Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of 2-[N-(2-chloro­phenyl)­carbamoyl]­benzene­sulfon­amide and 2-[N-(4-chloro­phenyl)­carbamoyl]­benzene­sulfon­amide, both C13H11ClN2O3S, are stabilized by extensive intra- and inter­molecular hydrogen bonds. In both structures, sulfon­amide groups are hydrogen bonded via the N and O atoms and form chains of mol­ecules. The carbamoyl groups are also hydrogen bonded, involving the O and N atoms, further strengthening the polymeric chains running along the c and a axes in the 2- and 4-chloro derivatives, respectively. Carbamoylsulfonamide derivatives are novel compounds with a great potential for medicinal applications.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108009530/hj3069sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108009530/hj3069Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108009530/hj3069IIsup3.hkl
Contains datablock II

CCDC references: 690200; 690201

Comment top

Benzenesulfonamide derivatives are well known in the biological sciences for their antibacterial, anticancer and anti-HIV activities (Brzozowski, 1996; Stawinski, 1997; Alovero et al., 2001). In the field of catalysis, their chloro-derivatives are particularly important for carrying out a huge number of oxidation reactions wherein the reaction kinetics are very important (Shashikala & Rangappa, 2002; Puttaswamy et al., 2001). The crystal structures of a number of interesting derivatives of benzenesulfonamide have been reported recently (Clark et al., 2003; Vyas et al., 2003; Singh et al., 2004; Bocelli et al., 1995; Sutton & Cody, 1989; Furuya et al., 1989). While continuing our research on the synthesis of biologically important 1,2-benzothiazine derivatives (Siddiqui et al., 2007, 2008), we have devised a simple and straightforward route for the synthesis of o-[(chlorophenyl)carbamoyl] benzene sulfonamide derivatives directly from saccharin as starting material. The syntheses of only two unsubstituted o-cyclohexyl and o-phenylcarbamoylbenzene sulfonamide derivatives have been reported to date, utilizing N-vinylsulfobenzimide as starting material (Kiyoshi, 1959). Here, we report the syntheses and crystal structures of two new benzenesulfonamides, the 2-chloro- and 4-chlorophenyl derivatives of the title compound, (I) and (II), respectively.

The molecular structure of (I) is presented in Fig. 1. The mean planes of the C1–C6 and C8–C13 phenyl rings are inclined at 48.83 (8)° with respect to each other, while the carbamoyl group, O1/N2/C7, is inclined at 70.51 (13) and 29.6 (2)°, respectively, with these phenyl rings. The structure contains two distinct patterns of hydrogen bonds involving N—H···O-type intermolecular interactions (Fig. 2). The sulfonamide groups are hydrogen bonded via atoms N1 and O3, forming chains of molecules. The carbamoyl groups are also hydrogen bonded, involving atoms O1 and N2, thus resulting in two parallel hydrogen-bonding patterns and affording stability to the polymeric chains running parallel to the c axis. There are two non-classical intermolecular C—H···O hydrogen bonds and the structure is further stabilized by four additional intramolecular interactions, N1—H1NA···O1, C13—H13···O1, C2—H2···O3 and N2—H2N···Cl1, resulting in seven-, six-, five- and five-membered rings, representing S(7), S(6), S(5) and S(5) motifs, respectively (Bernstein et al., 1994); details of the hydrogen-bonding geometry are given in Table 1.

The molecular structure of (II) is presented in Fig. 3. The mean planes of the C1–C6 and C8–C13 phenyl rings are inclined at 42.92 (6)° with respect to each other, while the carbamoyl group, O1/N2/C7, is inclined at 57.10 (11) and 17.96 (18)°, respectively, with these phenyl rings. The structure of (II) also contains two patterns of hydrogen bonds (Fig. 4), similar to those observed in (I). The sulfonamide groups in (II) are hydrogen bonded via atoms N1 and O3, forming chains of molecules. The carbamoyl groups are also hydrogen bonded, involving atoms O1 and N2, thus resulting in two parallel hydrogen-bonding patterns and affording stability to the polymeric chains running parallel to the a axis. There are two non-classical C—H···O hydrogen bonds and the structure is further stabilized by three additional intramolecular interactions, N1—H1NA···O1, C13—H13···O1 and C2—H2···O3, resulting in seven-, six- and five-membered rings, representing S(7), S(6) and S(5) motifs, respectively; details of the hydrogen-bonding geometry are given in Table 2.

In both molecules, the conformation about the S—N bond is in agreement with the conformation of a handful of structures containing an o-C-substituted benzenesulfonamide fragment; there were 14 hits in the Cambridge Structural Database (CSD, Version 5.29; Allen, 2002). The N1 atoms in both structures are tetrahedral, with angles at N1 in the ranges 105 (3)–120 (3)° (sum 338°) and 112 (2)–116 (3)° (sum 342°) for (I) and (II), respectively. The H atoms bonded to atom N1 and atoms O2 and O3 bonded to atom S1 are staggered, as observed in the compound with CSD refcode COYVER (Foresti et al., 1985). Several structures have been reported wherein the H and O atoms of the sulfonamide unit are eclipsed, e.g. refcodes ENIROI (Vyas et al., 2003), GUFQED01 (Clark et al., 2005) and ZZZULS01 (Tremayne et al., 2002). In a toluene sulfonamide (Helliwell et al., 1997), the C-substitents on N atom and the O atoms of the sulfonamide unit are also eclipsed. The N1—S1—C1—C6 torsion angles in (I) and (II) are -71.6 (3) and -76.1 (2)°, respectively. The corresponding angles in the structures quoted above vary between -18.95 (ZZZULS01) and -87.85° (ENIROI), depending on the substituents present on the benzene ring as well as on the inter- and intramolecular interactions between the substituents.

The molecular dimensions in the two structures are in agreement with the corresponding dimensions reported for similar structures quoted above (Clark et al., 2003; Vyas et al., 2003; Singh et al., 2004; Bocelli et al., 1995; Sutton & Cody, 1989; Furuya et al., 1989), with an average SO distance of 1.435 (5) Å and S—N, S—C and Cl—C distances of 1.613 (3), 1.774 (3) and 1.734 (3) Å, respectively, in (I), and an average SO distance of 1.433 (4) Å and S—N, S—C and Cl—C distances of 1.609 (2), 1.778 (2) and 1.739 (3) Å, respectively, in (II). The only minor difference in the bond lengths is observed for the N2—C7 bond [1.357 (4) and 1.340 (3) Å, in (I) and (II), respectively]. The bond angles at atoms N2 and C8 also reflect a slight influence of atom Cl1, which is bonded to atoms C9 and C11 in (I) and (II), respectively. Thus, the C7—N2—C8 bond angles are 126.0 (3) and 128.8 (2)° in (I) and (II), respectively, while the N2—C8—C9 and N2—C8—C13 bond angles have values of 119.1 (3) and 122.6 (3)° in (I), and 116.4 (2) and 123.8 (2)° in (II), respectively.

Experimental top

A suspension of saccharin (1.0 g, 5.46 mmol,) and o- or p-chloroaniline (5 ml, in excess) was stirred first at room temperature (1.5 h) and then at high temperature (373 K, 2–4 h). The resulting light-brown solution was cooled to room temperature, diluted in chloroform, and washed with dilute hydrochloric acid (2M, 2 × 20 ml) and water. The organic layer was dried over magnesium sulfate and then evaporated at reduced pressure (11 Torr; 1 Torr = 133.322 Pa) to obtain light-pink and colourless solid products, (I) and (II), respectively. The products were crystallized from MeOH–CHCl3 (1:4 v/v) solutions by slow evaporation at 313 K.

Analysis for (I): IR (neat, νmax, cm-1): NH and NH2 3306 (br), CO 1662 (m), SO2 1342 and 1165 (s); 1H NMR (300 MHz, acetone-d6, δ, p.p.m.): 6.62 (s, 2H, NH2), 7.30 (ddd, 1H, J = 1.46, 7.68 and 9.14 Hz, H4'), 7.34 (m, 1H, H5'), 7.46 (dd, 1H, J = 1.47 and 8.05 Hz, H3'), 7.73–7.83 (m, 2H, H6' and H4), 7.93 (d, 1H, J = 7.1 Hz, H5), 8.09 (dd, 2H, J = 1.46 and 7.32 Hz, H3 and H6), 9.51 (s, 1H, NH); 13C NMR (Frequency?, Medium?, δ, p.p.m.): 206.2, 133.2, 131.6, 131.5, 130.4, 129.7, 128.5, 128.3, 127.8, 127.1; yield: 1.16 g, 3.77 mmol, 69%; m.p. 382–383 K.

Analysis for (II): IR (neat, νmax, cm-1): NH 3355 (m), NH2 3265, 3235 (m), CO 1636 (s), SO2 1349, 1157 (s); 1H NMR (300 MHz, DMSO-d6, δ, p.p.m.): 6.91–7.10 (4H, m, C6H4), 7.32–7.53 (4H, m, C6H4), 10.55 (1H, s, NH); 13C NMR (Frequency?, Medium?, δ, p.p.m.): 165.7, 140.1, 138.1, 133.8, 131.4, 129.9, 129.9, 129.2, 129.0, 128.6, 124.2, 121.0, 120.3; yield: 1.32 g, 4.26 mmol, 78%; m.p. 475–476 K.

Refinement top

For both structures, H atoms bonded to C atoms were included in the refinements at geometrically idealized positions, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N atoms were allowed to refine with Uiso(H) = 1.2Ueq(N). The final difference maps were free of chemically significant features. An absolute structure could not be established by the Flack method (Flack, 1983) as a twin refinement gave a 0.55 (8):0.45 (8) mixture. Friedel pairs were, therefore, merged.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. Intramolecular interactions (dashed lines) in the unit cell of (I) involving sulfonamide and carbamoyl groups, resulting in two parallel hydrogen-bonding patterns, thus forming polymeric chains running parallel to the c axis.
[Figure 3] Fig. 3. A drawing of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are represented by dashed lines.
[Figure 4] Fig. 4. Intramolecular interactions (dashed lines) in the unit cell of (II) involving sulfonamide and carbamoyl groups, resulting in two parallel hydrogen-bonding patterns, thus forming polymeric chains running parallel to the a axis.
(I) 2-[N-(2-chlorophenyl)carbamoyl]benzenesulfonamide top
Crystal data top
C13H11ClN2O3SF(000) = 640
Mr = 310.75Dx = 1.602 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2709 reflections
a = 15.734 (9) Åθ = 2.3–27.5°
b = 10.614 (6) ŵ = 0.47 mm1
c = 7.717 (3) ÅT = 173 K
V = 1288.7 (12) Å3Prism, colourless
Z = 40.18 × 0.12 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1571 independent reflections
Radiation source: fine-focus sealed tube1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2020
Tmin = 0.921, Tmax = 0.968k = 1313
2709 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.047P)2 + 0.25P]
where P = (Fo2 + 2Fc2)/3
1571 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C13H11ClN2O3SV = 1288.7 (12) Å3
Mr = 310.75Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.734 (9) ŵ = 0.47 mm1
b = 10.614 (6) ÅT = 173 K
c = 7.717 (3) Å0.18 × 0.12 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
1571 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1353 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.968Rint = 0.030
2709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
1571 reflectionsΔρmin = 0.33 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.08066 (5)0.81417 (7)0.19375 (18)0.0309 (2)
S10.02254 (4)0.18986 (6)0.19342 (12)0.02041 (18)
O10.06897 (13)0.3891 (2)0.1186 (3)0.0254 (5)
O20.08444 (13)0.2757 (2)0.2632 (3)0.0266 (5)
O30.00651 (16)0.0865 (2)0.2966 (3)0.0321 (6)
N10.06339 (17)0.1298 (3)0.0204 (4)0.0246 (6)
H1NA0.077 (2)0.190 (3)0.061 (5)0.030*
H1NB0.031 (2)0.069 (4)0.006 (5)0.030*
N20.06043 (17)0.5470 (2)0.0823 (4)0.0212 (6)
H2N0.032 (2)0.578 (3)0.152 (5)0.025*
C10.06698 (18)0.2832 (3)0.1383 (4)0.0194 (6)
C20.1471 (2)0.2402 (3)0.1813 (5)0.0261 (6)
H20.15350.16310.24230.031*
C30.2185 (2)0.3101 (3)0.1352 (5)0.0302 (8)
H30.27370.28010.16300.036*
C40.2088 (2)0.4231 (3)0.0488 (5)0.0261 (7)
H40.25760.47010.01590.031*
C50.12811 (19)0.4688 (3)0.0096 (5)0.0251 (7)
H50.12220.54760.04760.030*
C60.05605 (19)0.4000 (3)0.0533 (4)0.0189 (6)
C70.03036 (18)0.4440 (3)0.0020 (4)0.0200 (6)
C80.1456 (2)0.5914 (3)0.0788 (4)0.0208 (6)
C90.1629 (2)0.7139 (3)0.1360 (4)0.0237 (7)
C100.2461 (2)0.7571 (3)0.1498 (5)0.0301 (7)
H100.25700.83930.19350.036*
C110.3123 (2)0.6815 (4)0.1006 (5)0.0334 (8)
H110.36910.71110.10920.040*
C120.2962 (2)0.5612 (3)0.0379 (5)0.0302 (8)
H120.34200.50970.00040.036*
C130.21369 (19)0.5157 (3)0.0297 (5)0.0274 (7)
H130.20360.43220.00970.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0413 (4)0.0190 (3)0.0323 (4)0.0002 (3)0.0054 (4)0.0025 (4)
S10.0229 (4)0.0181 (3)0.0202 (3)0.0010 (3)0.0000 (3)0.0007 (3)
O10.0300 (12)0.0229 (11)0.0234 (11)0.0029 (9)0.0067 (9)0.0049 (9)
O20.0253 (11)0.0250 (11)0.0296 (11)0.0013 (10)0.0077 (9)0.0052 (10)
O30.0400 (14)0.0238 (11)0.0324 (13)0.0037 (11)0.0048 (11)0.0079 (11)
N10.0262 (14)0.0218 (14)0.0259 (14)0.0004 (12)0.0007 (12)0.0051 (12)
N20.0258 (14)0.0169 (13)0.0209 (13)0.0005 (11)0.0042 (10)0.0014 (11)
C10.0229 (15)0.0159 (14)0.0195 (13)0.0007 (12)0.0006 (12)0.0038 (11)
C20.0272 (15)0.0224 (14)0.0287 (16)0.0060 (13)0.0037 (14)0.0000 (16)
C30.0206 (15)0.034 (2)0.0362 (19)0.0066 (15)0.0027 (14)0.0093 (15)
C40.0225 (16)0.0239 (16)0.0318 (17)0.0047 (13)0.0033 (13)0.0047 (13)
C50.0275 (16)0.0231 (16)0.0246 (15)0.0048 (13)0.0026 (13)0.0025 (13)
C60.0243 (16)0.0164 (14)0.0159 (14)0.0021 (12)0.0002 (12)0.0024 (11)
C70.0229 (15)0.0151 (14)0.0221 (14)0.0020 (12)0.0026 (13)0.0026 (12)
C80.0250 (16)0.0191 (15)0.0184 (14)0.0034 (13)0.0002 (12)0.0010 (12)
C90.0297 (17)0.0215 (15)0.0198 (14)0.0041 (13)0.0019 (13)0.0016 (12)
C100.0388 (18)0.0242 (16)0.0272 (17)0.0125 (15)0.0015 (14)0.0031 (13)
C110.0315 (19)0.041 (2)0.0273 (18)0.0127 (16)0.0028 (15)0.0058 (15)
C120.0236 (16)0.0338 (18)0.0332 (19)0.0010 (15)0.0028 (14)0.0049 (15)
C130.0279 (16)0.0215 (16)0.0327 (18)0.0012 (14)0.0018 (13)0.0045 (13)
Geometric parameters (Å, º) top
Cl1—C91.734 (3)C3—H30.9500
S1—O31.431 (3)C4—C51.392 (5)
S1—O21.438 (2)C4—H40.9500
S1—N11.613 (3)C5—C61.390 (4)
S1—C11.774 (3)C5—H50.9500
O1—C71.232 (4)C6—C71.499 (4)
N1—H1NA0.93 (4)C8—C131.393 (5)
N1—H1NB0.85 (4)C8—C91.400 (4)
N2—C71.357 (4)C9—C101.392 (5)
N2—C81.420 (4)C10—C111.369 (5)
N2—H2N0.77 (4)C10—H100.9500
C1—C21.381 (4)C11—C121.388 (5)
C1—C61.413 (4)C11—H110.9500
C2—C31.392 (5)C12—C131.387 (4)
C2—H20.9500C12—H120.9500
C3—C41.381 (5)C13—H130.9500
O3—S1—O2119.58 (18)C4—C5—H5119.7
O3—S1—N1106.54 (15)C5—C6—C1118.3 (3)
O2—S1—N1106.90 (15)C5—C6—C7120.4 (3)
O3—S1—C1107.95 (14)C1—C6—C7121.0 (3)
O2—S1—C1105.88 (14)O1—C7—N2124.0 (3)
N1—S1—C1109.80 (18)O1—C7—C6120.5 (3)
S1—N1—H1NA113 (2)N2—C7—C6115.5 (3)
S1—N1—H1NB105 (3)C13—C8—C9118.2 (3)
H1NA—N1—H1NB120 (3)C13—C8—N2122.6 (3)
C7—N2—C8126.0 (3)C9—C8—N2119.1 (3)
C7—N2—H2N118 (3)C10—C9—C8120.9 (3)
C8—N2—H2N115 (3)C10—C9—Cl1118.7 (3)
C2—C1—C6120.8 (3)C8—C9—Cl1120.4 (3)
C2—C1—S1118.9 (2)C11—C10—C9120.1 (3)
C6—C1—S1120.3 (2)C11—C10—H10120.0
C1—C2—C3119.9 (3)C9—C10—H10120.0
C1—C2—H2120.0C10—C11—C12119.8 (3)
C3—C2—H2120.0C10—C11—H11120.1
C4—C3—C2119.8 (3)C12—C11—H11120.1
C4—C3—H3120.1C13—C12—C11120.5 (3)
C2—C3—H3120.1C13—C12—H12119.7
C3—C4—C5120.5 (3)C11—C12—H12119.7
C3—C4—H4119.7C12—C13—C8120.5 (3)
C5—C4—H4119.7C12—C13—H13119.8
C6—C5—C4120.5 (3)C8—C13—H13119.8
C6—C5—H5119.7
O3—S1—C1—C26.8 (3)C8—N2—C7—C6166.7 (3)
O2—S1—C1—C2135.9 (3)C5—C6—C7—O1106.9 (3)
N1—S1—C1—C2109.0 (3)C1—C6—C7—O167.9 (4)
O3—S1—C1—C6172.7 (2)C5—C6—C7—N272.0 (4)
O2—S1—C1—C643.5 (3)C1—C6—C7—N2113.2 (3)
N1—S1—C1—C671.6 (3)C7—N2—C8—C1319.2 (5)
C6—C1—C2—C32.3 (5)C7—N2—C8—C9164.5 (3)
S1—C1—C2—C3178.2 (3)C13—C8—C9—C102.5 (5)
C1—C2—C3—C41.0 (5)N2—C8—C9—C10174.0 (3)
C2—C3—C4—C50.9 (5)C13—C8—C9—Cl1178.4 (3)
C3—C4—C5—C61.4 (5)N2—C8—C9—Cl15.1 (4)
C4—C5—C6—C10.0 (4)C8—C9—C10—C112.7 (5)
C4—C5—C6—C7174.9 (3)Cl1—C9—C10—C11178.2 (3)
C2—C1—C6—C51.8 (4)C9—C10—C11—C120.4 (5)
S1—C1—C6—C5178.7 (2)C10—C11—C12—C131.9 (5)
C2—C1—C6—C7176.7 (3)C11—C12—C13—C82.1 (5)
S1—C1—C6—C73.8 (4)C9—C8—C13—C120.1 (5)
C8—N2—C7—O114.5 (5)N2—C8—C13—C12176.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl10.77 (4)2.64 (4)2.981 (3)109 (3)
N1—H1NA···O10.93 (4)2.16 (4)2.955 (4)144 (3)
N1—H1NB···O3i0.85 (4)2.28 (4)3.009 (4)144 (3)
N2—H2N···O1ii0.77 (4)2.40 (4)3.152 (4)163 (3)
C2—H2···O30.952.492.890 (4)106
C13—H13···O10.952.322.881 (4)117
C3—H3···O2iii0.952.443.380 (4)173
C5—H5···O2iv0.952.453.382 (4)167
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x, y+1, z1/2.
(II) 2-[N-(4-chlorophenyl)carbamoyl]benzenesulfonamide top
Crystal data top
C13H11ClN2O3SF(000) = 1280
Mr = 310.75Dx = 1.572 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9119 reflections
a = 7.435 (2) Åθ = 3.8–27.5°
b = 16.006 (6) ŵ = 0.46 mm1
c = 22.061 (7) ÅT = 173 K
V = 2625.4 (15) Å3Prism, colourless
Z = 80.12 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3005 independent reflections
Radiation source: fine-focus sealed tube2019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω and ϕ scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.947, Tmax = 0.973k = 1920
9119 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.061P)2 + 0.61P]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C13H11ClN2O3SV = 2625.4 (15) Å3
Mr = 310.75Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.435 (2) ŵ = 0.46 mm1
b = 16.006 (6) ÅT = 173 K
c = 22.061 (7) Å0.12 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2019 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.973Rint = 0.061
9119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3005 reflectionsΔρmin = 0.44 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73145 (11)0.04552 (5)0.20202 (3)0.0473 (2)
S10.83054 (8)0.22246 (4)0.16281 (3)0.02399 (18)
O10.5441 (2)0.17758 (10)0.05808 (7)0.0264 (4)
O20.9182 (2)0.17305 (11)0.11770 (7)0.0297 (4)
O30.9267 (2)0.24784 (12)0.21619 (7)0.0327 (4)
N10.6573 (3)0.17113 (14)0.18574 (11)0.0282 (5)
H1NA0.591 (4)0.1568 (18)0.1589 (13)0.034*
H1NB0.608 (4)0.1932 (18)0.2160 (13)0.034*
N20.7105 (3)0.22676 (14)0.02088 (9)0.0244 (5)
H2N0.766 (4)0.2681 (19)0.0304 (12)0.029*
C10.7545 (3)0.31503 (15)0.12634 (10)0.0212 (5)
C20.7717 (3)0.39029 (16)0.15648 (11)0.0274 (6)
H20.82380.39180.19580.033*
C30.7130 (3)0.46374 (16)0.12940 (12)0.0314 (6)
H30.72080.51520.15070.038*
C40.6435 (3)0.46189 (16)0.07169 (11)0.0301 (6)
H40.60440.51220.05310.036*
C50.6302 (3)0.38739 (16)0.04059 (11)0.0270 (6)
H50.58550.38730.00030.032*
C60.6816 (3)0.31231 (15)0.06751 (10)0.0219 (5)
C70.6418 (3)0.23174 (15)0.03514 (10)0.0219 (5)
C80.7000 (3)0.15984 (16)0.06288 (10)0.0237 (5)
C90.7565 (3)0.17711 (17)0.12205 (10)0.0284 (6)
H90.78810.23260.13300.034*
C100.7668 (3)0.11454 (18)0.16439 (11)0.0326 (6)
H100.80720.12630.20430.039*
C110.7176 (3)0.03377 (18)0.14832 (11)0.0312 (6)
C120.6573 (3)0.01580 (17)0.09052 (11)0.0303 (6)
H120.62200.03950.08020.036*
C130.6485 (3)0.07950 (16)0.04747 (11)0.0274 (6)
H130.60730.06770.00760.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0590 (5)0.0457 (5)0.0372 (4)0.0022 (4)0.0049 (3)0.0178 (3)
S10.0279 (3)0.0230 (3)0.0211 (3)0.0025 (3)0.0011 (2)0.0023 (2)
O10.0300 (8)0.0260 (10)0.0231 (8)0.0036 (8)0.0022 (7)0.0000 (7)
O20.0321 (9)0.0282 (10)0.0288 (9)0.0073 (8)0.0046 (7)0.0005 (8)
O30.0398 (10)0.0333 (10)0.0250 (9)0.0010 (8)0.0099 (8)0.0030 (8)
N10.0346 (12)0.0265 (13)0.0233 (11)0.0006 (10)0.0029 (9)0.0027 (9)
N20.0279 (11)0.0226 (11)0.0226 (10)0.0045 (9)0.0012 (8)0.0003 (9)
C10.0236 (11)0.0225 (13)0.0177 (11)0.0020 (10)0.0025 (9)0.0015 (10)
C20.0336 (13)0.0249 (14)0.0235 (12)0.0014 (11)0.0006 (10)0.0006 (10)
C30.0376 (13)0.0212 (13)0.0353 (14)0.0019 (11)0.0052 (11)0.0025 (11)
C40.0306 (13)0.0235 (14)0.0361 (14)0.0031 (11)0.0016 (11)0.0091 (12)
C50.0283 (12)0.0279 (14)0.0248 (12)0.0006 (11)0.0015 (10)0.0066 (11)
C60.0215 (11)0.0219 (13)0.0223 (12)0.0015 (10)0.0030 (9)0.0026 (10)
C70.0216 (11)0.0247 (14)0.0194 (11)0.0023 (10)0.0027 (9)0.0020 (10)
C80.0208 (11)0.0297 (14)0.0205 (11)0.0010 (10)0.0007 (9)0.0011 (10)
C90.0307 (13)0.0320 (14)0.0225 (12)0.0039 (11)0.0004 (10)0.0006 (11)
C100.0352 (14)0.0435 (17)0.0190 (12)0.0019 (12)0.0025 (10)0.0028 (11)
C110.0302 (12)0.0376 (16)0.0257 (13)0.0010 (12)0.0024 (10)0.0090 (11)
C120.0331 (13)0.0272 (14)0.0305 (13)0.0034 (11)0.0003 (11)0.0034 (11)
C130.0279 (12)0.0296 (14)0.0245 (12)0.0004 (11)0.0012 (10)0.0001 (11)
Geometric parameters (Å, º) top
Cl1—C111.739 (3)C3—H30.9500
S1—O21.429 (2)C4—C51.379 (4)
S1—O31.436 (2)C4—H40.9500
S1—N11.609 (2)C5—C61.394 (3)
S1—C11.778 (2)C5—H50.9500
O1—C71.239 (3)C6—C71.503 (3)
N1—H1NA0.80 (3)C8—C131.384 (3)
N1—H1NB0.84 (3)C8—C91.399 (3)
N2—C71.340 (3)C9—C101.372 (4)
N2—C81.418 (3)C9—H90.9500
N2—H2N0.81 (3)C10—C111.390 (4)
C1—C21.382 (3)C10—H100.9500
C1—C61.407 (3)C11—C121.382 (4)
C2—C31.389 (4)C12—C131.395 (3)
C2—H20.9500C12—H120.9500
C3—C41.374 (4)C13—H130.9500
O2—S1—O3120.04 (11)C6—C5—H5119.5
O2—S1—N1107.55 (12)C5—C6—C1118.2 (2)
O3—S1—N1106.55 (12)C5—C6—C7118.9 (2)
O2—S1—C1106.94 (10)C1—C6—C7122.7 (2)
O3—S1—C1107.08 (11)O1—C7—N2124.0 (2)
N1—S1—C1108.25 (11)O1—C7—C6121.4 (2)
S1—N1—H1NA114 (2)N2—C7—C6114.5 (2)
S1—N1—H1NB112 (2)C13—C8—C9119.7 (2)
H1NA—N1—H1NB116 (3)C13—C8—N2123.8 (2)
C7—N2—C8128.8 (2)C9—C8—N2116.4 (2)
C7—N2—H2N112.7 (19)C10—C9—C8120.5 (3)
C8—N2—H2N118.4 (19)C10—C9—H9119.7
C2—C1—C6120.4 (2)C8—C9—H9119.7
C2—C1—S1118.63 (17)C9—C10—C11119.4 (2)
C6—C1—S1120.93 (18)C9—C10—H10120.3
C1—C2—C3120.1 (2)C11—C10—H10120.3
C1—C2—H2119.9C12—C11—C10121.0 (2)
C3—C2—H2119.9C12—C11—Cl1119.7 (2)
C4—C3—C2119.9 (2)C10—C11—Cl1119.32 (19)
C4—C3—H3120.1C11—C12—C13119.4 (3)
C2—C3—H3120.1C11—C12—H12120.3
C3—C4—C5120.4 (2)C13—C12—H12120.3
C3—C4—H4119.8C8—C13—C12119.9 (2)
C5—C4—H4119.8C8—C13—H13120.0
C4—C5—C6120.9 (2)C12—C13—H13120.0
C4—C5—H5119.5
O2—S1—C1—C2139.24 (19)C8—N2—C7—C6179.1 (2)
O3—S1—C1—C29.4 (2)C5—C6—C7—O1119.2 (2)
N1—S1—C1—C2105.1 (2)C1—C6—C7—O155.1 (3)
O2—S1—C1—C639.5 (2)C5—C6—C7—N256.7 (3)
O3—S1—C1—C6169.33 (18)C1—C6—C7—N2129.0 (2)
N1—S1—C1—C676.1 (2)C7—N2—C8—C1315.0 (4)
C6—C1—C2—C31.6 (4)C7—N2—C8—C9169.0 (2)
S1—C1—C2—C3179.72 (18)C13—C8—C9—C102.1 (4)
C1—C2—C3—C42.3 (4)N2—C8—C9—C10174.1 (2)
C2—C3—C4—C50.6 (4)C8—C9—C10—C111.1 (4)
C3—C4—C5—C62.0 (4)C9—C10—C11—C120.5 (4)
C4—C5—C6—C12.7 (3)C9—C10—C11—Cl1179.79 (19)
C4—C5—C6—C7171.9 (2)C10—C11—C12—C131.1 (4)
C2—C1—C6—C50.9 (3)Cl1—C11—C12—C13179.23 (18)
S1—C1—C6—C5177.79 (17)C9—C8—C13—C121.5 (3)
C2—C1—C6—C7173.4 (2)N2—C8—C13—C12174.3 (2)
S1—C1—C6—C77.9 (3)C11—C12—C13—C80.0 (4)
C8—N2—C7—O15.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.81 (3)2.32 (3)3.028 (3)146 (3)
N1—H1NA···O10.80 (3)2.28 (3)2.941 (3)141 (3)
N1—H1NB···O3ii0.84 (3)2.20 (3)3.021 (3)168 (3)
C12—H12···O1iii0.952.583.512 (3)167
C2—H2···O30.952.472.874 (3)106
C13—H13···O10.952.332.914 (3)120
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H11ClN2O3SC13H11ClN2O3S
Mr310.75310.75
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, Pbca
Temperature (K)173173
a, b, c (Å)15.734 (9), 10.614 (6), 7.717 (3)7.435 (2), 16.006 (6), 22.061 (7)
V3)1288.7 (12)2625.4 (15)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.470.46
Crystal size (mm)0.18 × 0.12 × 0.070.12 × 0.07 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Multi-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.921, 0.9680.947, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
2709, 1571, 1353 9119, 3005, 2019
Rint0.0300.061
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.01 0.045, 0.122, 1.04
No. of reflections15713005
No. of parameters191190
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.330.26, 0.44

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl10.77 (4)2.64 (4)2.981 (3)109 (3)
N1—H1NA···O10.93 (4)2.16 (4)2.955 (4)144 (3)
N1—H1NB···O3i0.85 (4)2.28 (4)3.009 (4)144 (3)
N2—H2N···O1ii0.77 (4)2.40 (4)3.152 (4)163 (3)
C2—H2···O30.952.492.890 (4)106
C13—H13···O10.952.322.881 (4)117
C3—H3···O2iii0.952.443.380 (4)173
C5—H5···O2iv0.952.453.382 (4)167
Symmetry codes: (i) x, y, z1/2; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z; (iv) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.81 (3)2.32 (3)3.028 (3)146 (3)
N1—H1NA···O10.80 (3)2.28 (3)2.941 (3)141 (3)
N1—H1NB···O3ii0.84 (3)2.20 (3)3.021 (3)168 (3)
C12—H12···O1iii0.952.583.512 (3)167
C2—H2···O30.952.472.874 (3)106
C13—H13···O10.952.332.914 (3)120
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds