the crystal structure of (II), showing the formation of a hydrogen-bonded chain running along the [101] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Selected atoms are labelled. Dashed lines indicate hydrogen bonds. Cg is the centroid of the C11–C16 ring. [Symmetry codes: (i) -1/2 + x, 1/2 - y, 1/2 + z; (ii) 1/2 + x, 1/2 - y, -1/2 + z.]
(I) 5-(4-chlorophenyl)-1-[(4-chlorophenylanilino)methyl]-1,3,5-triazinane-2-thione top
Crystal data top
C32H32Cl4N8S2F(000) = 760
Mr = 734.58Dx = 1.421 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.9271 (17) ÅCell parameters from 2502 reflections
b = 16.398 (5) Åθ = 2.3–20.4°
c = 17.864 (5) ŵ = 0.50 mm1
β = 98.468 (4)°T = 291 K
V = 1717.3 (9) Å3Block, yellow
Z = 20.38 × 0.30 × 0.24 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6252 independent reflections
Radiation source: fine-focus sealed tube3942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.832, Tmax = 0.889k = 1919
13046 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0849P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6252 reflectionsΔρmax = 0.43 e Å3
415 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
C32H32Cl4N8S2V = 1717.3 (9) Å3
Mr = 734.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9271 (17) ŵ = 0.50 mm1
b = 16.398 (5) ÅT = 291 K
c = 17.864 (5) Å0.38 × 0.30 × 0.24 mm
β = 98.468 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6252 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3942 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.889Rint = 0.044
13046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.43 e Å3
S = 1.01Δρmin = 0.27 e Å3
6252 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
415 parametersAbsolute structure parameter: 0.00 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.3766 (2)0.18079 (8)0.14371 (7)0.0568 (3)
Cl10.3002 (3)0.44557 (13)0.18697 (9)0.0955 (6)
Cl20.0826 (4)0.07668 (15)0.25984 (11)0.1131 (7)
N10.4912 (8)0.4340 (3)0.0629 (3)0.0659 (12)
N20.3528 (7)0.3422 (3)0.1495 (2)0.0563 (10)
H2D0.24240.33380.17480.068*
N30.6127 (6)0.2920 (3)0.0745 (2)0.0542 (11)
N40.7768 (8)0.2280 (3)0.0285 (3)0.0711 (13)
H4D0.89240.25020.04440.085*
C10.0625 (9)0.4441 (4)0.1154 (3)0.0681 (15)
C20.0398 (11)0.5015 (4)0.0594 (4)0.0716 (16)
H20.14680.54300.06000.086*
C30.1458 (10)0.4974 (3)0.0011 (4)0.0686 (16)
H30.16230.53700.03660.082*
C40.3051 (9)0.4352 (3)0.0014 (3)0.0577 (13)
C50.2854 (10)0.3791 (4)0.0596 (3)0.0659 (15)
H50.39530.33890.06100.079*
C60.1015 (11)0.3844 (4)0.1169 (3)0.0765 (17)
H60.08820.34750.15690.092*
C70.4206 (10)0.4268 (3)0.1380 (3)0.0652 (15)
H7A0.29350.46320.14160.078*
H7B0.54580.44210.17670.078*
C80.6743 (9)0.3775 (3)0.0589 (3)0.0632 (14)
H8A0.80480.39360.09520.076*
H8B0.71890.38030.00890.076*
C90.4539 (8)0.2766 (3)0.1225 (3)0.0500 (12)
C100.7658 (9)0.2292 (4)0.0528 (3)0.0635 (14)
H10A0.71470.17630.06790.076*
H10B0.91780.23840.07990.076*
C110.6103 (9)0.1928 (3)0.0812 (3)0.0601 (14)
C120.6426 (11)0.1928 (4)0.1581 (3)0.0791 (18)
H120.77010.21780.17270.095*
C130.4859 (13)0.1561 (5)0.2104 (4)0.091 (2)
H130.51300.15310.26030.110*
C140.2858 (11)0.1229 (4)0.1915 (3)0.0737 (16)
C150.2498 (10)0.1243 (4)0.1171 (3)0.0723 (16)
H150.11680.10230.10360.087*
C160.4118 (10)0.1583 (3)0.0628 (3)0.0662 (15)
H160.38740.15810.01250.079*
S20.0579 (2)0.33959 (9)0.26616 (8)0.0659 (4)
Cl30.5677 (4)0.02080 (16)0.59585 (13)0.1272 (8)
Cl40.2643 (4)0.34901 (18)0.68867 (10)0.1220 (8)
N50.1709 (8)0.0824 (3)0.3362 (3)0.0665 (12)
N60.0346 (7)0.1794 (3)0.2543 (2)0.0636 (12)
H6D0.07530.18980.22930.076*
N70.2895 (7)0.2236 (3)0.3309 (2)0.0608 (11)
N80.4706 (8)0.2758 (4)0.4348 (3)0.0875 (16)
H8D0.59850.25910.44640.105*
C170.3506 (12)0.0417 (5)0.5201 (4)0.0848 (19)
C180.3579 (12)0.0039 (4)0.4499 (4)0.0852 (19)
H180.47680.03130.44370.102*
C190.1902 (11)0.0191 (4)0.3913 (4)0.0735 (16)
H190.19600.00610.34500.088*
C200.0095 (10)0.0715 (4)0.3986 (3)0.0627 (14)
C210.0080 (13)0.1096 (5)0.4688 (3)0.088 (2)
H210.10770.14600.47550.106*
C220.1792 (13)0.0928 (5)0.5279 (4)0.095 (2)
H220.17540.11770.57440.114*
C230.1022 (11)0.0943 (4)0.2609 (3)0.0665 (16)
H23A0.02440.05860.25490.080*
H23B0.22840.08140.22170.080*
C240.1329 (8)0.2417 (3)0.2847 (3)0.0526 (14)
C250.3538 (9)0.1374 (4)0.3427 (3)0.0678 (16)
H25A0.39860.13190.39250.081*
H25B0.48410.12300.30550.081*
C260.4481 (10)0.2839 (5)0.3566 (3)0.0793 (18)
H26A0.39390.33840.34790.095*
H26B0.59720.27760.32650.095*
C270.2960 (10)0.2936 (4)0.4927 (3)0.0707 (16)
C280.3203 (12)0.2705 (5)0.5672 (3)0.0826 (18)
H280.45210.24410.57660.099*
C290.1503 (13)0.2869 (5)0.6256 (4)0.092 (2)
H290.17040.27270.67460.111*
C300.0509 (12)0.3240 (4)0.6138 (3)0.0811 (18)
C310.0752 (10)0.3484 (4)0.5414 (3)0.0783 (17)
H310.20670.37570.53310.094*
C320.0950 (9)0.3326 (4)0.4809 (3)0.0734 (16)
H320.07470.34800.43230.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0568 (7)0.0636 (8)0.0517 (7)0.0059 (6)0.0142 (6)0.0041 (7)
Cl10.0847 (11)0.1269 (15)0.0714 (10)0.0115 (11)0.0000 (8)0.0259 (11)
Cl20.1211 (17)0.1401 (18)0.0743 (13)0.0109 (13)0.0011 (11)0.0234 (11)
N10.068 (3)0.065 (3)0.065 (3)0.007 (3)0.012 (2)0.008 (2)
N20.066 (3)0.056 (3)0.050 (2)0.003 (2)0.018 (2)0.001 (2)
N30.042 (2)0.068 (3)0.054 (2)0.002 (2)0.0110 (19)0.007 (2)
N40.055 (3)0.099 (4)0.062 (3)0.010 (3)0.020 (2)0.001 (3)
C10.066 (3)0.084 (4)0.054 (3)0.000 (3)0.008 (3)0.021 (3)
C20.075 (4)0.063 (4)0.077 (4)0.008 (3)0.013 (3)0.014 (3)
C30.083 (4)0.052 (3)0.072 (4)0.004 (3)0.015 (3)0.004 (3)
C40.064 (3)0.054 (3)0.057 (3)0.001 (3)0.015 (3)0.013 (3)
C50.078 (4)0.070 (4)0.051 (3)0.010 (3)0.013 (3)0.001 (3)
C60.092 (4)0.083 (4)0.055 (4)0.013 (4)0.013 (3)0.006 (3)
C70.074 (4)0.068 (4)0.053 (3)0.002 (3)0.008 (3)0.000 (3)
C80.063 (3)0.065 (4)0.063 (3)0.012 (3)0.014 (3)0.005 (3)
C90.045 (3)0.059 (3)0.045 (3)0.007 (2)0.003 (2)0.003 (2)
C100.051 (3)0.089 (4)0.051 (3)0.003 (3)0.011 (2)0.007 (3)
C110.056 (3)0.064 (4)0.063 (3)0.008 (3)0.017 (3)0.011 (3)
C120.087 (4)0.099 (5)0.057 (4)0.014 (4)0.028 (3)0.005 (3)
C130.112 (5)0.113 (6)0.052 (4)0.001 (4)0.023 (4)0.001 (4)
C140.082 (4)0.074 (4)0.064 (4)0.002 (3)0.007 (3)0.003 (3)
C150.063 (4)0.090 (4)0.064 (4)0.006 (3)0.009 (3)0.000 (3)
C160.074 (4)0.075 (4)0.054 (3)0.003 (3)0.022 (3)0.001 (3)
S20.0646 (9)0.0734 (9)0.0605 (9)0.0001 (8)0.0118 (7)0.0038 (8)
Cl30.1155 (16)0.160 (2)0.0972 (16)0.0135 (15)0.0150 (12)0.0239 (14)
Cl40.1150 (14)0.175 (2)0.0705 (11)0.0108 (15)0.0039 (10)0.0220 (13)
N50.079 (3)0.071 (3)0.052 (3)0.009 (3)0.016 (3)0.002 (2)
N60.069 (3)0.067 (3)0.060 (3)0.000 (3)0.025 (2)0.003 (3)
N70.052 (3)0.072 (3)0.061 (3)0.007 (2)0.016 (2)0.004 (2)
N80.064 (3)0.137 (5)0.065 (3)0.006 (3)0.023 (3)0.010 (3)
C170.087 (5)0.091 (5)0.073 (5)0.003 (4)0.001 (4)0.020 (4)
C180.092 (5)0.085 (5)0.081 (5)0.019 (4)0.020 (4)0.016 (4)
C190.079 (4)0.075 (4)0.070 (4)0.006 (3)0.020 (3)0.001 (3)
C200.068 (4)0.067 (3)0.055 (3)0.012 (3)0.015 (3)0.004 (3)
C210.108 (5)0.100 (5)0.058 (4)0.023 (4)0.016 (4)0.001 (4)
C220.107 (6)0.119 (6)0.057 (4)0.033 (5)0.004 (4)0.007 (4)
C230.080 (4)0.079 (4)0.042 (3)0.001 (3)0.014 (3)0.003 (3)
C240.043 (3)0.074 (4)0.040 (3)0.000 (3)0.006 (2)0.006 (2)
C250.058 (4)0.090 (5)0.057 (4)0.007 (3)0.015 (3)0.008 (3)
C260.058 (3)0.114 (5)0.068 (4)0.011 (3)0.013 (3)0.009 (4)
C270.067 (4)0.082 (4)0.065 (4)0.006 (3)0.019 (3)0.014 (3)
C280.089 (4)0.107 (5)0.056 (4)0.006 (4)0.026 (3)0.004 (4)
C290.106 (5)0.099 (5)0.076 (5)0.018 (4)0.027 (4)0.004 (4)
C300.086 (4)0.100 (5)0.055 (4)0.013 (4)0.005 (3)0.013 (3)
C310.078 (4)0.093 (5)0.066 (4)0.005 (4)0.015 (3)0.002 (4)
C320.067 (4)0.095 (4)0.061 (4)0.006 (3)0.017 (3)0.012 (3)
Geometric parameters (Å, º) top
S1—C91.695 (5)S2—C241.711 (5)
Cl1—C11.757 (6)Cl3—C171.757 (7)
Cl2—C141.756 (6)Cl4—C301.749 (6)
N1—C81.437 (7)N5—C251.427 (7)
N1—C41.438 (7)N5—C201.437 (7)
N1—C71.468 (7)N5—C231.475 (6)
N2—C91.354 (6)N6—C241.331 (6)
N2—C71.468 (7)N6—C231.461 (7)
N2—H2D0.8600N6—H6D0.8600
N3—C91.386 (6)N7—C241.362 (6)
N3—C101.463 (7)N7—C261.484 (7)
N3—C81.485 (7)N7—C251.487 (8)
N4—C111.385 (7)N8—C271.382 (7)
N4—C101.464 (7)N8—C261.428 (7)
N4—H4D0.8600N8—H8D0.8600
C1—C21.365 (8)C17—C221.340 (9)
C1—C61.383 (8)C17—C181.406 (10)
C2—C31.401 (8)C18—C191.357 (8)
C2—H20.9300C18—H180.9300
C3—C41.385 (8)C19—C201.394 (8)
C3—H30.9300C19—H190.9300
C4—C51.418 (8)C20—C211.403 (8)
C5—C61.384 (8)C21—C221.380 (9)
C5—H50.9300C21—H210.9300
C6—H60.9300C22—H220.9300
C7—H7A0.9700C23—H23A0.9700
C7—H7B0.9700C23—H23B0.9700
C8—H8A0.9700C25—H25A0.9700
C8—H8B0.9700C25—H25B0.9700
C10—H10A0.9700C26—H26A0.9700
C10—H10B0.9700C26—H26B0.9700
C11—C161.388 (7)C27—C321.395 (8)
C11—C121.415 (8)C27—C281.412 (8)
C12—C131.358 (9)C28—C291.366 (8)
C12—H120.9300C28—H280.9300
C13—C141.391 (9)C29—C301.382 (9)
C13—H130.9300C29—H290.9300
C14—C151.377 (8)C30—C311.381 (9)
C15—C161.379 (8)C31—C321.390 (8)
C15—H150.9300C31—H310.9300
C16—H160.9300C32—H320.9300
C8—N1—C4118.1 (5)C25—N5—C20120.2 (5)
C8—N1—C7108.2 (4)C25—N5—C23107.8 (5)
C4—N1—C7114.2 (4)C20—N5—C23116.7 (5)
C9—N2—C7123.8 (4)C24—N6—C23124.0 (4)
C9—N2—H2D118.1C24—N6—H6D118.0
C7—N2—H2D118.1C23—N6—H6D118.0
C9—N3—C10122.7 (4)C24—N7—C26124.2 (5)
C9—N3—C8119.8 (4)C24—N7—C25120.4 (4)
C10—N3—C8115.8 (4)C26—N7—C25113.7 (5)
C11—N4—C10123.3 (4)C27—N8—C26123.0 (5)
C11—N4—H4D118.4C27—N8—H8D118.5
C10—N4—H4D118.4C26—N8—H8D118.5
C2—C1—C6120.6 (6)C22—C17—C18119.4 (6)
C2—C1—Cl1120.4 (5)C22—C17—Cl3121.5 (6)
C6—C1—Cl1119.1 (5)C18—C17—Cl3119.0 (6)
C1—C2—C3119.6 (6)C19—C18—C17119.5 (6)
C1—C2—H2120.2C19—C18—H18120.2
C3—C2—H2120.2C17—C18—H18120.2
C4—C3—C2121.1 (6)C18—C19—C20121.8 (6)
C4—C3—H3119.5C18—C19—H19119.1
C2—C3—H3119.5C20—C19—H19119.1
C3—C4—C5118.3 (5)C19—C20—C21117.7 (6)
C3—C4—N1118.5 (5)C19—C20—N5119.9 (5)
C5—C4—N1123.0 (5)C21—C20—N5122.4 (6)
C6—C5—C4119.6 (5)C22—C21—C20119.6 (6)
C6—C5—H5120.2C22—C21—H21120.2
C4—C5—H5120.2C20—C21—H21120.2
C1—C6—C5120.6 (6)C17—C22—C21122.0 (7)
C1—C6—H6119.7C17—C22—H22119.0
C5—C6—H6119.7C21—C22—H22119.0
N1—C7—N2109.0 (4)N6—C23—N5108.4 (4)
N1—C7—H7A109.9N6—C23—H23A110.0
N2—C7—H7A109.9N5—C23—H23A110.0
N1—C7—H7B109.9N6—C23—H23B110.0
N2—C7—H7B109.9N5—C23—H23B110.0
H7A—C7—H7B108.3H23A—C23—H23B108.4
N1—C8—N3113.0 (4)N6—C24—N7117.2 (4)
N1—C8—H8A109.0N6—C24—S2120.0 (4)
N3—C8—H8A109.0N7—C24—S2122.8 (4)
N1—C8—H8B109.0N5—C25—N7112.0 (4)
N3—C8—H8B109.0N5—C25—H25A109.2
H8A—C8—H8B107.8N7—C25—H25A109.2
N2—C9—N3116.9 (4)N5—C25—H25B109.2
N2—C9—S1120.5 (4)N7—C25—H25B109.2
N3—C9—S1122.5 (4)H25A—C25—H25B107.9
N3—C10—N4113.1 (4)N8—C26—N7113.3 (5)
N3—C10—H10A109.0N8—C26—H26A108.9
N4—C10—H10A109.0N7—C26—H26A108.9
N3—C10—H10B109.0N8—C26—H26B108.9
N4—C10—H10B109.0N7—C26—H26B108.9
H10A—C10—H10B107.8H26A—C26—H26B107.7
N4—C11—C16123.6 (5)N8—C27—C32123.0 (5)
N4—C11—C12118.3 (5)N8—C27—C28118.7 (6)
C16—C11—C12118.1 (5)C32—C27—C28118.3 (6)
C13—C12—C11119.5 (5)C29—C28—C27120.1 (6)
C13—C12—H12120.3C29—C28—H28120.0
C11—C12—H12120.3C27—C28—H28120.0
C12—C13—C14121.9 (6)C28—C29—C30121.7 (6)
C12—C13—H13119.1C28—C29—H29119.1
C14—C13—H13119.1C30—C29—H29119.1
C15—C14—C13119.1 (6)C31—C30—C29118.8 (6)
C15—C14—Cl2119.3 (5)C31—C30—Cl4119.0 (6)
C13—C14—Cl2121.5 (5)C29—C30—Cl4122.0 (6)
C14—C15—C16119.7 (6)C30—C31—C32120.6 (6)
C14—C15—H15120.2C30—C31—H31119.7
C16—C15—H15120.2C32—C31—H31119.7
C15—C16—C11121.7 (5)C31—C32—C27120.4 (6)
C15—C16—H16119.2C31—C32—H32119.8
C11—C16—H16119.2C27—C32—H32119.8
C6—C1—C2—C33.1 (8)C22—C17—C18—C190.6 (10)
Cl1—C1—C2—C3177.3 (4)Cl3—C17—C18—C19179.5 (5)
C1—C2—C3—C41.0 (8)C17—C18—C19—C200.0 (10)
C2—C3—C4—C54.5 (8)C18—C19—C20—C211.1 (9)
C2—C3—C4—N1179.7 (5)C18—C19—C20—N5176.6 (5)
C8—N1—C4—C3170.4 (5)C25—N5—C20—C19178.6 (5)
C7—N1—C4—C360.7 (6)C23—N5—C20—C1945.1 (7)
C8—N1—C4—C55.2 (7)C25—N5—C20—C213.9 (8)
C7—N1—C4—C5123.7 (5)C23—N5—C20—C21137.4 (6)
C3—C4—C5—C64.1 (8)C19—C20—C21—C221.6 (10)
N1—C4—C5—C6179.7 (5)N5—C20—C21—C22176.0 (6)
C2—C1—C6—C53.5 (8)C18—C17—C22—C210.1 (12)
Cl1—C1—C6—C5176.9 (4)Cl3—C17—C22—C21180.0 (6)
C4—C5—C6—C10.2 (8)C20—C21—C22—C171.0 (12)
C8—N1—C7—N257.7 (5)C24—N6—C23—N535.2 (7)
C4—N1—C7—N276.0 (6)C25—N5—C23—N658.5 (6)
C9—N2—C7—N135.1 (6)C20—N5—C23—N680.3 (6)
C4—N1—C8—N375.0 (6)C23—N6—C24—N76.9 (7)
C7—N1—C8—N356.6 (6)C23—N6—C24—S2174.0 (4)
C9—N3—C8—N129.8 (7)C26—N7—C24—N6167.0 (5)
C10—N3—C8—N1164.8 (4)C25—N7—C24—N63.1 (7)
C7—N2—C9—N37.3 (6)C26—N7—C24—S214.0 (7)
C7—N2—C9—S1175.7 (4)C25—N7—C24—S2177.8 (4)
C10—N3—C9—N2168.0 (4)C20—N5—C25—N780.1 (6)
C8—N3—C9—N23.7 (6)C23—N5—C25—N757.0 (6)
C10—N3—C9—S115.1 (6)C24—N7—C25—N529.9 (7)
C8—N3—C9—S1179.4 (4)C26—N7—C25—N5164.7 (4)
C9—N3—C10—N4133.4 (5)C27—N8—C26—N768.6 (8)
C8—N3—C10—N461.7 (6)C24—N7—C26—N8137.5 (5)
C11—N4—C10—N378.8 (7)C25—N7—C26—N857.7 (7)
C10—N4—C11—C162.9 (8)C26—N8—C27—C3210.0 (10)
C10—N4—C11—C12177.9 (5)C26—N8—C27—C28169.1 (6)
N4—C11—C12—C13177.6 (6)N8—C27—C28—C29179.7 (6)
C16—C11—C12—C133.1 (9)C32—C27—C28—C290.5 (10)
C11—C12—C13—C144.3 (11)C27—C28—C29—C301.8 (11)
C12—C13—C14—C152.7 (11)C28—C29—C30—C313.0 (11)
C12—C13—C14—Cl2179.2 (5)C28—C29—C30—Cl4177.3 (6)
C13—C14—C15—C160.0 (10)C29—C30—C31—C323.0 (10)
Cl2—C14—C15—C16178.1 (5)Cl4—C30—C31—C32177.4 (5)
C14—C15—C16—C111.1 (9)C30—C31—C32—C271.8 (10)
N4—C11—C16—C15179.7 (6)N8—C27—C32—C31179.6 (6)
C12—C11—C16—C150.5 (8)C28—C27—C32—C310.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6D···S10.862.523.356 (4)164
N2—H2D···S20.862.593.430 (4)167
C2—H2···S1i0.932.933.743 (4)147
C23—H23A···Cl1ii0.972.863.783 (7)160
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.
(II) 1-(anilinomethyl)-5-phenyl-1,3,5-triazinane-2-thione top
Crystal data top
C16H18N4SZ = 4
Mr = 298.40F(000) = 632
Mmnoclinic, P21/nDx = 1.266 Mg m3
a = 5.8564 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.486 (2) ÅCell parameters from 2761 reflections
c = 17.285 (2) Åθ = 2.4–22.8°
α = 90°µ = 0.21 mm1
β = 92.660 (2)°T = 291 K
γ = 90°Plate, colourless
V = 1565.9 (4) Å30.35 × 0.27 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2895 independent reflections
Radiation source: fine-focus sealed tube2151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.931, Tmax = 0.957k = 1818
11424 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.3074P]
where P = (Fo2 + 2Fc2)/3
2895 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H18N4Sγ = 90°
Mr = 298.40V = 1565.9 (4) Å3
Mmnoclinic, P21/nZ = 4
a = 5.8564 (8) ÅMo Kα radiation
b = 15.486 (2) ŵ = 0.21 mm1
c = 17.285 (2) ÅT = 291 K
α = 90°0.35 × 0.27 × 0.21 mm
β = 92.660 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2895 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2151 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.957Rint = 0.027
11424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2895 reflectionsΔρmin = 0.13 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22985 (8)0.04923 (3)0.40760 (3)0.06091 (17)
N10.4078 (3)0.19555 (10)0.62536 (8)0.0560 (4)
N20.2185 (2)0.08151 (9)0.55677 (9)0.0564 (4)
H2D0.09370.05220.55340.068*
N30.5076 (2)0.15073 (9)0.49676 (8)0.0505 (4)
N40.7175 (2)0.25134 (11)0.41977 (9)0.0671 (5)
H4D0.84430.27140.43940.081*
C10.2573 (3)0.26732 (12)0.61505 (10)0.0526 (4)
C20.1013 (4)0.28340 (14)0.67104 (12)0.0714 (6)
H20.09760.24730.71400.086*
C30.0480 (4)0.35158 (15)0.66442 (14)0.0846 (7)
H30.15230.36090.70250.102*
C40.0442 (4)0.40607 (15)0.60187 (15)0.0842 (7)
H40.14630.45200.59700.101*
C50.1116 (4)0.39195 (14)0.54692 (13)0.0789 (6)
H50.11700.42920.50480.095*
C60.2615 (4)0.32305 (12)0.55290 (11)0.0660 (5)
H60.36600.31420.51470.079*
C70.2990 (3)0.11240 (12)0.63295 (11)0.0611 (5)
H7A0.17100.11750.66630.073*
H7B0.40700.07150.65630.073*
C80.3280 (3)0.09623 (11)0.49175 (10)0.0500 (4)
C90.5885 (3)0.18639 (13)0.57241 (11)0.0600 (5)
H9A0.70540.14870.59530.072*
H9B0.65750.24240.56440.072*
C100.6659 (3)0.16269 (13)0.43371 (12)0.0628 (5)
H10A0.80690.13200.44670.075*
H10B0.59860.13750.38660.075*
C110.5767 (3)0.30742 (13)0.37660 (10)0.0556 (5)
C120.6523 (4)0.39069 (14)0.36228 (12)0.0684 (5)
H120.79440.40860.38250.082*
C130.5180 (4)0.44710 (15)0.31820 (13)0.0800 (6)
H130.57010.50280.30910.096*
C140.3077 (4)0.42155 (17)0.28758 (13)0.0814 (7)
H140.21850.45920.25710.098*
C150.2316 (4)0.33993 (16)0.30271 (11)0.0722 (6)
H150.08880.32270.28260.087*
C160.3617 (3)0.28265 (14)0.34710 (10)0.0602 (5)
H160.30600.22780.35720.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0506 (3)0.0659 (3)0.0662 (3)0.0021 (2)0.0021 (2)0.0129 (2)
N10.0554 (9)0.0586 (9)0.0533 (9)0.0008 (7)0.0048 (7)0.0016 (7)
N20.0481 (8)0.0604 (10)0.0603 (9)0.0071 (7)0.0004 (7)0.0018 (8)
N30.0387 (7)0.0554 (9)0.0573 (9)0.0010 (7)0.0009 (6)0.0005 (7)
N40.0408 (8)0.0756 (11)0.0843 (12)0.0085 (8)0.0033 (8)0.0129 (9)
C10.0562 (10)0.0546 (11)0.0466 (10)0.0046 (9)0.0020 (8)0.0044 (8)
C20.0842 (15)0.0706 (14)0.0605 (12)0.0006 (12)0.0162 (11)0.0049 (10)
C30.0909 (17)0.0792 (16)0.0865 (16)0.0073 (13)0.0339 (13)0.0057 (13)
C40.0913 (17)0.0668 (14)0.0953 (17)0.0192 (12)0.0132 (14)0.0051 (13)
C50.1086 (18)0.0606 (13)0.0683 (14)0.0173 (12)0.0122 (13)0.0068 (10)
C60.0826 (14)0.0614 (12)0.0549 (11)0.0079 (11)0.0139 (10)0.0005 (10)
C70.0652 (12)0.0601 (12)0.0572 (11)0.0008 (10)0.0035 (9)0.0088 (9)
C80.0377 (9)0.0490 (10)0.0630 (11)0.0074 (7)0.0008 (8)0.0001 (8)
C90.0478 (10)0.0632 (12)0.0678 (12)0.0014 (9)0.0109 (9)0.0008 (10)
C100.0427 (10)0.0678 (13)0.0785 (13)0.0081 (9)0.0084 (9)0.0011 (10)
C110.0479 (10)0.0701 (13)0.0496 (10)0.0035 (9)0.0095 (8)0.0008 (9)
C120.0636 (12)0.0751 (14)0.0669 (13)0.0027 (11)0.0080 (10)0.0003 (11)
C130.0957 (18)0.0714 (14)0.0736 (14)0.0086 (13)0.0126 (13)0.0041 (12)
C140.0906 (17)0.0925 (18)0.0606 (13)0.0291 (14)0.0012 (12)0.0036 (12)
C150.0625 (13)0.0984 (18)0.0553 (12)0.0145 (12)0.0022 (10)0.0073 (12)
C160.0527 (11)0.0771 (13)0.0509 (10)0.0024 (10)0.0043 (8)0.0035 (9)
Geometric parameters (Å, º) top
S1—C81.7025 (18)C5—C61.383 (3)
N1—C11.424 (2)C5—H50.9300
N1—C91.438 (2)C6—H60.9300
N1—C71.445 (2)C7—H7A0.9700
N2—C81.339 (2)C7—H7B0.9700
N2—C71.458 (2)C9—H9A0.9700
N2—H2D0.8600C9—H9B0.9700
N3—C81.348 (2)C10—H10A0.9700
N3—C101.475 (2)C10—H10B0.9700
N3—C91.477 (2)C11—C121.389 (3)
N4—C111.391 (2)C11—C161.390 (2)
N4—C101.428 (2)C12—C131.381 (3)
N4—H4D0.8600C12—H120.9300
C1—C61.379 (2)C13—C141.376 (3)
C1—C21.384 (3)C13—H130.9300
C2—C31.372 (3)C14—C151.369 (3)
C2—H20.9300C14—H140.9300
C3—C41.372 (3)C15—C161.379 (3)
C3—H30.9300C15—H150.9300
C4—C51.365 (3)C16—H160.9300
C4—H40.9300
C1—N1—C9117.8 (2)H7A—C7—H7B108.2
C1—N1—C7115.7 (2)N2—C8—N3117.1 (2)
C9—N1—C7108.1 (2)N2—C8—S1119.2 (1)
C8—N2—C7123.7 (2)N3—C8—S1123.7 (1)
C8—N2—H2D118.2N1—C9—N3112.6 (1)
C7—N2—H2D118.2N1—C9—H9A109.1
C8—N3—C10123.1 (2)N3—C9—H9A109.1
C8—N3—C9120.6 (2)N1—C9—H9B109.1
C10—N3—C9114.9 (1)N3—C9—H9B109.1
C11—N4—C10124.5 (2)H9A—C9—H9B107.8
C11—N4—H4D117.8N4—C10—N3113.0 (2)
C10—N4—H4D117.8N4—C10—H10A109.0
C6—C1—C2117.9 (2)N3—C10—H10A109.0
C6—C1—N1123.5 (2)N4—C10—H10B109.0
C2—C1—N1118.5 (2)N3—C10—H10B109.0
C3—C2—C1121.3 (2)H10A—C10—H10B107.8
C3—C2—H2119.4C12—C11—C16118.8 (2)
C1—C2—H2119.4C12—C11—N4119.3 (2)
C2—C3—C4120.3 (2)C16—C11—N4121.9 (2)
C2—C3—H3119.8C13—C12—C11120.5 (2)
C4—C3—H3119.8C13—C12—H12119.8
C5—C4—C3119.0 (2)C11—C12—H12119.8
C5—C4—H4120.5C14—C13—C12120.5 (2)
C3—C4—H4120.5C14—C13—H13119.8
C4—C5—C6121.0 (2)C12—C13—H13119.8
C4—C5—H5119.5C15—C14—C13119.0 (2)
C6—C5—H5119.5C15—C14—H14120.5
C1—C6—C5120.4 (2)C13—C14—H14120.5
C1—C6—H6119.8C14—C15—C16121.6 (2)
C5—C6—H6119.8C14—C15—H15119.2
N1—C7—N2109.6 (1)C16—C15—H15119.2
N1—C7—H7A109.7C15—C16—C11119.6 (2)
N2—C7—H7A109.7C15—C16—H16120.2
N1—C7—H7B109.7C11—C16—H16120.2
N2—C7—H7B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···S1i0.862.573.394 (2)160
C2—H2···Cgii0.932.873.765 (2)163
Symmetry codes: (i) x, y, z+1; (ii) x3/2, y1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC32H32Cl4N8S2C16H18N4S
Mr734.58298.40
Crystal system, space groupMonoclinic, P21Mmnoclinic, P21/n
Temperature (K)291291
a, b, c (Å)5.9271 (17), 16.398 (5), 17.864 (5)5.8564 (8), 15.486 (2), 17.285 (2)
α, β, γ (°)90, 98.468 (4), 9090, 92.660 (2), 90
V3)1717.3 (9)1565.9 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.500.21
Crystal size (mm)0.38 × 0.30 × 0.240.35 × 0.27 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.832, 0.8890.931, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
13046, 6252, 3942 11424, 2895, 2151
Rint0.0440.027
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.165, 1.01 0.036, 0.094, 1.03
No. of reflections62522895
No. of parameters415190
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.270.16, 0.13
Absolute structureFlack (1983), with how many Friedel pairs??
Absolute structure parameter0.00 (2)?

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
N1—C81.437 (7)C15—C161.379 (8)
N1—C41.438 (7)N5—C201.437 (7)
N1—C71.468 (7)N6—C241.331 (6)
N2—C91.354 (6)N7—C241.362 (6)
N3—C91.386 (6)N8—C271.382 (7)
N4—C111.385 (7)C17—C221.340 (9)
C1—C21.365 (8)C17—C181.406 (10)
C1—C61.383 (8)C18—C191.357 (8)
C2—C31.401 (8)C19—C201.394 (8)
C3—C41.385 (8)C20—C211.403 (8)
C4—C51.418 (8)C21—C221.380 (9)
C5—C61.384 (8)C27—C321.395 (8)
C11—C161.388 (7)C27—C281.412 (8)
C11—C121.415 (8)C28—C291.366 (8)
C12—C131.358 (9)C29—C301.382 (9)
C13—C141.391 (9)C30—C311.381 (9)
C14—C151.377 (8)
C8—N1—C4118.1 (5)C25—N5—C20120.2 (5)
C8—N1—C7108.2 (4)C25—N5—C23107.8 (5)
C4—N1—C7114.2 (4)C20—N5—C23116.7 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N6—H6D···S10.862.523.356 (4)164.2
N2—H2D···S20.862.593.430 (4)166.8
C2—H2···S1i0.932.933.743 (4)146.6
C23—H23A···Cl1ii0.972.863.783 (7)160
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z.
Selected geometric parameters (Å, º) for (II) top
N1—C11.424 (2)N3—C81.348 (2)
N2—C81.339 (2)N4—C111.391 (2)
C1—N1—C9117.8 (2)C8—N3—C10123.1 (2)
C1—N1—C7115.7 (2)C8—N3—C9120.6 (2)
C9—N1—C7108.1 (2)C10—N3—C9114.9 (1)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2D···S1i0.862.573.394 (2)159.7
C2—H2···Cgii0.932.873.765 (2)162.5
Symmetry codes: (i) x, y, z+1; (ii) x3/2, y1/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds