Buy article online - an online subscription or single-article purchase is required to access this article.
4,4′-(
p-Phenylene)bipyridazine, C
14H
10N
4, (I), and the coordination compounds
catena-poly[[dibromidocopper(II)]-μ-4,4′-(
p-phenylene)bipyridazine-κ
2N2:
N2′], [CuBr
2(C
14H
10N
4)]
n, (II), and
catena-poly[[[tetrakis(μ-acetato-κ
2O:
O′)dicopper(II)]-μ-4,4′-(
p-phenylene)bipyridazine-κ
2N1:
N1′] chloroform disolvate], {[Cu
2(C
2H
3O
2)
4(C
14H
10N
4)]·2CHCl
3}
n, (III), contain a new extended bitopic ligand. The combination of the
p-phenylene spacer and the electron-deficient pyridazine rings precludes C—H
π interactions between the lengthy aromatic molecules, which could be suited for the synthesis of open-framework coordination polymers. In (I), the molecules are situated across a center of inversion and display a set of very weak intermolecular C—H
N hydrogen bonds [3.399 (3) and 3.608 (2) Å]. In (II) and (III), the ligand molecules are situated across a center of inversion and act as
N2,
N2′-bidentate [in (II)] and
N1,
N1′-bidentate [in (III)] long-distance bridges between the metal ions, leading to the formation of coordination chains [Cu—N = 2.005 (3) Å in (II) and 2.199 (2) Å in (III)]. In (II), the copper ion lies on a center of inversion and adopts CuN
2Br
4 (4+2)-coordination involving two long axial Cu—Br bonds [3.2421 (4) Å]. In (III), the copper ion has a tetragonal pyramidal CuO
4N environment. The uncoordinated pyridazine N atom and two acetate O atoms provide a multiple acceptor site for accommodation of a chloroform solvent molecule by trifurcated hydrogen bonding [C—H
O(N) = 3.298 (5)–3.541 (4) Å].
Supporting information
CCDC references: 697561; 697562; 697563
The ligand was synthesized by reacting 1,2,4,5-tetrazine (2.30 g, 28 mmol) and
1,4-diethynylbenzene (1.76 g, 14 mmol) in 40 ml of dry 1,4-dioxane (24 h, 353 K). The yield of pure colorless crystalline product was 2.95 g (90%). For the
synthesis of (II), CuBr2 (11.1 mg, 0.05 mmol), (I) (11.7 mg, 0.05 mmol) and
water (5 ml) were sealed in a Pyrex tube, heated at 443 K for 8 h and then
cooled to room temperature over a period of 48 h. This afforded green prisms
of (II) (yield 90%, 20.5 mg). Complex (III) was synthesized using the layering
technique: a solution of Cu(AcO)2.H2O (16.0 mg, 0.08 mmol) in methanol (3 ml) was layered over a solution of (I) (9.4 mg, 0.04 mmol) in a mixture of
methanol (2 ml) and chloroform (2 ml). Large green–blue prisms of (III) grew
on the walls of the tube as the solutions interdiffused over a period of 15 d
(yield 65%, 21.7 mg).
For (I), all the H atoms were found in intermediate difference Fourier maps and
were refined fully with isotropic displacement parameters [C—H =
0.91 (2)–0.99 (2) Å]. For (II) and (III), the H atoms were treated as riding
in geometrically idealized positions, with C—H (aromatic) distances of 0.93 Å, C—H (methyl) distances of 0.96 Å and C—H (chloroform) distances of
0.98 Å, and with Uiso(H) values of 1.2Ueq(C) and
[1.5Ueq(C) for the methyl groups].
For all compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.70.01; Farrugia, 1999).
(I) 4,4'-(
p-phenylene)bipyridazine
top
Crystal data top
C14H10N4 | Z = 1 |
Mr = 234.26 | F(000) = 122 |
Triclinic, P1 | Dx = 1.400 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3588 (7) Å | Cell parameters from 2129 reflections |
b = 6.9307 (9) Å | θ = 3.1–26.4° |
c = 7.0681 (10) Å | µ = 0.09 mm−1 |
α = 110.282 (3)° | T = 296 K |
β = 90.823 (3)° | Prism, colorless |
γ = 106.585 (2)° | 0.26 × 0.23 × 0.20 mm |
V = 277.80 (6) Å3 | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 894 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.028 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −7→7 |
2129 measured reflections | k = −8→7 |
1131 independent reflections | l = −8→8 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.137 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0658P)2 + 0.0624P] where P = (Fo2 + 2Fc2)/3 |
1131 reflections | (Δ/σ)max < 0.001 |
102 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Crystal data top
C14H10N4 | γ = 106.585 (2)° |
Mr = 234.26 | V = 277.80 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.3588 (7) Å | Mo Kα radiation |
b = 6.9307 (9) Å | µ = 0.09 mm−1 |
c = 7.0681 (10) Å | T = 296 K |
α = 110.282 (3)° | 0.26 × 0.23 × 0.20 mm |
β = 90.823 (3)° | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 894 reflections with I > 2σ(I) |
2129 measured reflections | Rint = 0.028 |
1131 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.137 | All H-atom parameters refined |
S = 1.10 | Δρmax = 0.30 e Å−3 |
1131 reflections | Δρmin = −0.18 e Å−3 |
102 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.4490 (3) | 0.6498 (3) | −0.2498 (2) | 0.0457 (5) | |
N2 | 0.3692 (2) | 0.7226 (3) | −0.0724 (2) | 0.0454 (5) | |
C1 | 0.5050 (3) | 0.8026 (3) | 0.0994 (3) | 0.0386 (5) | |
C2 | 0.7278 (3) | 0.8157 (3) | 0.1126 (3) | 0.0321 (4) | |
C3 | 0.8067 (3) | 0.7371 (3) | −0.0694 (3) | 0.0382 (5) | |
C4 | 0.6601 (3) | 0.6577 (3) | −0.2457 (3) | 0.0426 (5) | |
C5 | 0.8672 (3) | 0.9095 (3) | 0.3121 (2) | 0.0325 (4) | |
C6 | 0.8522 (3) | 1.0984 (3) | 0.4604 (3) | 0.0375 (5) | |
C7 | 1.0161 (3) | 0.8123 (3) | 0.3538 (3) | 0.0377 (5) | |
H1 | 0.438 (3) | 0.851 (3) | 0.223 (3) | 0.045 (5)* | |
H3 | 0.956 (3) | 0.736 (3) | −0.078 (3) | 0.045 (5)* | |
H4 | 0.711 (3) | 0.609 (4) | −0.368 (4) | 0.052 (6)* | |
H6 | 0.756 (3) | 1.170 (3) | 0.431 (3) | 0.046 (6)* | |
H7 | 1.026 (3) | 0.677 (4) | 0.249 (3) | 0.057 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0480 (10) | 0.0495 (10) | 0.0332 (9) | 0.0105 (8) | −0.0079 (7) | 0.0115 (8) |
N2 | 0.0385 (9) | 0.0518 (11) | 0.0404 (10) | 0.0120 (7) | −0.0053 (7) | 0.0122 (8) |
C1 | 0.0370 (10) | 0.0429 (11) | 0.0320 (10) | 0.0104 (8) | 0.0008 (8) | 0.0106 (8) |
C2 | 0.0354 (9) | 0.0330 (9) | 0.0262 (9) | 0.0076 (7) | 0.0005 (7) | 0.0112 (7) |
C3 | 0.0368 (10) | 0.0427 (11) | 0.0311 (10) | 0.0109 (8) | 0.0007 (7) | 0.0102 (8) |
C4 | 0.0507 (11) | 0.0458 (12) | 0.0261 (10) | 0.0127 (9) | 0.0020 (8) | 0.0089 (9) |
C5 | 0.0303 (8) | 0.0406 (10) | 0.0254 (9) | 0.0091 (7) | 0.0011 (6) | 0.0122 (8) |
C6 | 0.0384 (9) | 0.0424 (11) | 0.0324 (10) | 0.0177 (8) | −0.0018 (7) | 0.0104 (8) |
C7 | 0.0387 (9) | 0.0404 (11) | 0.0297 (10) | 0.0141 (8) | −0.0001 (7) | 0.0062 (8) |
Geometric parameters (Å, º) top
N1—C4 | 1.327 (3) | C3—H3 | 0.96 (2) |
N1—N2 | 1.345 (2) | C4—H4 | 0.91 (2) |
N2—C1 | 1.325 (2) | C5—C7 | 1.390 (3) |
C1—C2 | 1.393 (3) | C5—C6 | 1.395 (3) |
C1—H1 | 0.98 (2) | C6—C7i | 1.385 (2) |
C2—C3 | 1.376 (3) | C6—H6 | 0.95 (2) |
C2—C5 | 1.482 (2) | C7—C6i | 1.385 (2) |
C3—C4 | 1.387 (2) | C7—H7 | 0.99 (2) |
| | | |
C4—N1—N2 | 118.61 (15) | N1—C4—H4 | 117.0 (13) |
C1—N2—N1 | 118.85 (16) | C3—C4—H4 | 118.6 (13) |
N2—C1—C2 | 124.98 (17) | C7—C5—C6 | 118.94 (16) |
N2—C1—H1 | 115.2 (12) | C7—C5—C2 | 120.73 (16) |
C2—C1—H1 | 119.8 (12) | C6—C5—C2 | 120.33 (16) |
C3—C2—C1 | 115.71 (16) | C7i—C6—C5 | 120.47 (17) |
C3—C2—C5 | 123.19 (16) | C7i—C6—H6 | 119.9 (13) |
C1—C2—C5 | 121.10 (16) | C5—C6—H6 | 119.5 (13) |
C2—C3—C4 | 117.48 (17) | C6i—C7—C5 | 120.59 (17) |
C2—C3—H3 | 122.8 (12) | C6i—C7—H7 | 120.4 (12) |
C4—C3—H3 | 119.7 (12) | C5—C7—H7 | 119.0 (12) |
N1—C4—C3 | 124.35 (18) | | |
| | | |
C4—N1—N2—C1 | 1.1 (3) | C3—C2—C5—C7 | −42.7 (3) |
N1—N2—C1—C2 | −0.9 (3) | C1—C2—C5—C7 | 137.45 (19) |
N2—C1—C2—C3 | −0.3 (3) | C3—C2—C5—C6 | 136.7 (2) |
N2—C1—C2—C5 | 179.56 (17) | C1—C2—C5—C6 | −43.1 (3) |
C1—C2—C3—C4 | 1.2 (3) | C7—C5—C6—C7i | 0.1 (3) |
C5—C2—C3—C4 | −178.65 (17) | C2—C5—C6—C7i | −179.34 (17) |
N2—N1—C4—C3 | −0.2 (3) | C6—C5—C7—C6i | −0.1 (3) |
C2—C3—C4—N1 | −1.0 (3) | C2—C5—C7—C6i | 179.34 (17) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N1ii | 0.91 (2) | 2.66 (2) | 3.399 (3) | 139 (2) |
C3—H3···N2iii | 0.96 (2) | 2.65 (2) | 3.608 (2) | 175 (2) |
Symmetry codes: (ii) −x+1, −y+1, −z−1; (iii) x+1, y, z. |
(II) catena-poly[[dibromidocopper(II)]-µ
2-4,4'-(
p-phenylene)bipyridazine-
κ2N
2:N
2']
top
Crystal data top
[CuBr2(C14H10N4)] | F(000) = 442 |
Mr = 457.62 | Dx = 2.169 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 4.1377 (2) Å | Cell parameters from 3750 reflections |
b = 12.5407 (7) Å | θ = 2.2–26.3° |
c = 13.5301 (8) Å | µ = 7.26 mm−1 |
β = 93.786 (4)° | T = 296 K |
V = 700.54 (7) Å3 | Prism, green |
Z = 2 | 0.24 × 0.20 × 0.19 mm |
Data collection top
Siemens SMART CCD area-detector diffractometer | 1415 independent reflections |
Radiation source: fine-focus sealed tube | 1099 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 26.3°, θmin = 2.2° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −5→5 |
Tmin = 0.203, Tmax = 0.251 | k = −15→15 |
3750 measured reflections | l = −16→14 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0308P)2 + 0.206P] where P = (Fo2 + 2Fc2)/3 |
1415 reflections | (Δ/σ)max < 0.001 |
97 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
Crystal data top
[CuBr2(C14H10N4)] | V = 700.54 (7) Å3 |
Mr = 457.62 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.1377 (2) Å | µ = 7.26 mm−1 |
b = 12.5407 (7) Å | T = 296 K |
c = 13.5301 (8) Å | 0.24 × 0.20 × 0.19 mm |
β = 93.786 (4)° | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 1415 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 1099 reflections with I > 2σ(I) |
Tmin = 0.203, Tmax = 0.251 | Rint = 0.031 |
3750 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.54 e Å−3 |
1415 reflections | Δρmin = −0.37 e Å−3 |
97 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.0000 | 0.0000 | 0.0000 | 0.0350 (2) | |
Br1 | 0.38905 (9) | −0.07954 (3) | 0.11892 (3) | 0.03486 (15) | |
N1 | −0.0773 (8) | 0.1368 (3) | 0.1682 (2) | 0.0365 (8) | |
N2 | 0.0300 (7) | 0.1365 (2) | 0.0772 (2) | 0.0314 (8) | |
C1 | 0.1530 (9) | 0.2224 (3) | 0.0389 (3) | 0.0336 (9) | |
H1 | 0.2194 | 0.2182 | −0.0253 | 0.040* | |
C2 | 0.1907 (8) | 0.3205 (3) | 0.0889 (3) | 0.0262 (8) | |
C3 | 0.0708 (9) | 0.3222 (3) | 0.1811 (3) | 0.0314 (9) | |
H3 | 0.0755 | 0.3843 | 0.2187 | 0.038* | |
C4 | −0.0575 (10) | 0.2285 (3) | 0.2167 (3) | 0.0371 (10) | |
H4 | −0.1357 | 0.2304 | 0.2796 | 0.045* | |
C5 | 0.3470 (8) | 0.4126 (3) | 0.0428 (3) | 0.0274 (8) | |
C6 | 0.4070 (10) | 0.4144 (3) | −0.0570 (3) | 0.0383 (10) | |
H6 | 0.3429 | 0.3565 | −0.0965 | 0.046* | |
C7 | 0.4420 (10) | 0.5009 (3) | 0.0993 (3) | 0.0383 (10) | |
H7 | 0.4034 | 0.5029 | 0.1662 | 0.046* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0549 (4) | 0.0202 (4) | 0.0286 (4) | 0.0012 (3) | −0.0063 (3) | −0.0041 (3) |
Br1 | 0.0412 (2) | 0.0351 (3) | 0.0283 (2) | 0.00269 (19) | 0.00236 (16) | 0.00208 (18) |
N1 | 0.0471 (19) | 0.030 (2) | 0.033 (2) | −0.0041 (16) | 0.0073 (16) | −0.0023 (16) |
N2 | 0.0450 (19) | 0.0205 (18) | 0.0282 (19) | −0.0005 (15) | −0.0004 (15) | −0.0034 (14) |
C1 | 0.048 (2) | 0.027 (2) | 0.026 (2) | 0.0024 (19) | 0.0072 (18) | −0.0037 (18) |
C2 | 0.0267 (18) | 0.021 (2) | 0.030 (2) | 0.0029 (16) | −0.0030 (15) | −0.0035 (16) |
C3 | 0.039 (2) | 0.029 (2) | 0.026 (2) | −0.0033 (18) | 0.0005 (17) | −0.0075 (17) |
C4 | 0.046 (2) | 0.036 (3) | 0.030 (2) | −0.0024 (19) | 0.0058 (19) | −0.0085 (19) |
C5 | 0.0299 (18) | 0.021 (2) | 0.031 (2) | 0.0011 (16) | −0.0013 (16) | −0.0027 (17) |
C6 | 0.057 (2) | 0.026 (2) | 0.032 (2) | −0.011 (2) | 0.0042 (19) | −0.0124 (19) |
C7 | 0.053 (3) | 0.035 (3) | 0.027 (2) | −0.006 (2) | 0.0060 (19) | −0.0080 (18) |
Geometric parameters (Å, º) top
Cu1—N2i | 2.005 (3) | C2—C3 | 1.373 (5) |
Cu1—N2 | 2.005 (3) | C2—C5 | 1.481 (5) |
Cu1—Br1i | 2.4151 (4) | C3—C4 | 1.388 (5) |
Cu1—Br1 | 2.4151 (4) | C3—H3 | 0.9300 |
Cu1—Br1ii | 3.2421 (4) | C4—H4 | 0.9300 |
N1—C4 | 1.325 (5) | C5—C7 | 1.388 (5) |
N1—N2 | 1.336 (4) | C5—C6 | 1.390 (5) |
N2—C1 | 1.312 (4) | C6—C7iii | 1.376 (5) |
C1—C2 | 1.408 (5) | C6—H6 | 0.9300 |
C1—H1 | 0.9300 | C7—H7 | 0.9300 |
| | | |
N2i—Cu1—N2 | 180.00 (17) | C1—C2—C5 | 121.1 (3) |
N2i—Cu1—Br1i | 89.43 (9) | C2—C3—C4 | 118.2 (4) |
N2—Cu1—Br1i | 90.57 (9) | C2—C3—H3 | 120.9 |
N2i—Cu1—Br1 | 90.57 (9) | C4—C3—H3 | 120.9 |
N2—Cu1—Br1 | 89.43 (9) | N1—C4—C3 | 125.1 (4) |
Br1i—Cu1—Br1 | 180.00 (3) | N1—C4—H4 | 117.5 |
N2—Cu1—Br1ii | 88.40 (9) | C3—C4—H4 | 117.5 |
Br1—Cu1—Br1ii | 87.158 (12) | C7—C5—C6 | 117.4 (3) |
C4—N1—N2 | 116.5 (3) | C7—C5—C2 | 120.4 (3) |
C1—N2—N1 | 121.5 (3) | C6—C5—C2 | 122.2 (3) |
C1—N2—Cu1 | 120.5 (3) | C7iii—C6—C5 | 122.2 (4) |
N1—N2—Cu1 | 118.0 (2) | C7iii—C6—H6 | 118.9 |
N2—C1—C2 | 124.1 (4) | C5—C6—H6 | 118.9 |
N2—C1—H1 | 117.9 | C6iii—C7—C5 | 120.4 (4) |
C2—C1—H1 | 117.9 | C6iii—C7—H7 | 119.8 |
C3—C2—C1 | 114.5 (3) | C5—C7—H7 | 119.8 |
C3—C2—C5 | 124.4 (3) | | |
| | | |
C4—N1—N2—C1 | 1.0 (5) | C5—C2—C3—C4 | −177.3 (3) |
C4—N1—N2—Cu1 | −179.2 (3) | N2—N1—C4—C3 | −1.4 (6) |
Br1i—Cu1—N2—C1 | −66.2 (3) | C2—C3—C4—N1 | −0.8 (6) |
Br1—Cu1—N2—C1 | 113.8 (3) | C3—C2—C5—C7 | 13.4 (5) |
Br1i—Cu1—N2—N1 | 114.1 (3) | C1—C2—C5—C7 | −166.9 (4) |
Br1—Cu1—N2—N1 | −65.9 (3) | C3—C2—C5—C6 | −167.1 (4) |
N1—N2—C1—C2 | 1.5 (6) | C1—C2—C5—C6 | 12.6 (5) |
Cu1—N2—C1—C2 | −178.3 (3) | C7—C5—C6—C7iii | 0.8 (7) |
N2—C1—C2—C3 | −3.4 (6) | C2—C5—C6—C7iii | −178.7 (4) |
N2—C1—C2—C5 | 176.8 (3) | C6—C5—C7—C6iii | −0.8 (7) |
C1—C2—C3—C4 | 2.9 (5) | C2—C5—C7—C6iii | 178.7 (4) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z. |
(III) catena-poly[[[tetrakis(µ-acetato-
κ2O:
O')dicopper(II)]-
µ
2-4,4'-(
p-phenylene)bipyridazine-
κ2N
1:N
1'] chloroform
disolvate]
top
Crystal data top
[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3 | Z = 1 |
Mr = 836.25 | F(000) = 420 |
Triclinic, P1 | Dx = 1.738 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6349 (8) Å | Cell parameters from 8062 reflections |
b = 8.0203 (8) Å | θ = 2.6–26.5° |
c = 13.9312 (10) Å | µ = 1.88 mm−1 |
α = 104.601 (2)° | T = 296 K |
β = 103.993 (2)° | Prism, green-blue |
γ = 90.123 (3)° | 0.27 × 0.15 × 0.12 mm |
V = 799.21 (13) Å3 | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 3283 independent reflections |
Radiation source: fine-focus sealed tube | 2688 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 26.5°, θmin = 2.6° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.630, Tmax = 0.806 | k = −10→10 |
8062 measured reflections | l = −17→16 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0383P)2 + 0.1918P] where P = (Fo2 + 2Fc2)/3 |
3283 reflections | (Δ/σ)max = 0.001 |
201 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Crystal data top
[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3 | γ = 90.123 (3)° |
Mr = 836.25 | V = 799.21 (13) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.6349 (8) Å | Mo Kα radiation |
b = 8.0203 (8) Å | µ = 1.88 mm−1 |
c = 13.9312 (10) Å | T = 296 K |
α = 104.601 (2)° | 0.27 × 0.15 × 0.12 mm |
β = 103.993 (2)° | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 3283 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 2688 reflections with I > 2σ(I) |
Tmin = 0.630, Tmax = 0.806 | Rint = 0.035 |
8062 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.35 e Å−3 |
3283 reflections | Δρmin = −0.41 e Å−3 |
201 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.37515 (4) | 0.41141 (4) | 0.42032 (3) | 0.02542 (12) | |
O1 | 0.4749 (3) | 0.7837 (3) | 0.56696 (17) | 0.0371 (5) | |
O2 | 0.2681 (3) | 0.6361 (3) | 0.42876 (17) | 0.0394 (5) | |
O3 | 0.7298 (3) | 0.6220 (3) | 0.46891 (16) | 0.0359 (5) | |
O4 | 0.5206 (3) | 0.4719 (3) | 0.33358 (15) | 0.0365 (5) | |
N1 | 0.1314 (3) | 0.2811 (3) | 0.30510 (18) | 0.0291 (6) | |
N2 | 0.1189 (3) | 0.2746 (4) | 0.20707 (19) | 0.0380 (7) | |
C1 | −0.0328 (4) | 0.2105 (4) | 0.1390 (2) | 0.0368 (8) | |
H1 | −0.0397 | 0.2086 | 0.0711 | 0.044* | |
C2 | −0.1850 (4) | 0.1446 (4) | 0.1605 (2) | 0.0289 (7) | |
C3 | −0.1700 (4) | 0.1586 (4) | 0.2618 (2) | 0.0369 (8) | |
H3 | −0.2658 | 0.1219 | 0.2836 | 0.044* | |
C4 | −0.0099 (4) | 0.2280 (4) | 0.3310 (2) | 0.0367 (8) | |
H4 | −0.0008 | 0.2382 | 0.4000 | 0.044* | |
C5 | −0.3471 (4) | 0.0707 (4) | 0.0783 (2) | 0.0293 (7) | |
C6 | −0.5189 (4) | 0.1108 (4) | 0.0903 (2) | 0.0362 (8) | |
H6 | −0.5327 | 0.1853 | 0.1506 | 0.043* | |
C7 | −0.3322 (4) | −0.0400 (4) | −0.0126 (2) | 0.0396 (8) | |
H7 | −0.2177 | −0.0673 | −0.0214 | 0.048* | |
C8 | 0.3332 (4) | 0.7716 (4) | 0.4966 (2) | 0.0304 (7) | |
C9 | 0.2359 (5) | 0.9324 (4) | 0.4925 (3) | 0.0416 (8) | |
H9A | 0.2321 | 0.9944 | 0.5606 | 0.062* | |
H9B | 0.1148 | 0.9022 | 0.4506 | 0.062* | |
H9C | 0.2984 | 1.0038 | 0.4639 | 0.062* | |
C10 | 0.6657 (4) | 0.5640 (4) | 0.3743 (2) | 0.0295 (7) | |
C11 | 0.7700 (5) | 0.6105 (4) | 0.3052 (3) | 0.0423 (8) | |
H11A | 0.7356 | 0.5291 | 0.2391 | 0.064* | |
H11B | 0.8972 | 0.6076 | 0.3342 | 0.064* | |
H11C | 0.7439 | 0.7244 | 0.2981 | 0.064* | |
C12 | 0.2578 (5) | 0.6717 (5) | 0.1792 (3) | 0.0555 (10) | |
H12 | 0.2715 | 0.5881 | 0.2207 | 0.067* | |
Cl1 | 0.02744 (17) | 0.69281 (19) | 0.13244 (10) | 0.0885 (4) | |
Cl2 | 0.35719 (18) | 0.59579 (18) | 0.07766 (9) | 0.0910 (4) | |
Cl3 | 0.36454 (17) | 0.87143 (14) | 0.25682 (9) | 0.0720 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.02236 (19) | 0.0254 (2) | 0.0242 (2) | −0.00199 (13) | −0.00009 (14) | 0.00435 (14) |
O1 | 0.0365 (12) | 0.0291 (12) | 0.0404 (13) | 0.0034 (9) | 0.0024 (10) | 0.0066 (10) |
O2 | 0.0329 (12) | 0.0294 (12) | 0.0485 (14) | 0.0044 (9) | −0.0018 (10) | 0.0086 (10) |
O3 | 0.0332 (12) | 0.0439 (13) | 0.0275 (12) | −0.0073 (10) | 0.0042 (9) | 0.0069 (10) |
O4 | 0.0371 (12) | 0.0416 (13) | 0.0267 (12) | −0.0075 (10) | 0.0043 (10) | 0.0053 (10) |
N1 | 0.0246 (13) | 0.0318 (14) | 0.0264 (14) | −0.0018 (10) | −0.0001 (10) | 0.0059 (11) |
N2 | 0.0264 (14) | 0.0558 (18) | 0.0270 (15) | −0.0062 (12) | 0.0020 (11) | 0.0069 (13) |
C1 | 0.0297 (17) | 0.054 (2) | 0.0215 (16) | −0.0035 (15) | 0.0034 (13) | 0.0038 (15) |
C2 | 0.0221 (15) | 0.0341 (17) | 0.0232 (16) | −0.0020 (12) | −0.0006 (12) | 0.0007 (13) |
C3 | 0.0308 (17) | 0.046 (2) | 0.0292 (18) | −0.0116 (14) | 0.0021 (13) | 0.0075 (15) |
C4 | 0.0338 (17) | 0.049 (2) | 0.0227 (16) | −0.0092 (15) | 0.0001 (13) | 0.0079 (14) |
C5 | 0.0228 (15) | 0.0358 (17) | 0.0240 (16) | −0.0024 (12) | 0.0011 (12) | 0.0028 (13) |
C6 | 0.0292 (16) | 0.046 (2) | 0.0252 (16) | 0.0006 (14) | 0.0052 (13) | −0.0036 (14) |
C7 | 0.0215 (15) | 0.055 (2) | 0.0309 (18) | 0.0008 (14) | 0.0027 (13) | −0.0052 (15) |
C8 | 0.0339 (17) | 0.0263 (16) | 0.0382 (19) | 0.0046 (13) | 0.0172 (15) | 0.0133 (14) |
C9 | 0.043 (2) | 0.0316 (18) | 0.055 (2) | 0.0116 (15) | 0.0168 (17) | 0.0155 (16) |
C10 | 0.0309 (16) | 0.0267 (16) | 0.0304 (17) | 0.0053 (13) | 0.0069 (13) | 0.0073 (13) |
C11 | 0.0421 (19) | 0.050 (2) | 0.039 (2) | −0.0011 (16) | 0.0149 (16) | 0.0135 (16) |
C12 | 0.066 (3) | 0.053 (2) | 0.050 (2) | 0.005 (2) | 0.013 (2) | 0.0212 (19) |
Cl1 | 0.0641 (7) | 0.1268 (12) | 0.0844 (9) | 0.0106 (7) | 0.0168 (6) | 0.0466 (8) |
Cl2 | 0.0961 (10) | 0.1107 (11) | 0.0603 (8) | 0.0354 (8) | 0.0234 (7) | 0.0074 (7) |
Cl3 | 0.0962 (9) | 0.0542 (6) | 0.0657 (7) | −0.0054 (6) | 0.0237 (6) | 0.0126 (5) |
Geometric parameters (Å, º) top
Cu1—O1i | 1.960 (2) | C4—H4 | 0.9300 |
Cu1—O4 | 1.967 (2) | C5—C7 | 1.382 (4) |
Cu1—O2 | 1.969 (2) | C5—C6 | 1.390 (4) |
Cu1—O3i | 1.975 (2) | C6—C7ii | 1.370 (4) |
Cu1—N1 | 2.199 (2) | C6—H6 | 0.9300 |
Cu1—Cu1i | 2.6332 (7) | C7—H7 | 0.9300 |
O1—C8 | 1.257 (4) | C8—C9 | 1.496 (4) |
O2—C8 | 1.254 (4) | C9—H9A | 0.9600 |
O3—C10 | 1.253 (4) | C9—H9B | 0.9600 |
O4—C10 | 1.255 (3) | C9—H9C | 0.9600 |
N1—C4 | 1.318 (4) | C10—C11 | 1.500 (4) |
N1—N2 | 1.334 (3) | C11—H11A | 0.9600 |
N2—C1 | 1.314 (4) | C11—H11B | 0.9600 |
C1—C2 | 1.402 (4) | C11—H11C | 0.9600 |
C1—H1 | 0.9300 | C12—Cl2 | 1.743 (4) |
C2—C3 | 1.364 (4) | C12—Cl1 | 1.746 (4) |
C2—C5 | 1.471 (4) | C12—Cl3 | 1.759 (4) |
C3—C4 | 1.374 (4) | C12—H12 | 0.9800 |
C3—H3 | 0.9300 | | |
| | | |
O1i—Cu1—O4 | 88.70 (9) | C3—C4—H4 | 118.1 |
O1i—Cu1—O2 | 168.03 (9) | C7—C5—C6 | 118.5 (3) |
O4—Cu1—O2 | 88.73 (9) | C7—C5—C2 | 120.8 (2) |
O1i—Cu1—O3i | 89.99 (9) | C6—C5—C2 | 120.8 (3) |
O4—Cu1—O3i | 168.07 (8) | C7ii—C6—C5 | 119.6 (3) |
O2—Cu1—O3i | 90.12 (9) | C7ii—C6—H6 | 120.2 |
O1i—Cu1—N1 | 101.31 (9) | C5—C6—H6 | 120.2 |
O4—Cu1—N1 | 101.53 (9) | C6ii—C7—C5 | 121.9 (3) |
O2—Cu1—N1 | 90.66 (9) | C6ii—C7—H7 | 119.1 |
O3i—Cu1—N1 | 90.35 (9) | C5—C7—H7 | 119.1 |
O1i—Cu1—Cu1i | 84.77 (7) | O2—C8—O1 | 125.3 (3) |
O4—Cu1—Cu1i | 87.34 (6) | O2—C8—C9 | 117.4 (3) |
O2—Cu1—Cu1i | 83.44 (6) | O1—C8—C9 | 117.3 (3) |
O3i—Cu1—Cu1i | 80.74 (6) | C8—C9—H9A | 109.5 |
N1—Cu1—Cu1i | 169.26 (6) | C8—C9—H9B | 109.5 |
C8—O1—Cu1i | 122.62 (19) | H9A—C9—H9B | 109.5 |
C8—O2—Cu1 | 123.8 (2) | C8—C9—H9C | 109.5 |
C10—O3—Cu1i | 127.26 (19) | H9A—C9—H9C | 109.5 |
C10—O4—Cu1 | 119.78 (19) | H9B—C9—H9C | 109.5 |
C4—N1—N2 | 119.2 (2) | O3—C10—O4 | 124.9 (3) |
C4—N1—Cu1 | 122.0 (2) | O3—C10—C11 | 117.1 (3) |
N2—N1—Cu1 | 118.30 (18) | O4—C10—C11 | 118.0 (3) |
C1—N2—N1 | 118.6 (2) | C10—C11—H11A | 109.5 |
N2—C1—C2 | 125.2 (3) | C10—C11—H11B | 109.5 |
N2—C1—H1 | 117.4 | H11A—C11—H11B | 109.5 |
C2—C1—H1 | 117.4 | C10—C11—H11C | 109.5 |
C3—C2—C1 | 114.7 (3) | H11A—C11—H11C | 109.5 |
C3—C2—C5 | 124.2 (3) | H11B—C11—H11C | 109.5 |
C1—C2—C5 | 121.1 (3) | Cl2—C12—Cl1 | 110.0 (2) |
C2—C3—C4 | 118.4 (3) | Cl2—C12—Cl3 | 110.4 (2) |
C2—C3—H3 | 120.8 | Cl1—C12—Cl3 | 110.1 (2) |
C4—C3—H3 | 120.8 | Cl2—C12—H12 | 108.8 |
N1—C4—C3 | 123.8 (3) | Cl1—C12—H12 | 108.8 |
N1—C4—H4 | 118.1 | Cl3—C12—H12 | 108.8 |
| | | |
O1i—Cu1—O2—C8 | −12.1 (6) | N2—C1—C2—C3 | 3.1 (5) |
O4—Cu1—O2—C8 | −89.7 (2) | N2—C1—C2—C5 | −178.2 (3) |
O3i—Cu1—O2—C8 | 78.4 (2) | C1—C2—C3—C4 | −2.2 (5) |
N1—Cu1—O2—C8 | 168.8 (2) | C5—C2—C3—C4 | 179.1 (3) |
Cu1i—Cu1—O2—C8 | −2.2 (2) | N2—N1—C4—C3 | 2.8 (5) |
O1i—Cu1—O4—C10 | −85.3 (2) | Cu1—N1—C4—C3 | 174.6 (3) |
O2—Cu1—O4—C10 | 83.0 (2) | C2—C3—C4—N1 | −0.5 (5) |
O3i—Cu1—O4—C10 | −1.6 (6) | C3—C2—C5—C7 | −137.3 (3) |
N1—Cu1—O4—C10 | 173.4 (2) | C1—C2—C5—C7 | 44.1 (5) |
Cu1i—Cu1—O4—C10 | −0.5 (2) | C3—C2—C5—C6 | 42.8 (5) |
O1i—Cu1—N1—C4 | 93.5 (2) | C1—C2—C5—C6 | −135.8 (3) |
O4—Cu1—N1—C4 | −175.5 (2) | C7—C5—C6—C7ii | 0.2 (6) |
O2—Cu1—N1—C4 | −86.7 (2) | C2—C5—C6—C7ii | −179.9 (3) |
O3i—Cu1—N1—C4 | 3.4 (2) | C6—C5—C7—C6ii | −0.2 (6) |
Cu1i—Cu1—N1—C4 | −30.2 (5) | C2—C5—C7—C6ii | 179.9 (3) |
O1i—Cu1—N1—N2 | −94.6 (2) | Cu1—O2—C8—O1 | 0.9 (4) |
O4—Cu1—N1—N2 | −3.6 (2) | Cu1—O2—C8—C9 | 179.95 (19) |
O2—Cu1—N1—N2 | 85.2 (2) | Cu1i—O1—C8—O2 | 1.9 (4) |
O3i—Cu1—N1—N2 | 175.3 (2) | Cu1i—O1—C8—C9 | −177.10 (19) |
Cu1i—Cu1—N1—N2 | 141.6 (3) | Cu1i—O3—C10—O4 | −0.4 (4) |
C4—N1—N2—C1 | −2.0 (4) | Cu1i—O3—C10—C11 | 178.9 (2) |
Cu1—N1—N2—C1 | −174.1 (2) | Cu1—O4—C10—O3 | 0.7 (4) |
N1—N2—C1—C2 | −1.0 (5) | Cu1—O4—C10—C11 | −178.6 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2 | 0.98 | 2.83 | 3.541 (4) | 130 |
C12—H12···O4 | 0.98 | 2.50 | 3.298 (5) | 138 |
C12—H12···N2 | 0.98 | 2.71 | 3.496 (5) | 137 |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | C14H10N4 | [CuBr2(C14H10N4)] | [Cu2(C2H3O2)4(C14H10N4)]·2CHCl3 |
Mr | 234.26 | 457.62 | 836.25 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 296 | 296 | 296 |
a, b, c (Å) | 6.3588 (7), 6.9307 (9), 7.0681 (10) | 4.1377 (2), 12.5407 (7), 13.5301 (8) | 7.6349 (8), 8.0203 (8), 13.9312 (10) |
α, β, γ (°) | 110.282 (3), 90.823 (3), 106.585 (2) | 90, 93.786 (4), 90 | 104.601 (2), 103.993 (2), 90.123 (3) |
V (Å3) | 277.80 (6) | 700.54 (7) | 799.21 (13) |
Z | 1 | 2 | 1 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.09 | 7.26 | 1.88 |
Crystal size (mm) | 0.26 × 0.23 × 0.20 | 0.24 × 0.20 × 0.19 | 0.27 × 0.15 × 0.12 |
|
Data collection |
Diffractometer | Siemens SMART CCD area-detector diffractometer | Siemens SMART CCD area-detector diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | – | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | – | 0.203, 0.251 | 0.630, 0.806 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2129, 1131, 894 | 3750, 1415, 1099 | 8062, 3283, 2688 |
Rint | 0.028 | 0.031 | 0.035 |
(sin θ/λ)max (Å−1) | 0.626 | 0.624 | 0.629 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.137, 1.10 | 0.031, 0.070, 1.06 | 0.040, 0.090, 1.07 |
No. of reflections | 1131 | 1415 | 3283 |
No. of parameters | 102 | 97 | 201 |
H-atom treatment | All H-atom parameters refined | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.18 | 0.54, −0.37 | 0.35, −0.41 |
Selected bond lengths (Å) for (I) topN1—C4 | 1.327 (3) | C2—C3 | 1.376 (3) |
N1—N2 | 1.345 (2) | C2—C5 | 1.482 (2) |
N2—C1 | 1.325 (2) | C3—C4 | 1.387 (2) |
C1—C2 | 1.393 (3) | | |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N1i | 0.91 (2) | 2.66 (2) | 3.399 (3) | 139 (2) |
C3—H3···N2ii | 0.96 (2) | 2.65 (2) | 3.608 (2) | 175 (2) |
Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) x+1, y, z. |
Selected geometric parameters (Å, º) for (II) topCu1—N2 | 2.005 (3) | Cu1—Br1i | 3.2421 (4) |
Cu1—Br1 | 2.4151 (4) | | |
| | | |
N2—Cu1—Br1ii | 90.57 (9) | N2—Cu1—Br1i | 88.40 (9) |
N2—Cu1—Br1 | 89.43 (9) | Br1—Cu1—Br1i | 87.158 (12) |
| | | |
C1—C2—C5—C6 | 12.6 (5) | | |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z. |
Selected geometric parameters (Å, º) for (III) topCu1—O1i | 1.960 (2) | Cu1—O3i | 1.975 (2) |
Cu1—O4 | 1.967 (2) | Cu1—N1 | 2.199 (2) |
Cu1—O2 | 1.969 (2) | Cu1—Cu1i | 2.6332 (7) |
| | | |
O1i—Cu1—O4 | 88.70 (9) | O2—Cu1—O3i | 90.12 (9) |
O1i—Cu1—O2 | 168.03 (9) | O1i—Cu1—N1 | 101.31 (9) |
O4—Cu1—O2 | 88.73 (9) | O4—Cu1—N1 | 101.53 (9) |
O1i—Cu1—O3i | 89.99 (9) | O2—Cu1—N1 | 90.66 (9) |
O4—Cu1—O3i | 168.07 (8) | | |
| | | |
C1—C2—C5—C7 | 44.1 (5) | | |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O2 | 0.98 | 2.83 | 3.541 (4) | 130 |
C12—H12···O4 | 0.98 | 2.50 | 3.298 (5) | 138 |
C12—H12···N2 | 0.98 | 2.71 | 3.496 (5) | 137 |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
In coordination compounds, N1,N2-bidentate pyridazine typically sustains short-distance bridges between metal ions and supports the generation of complicated polynuclear and polymeric metal–organic motifs (Otieno et al., 1995). Such arrays are interesting in view of strong magnetic coupling between the paramagnetic centers through pyridazine bridges (Carlucci et al., 1994) and also as coordination subtopologies for metal–organic frameworks (Domasevitch, Solntsev et al., 2007). In this way, multifunctional pyridazine N-atom donors offer a new potential for the designing of solid-state coordination architecture, as was revealed by examination of a simpler bitopic ligand 4,4'-bipyridazine (Domasevitch, Gural'skiy et al., 2007). The latter combines inherent ability for coordination of closely situated metal ions (3.2 Å) and long-distance bridging at ca 11 Å. Extension of the effective length of the ligand is relevant for the connection of even more distant metal ions and it is an essential prerequisite for the preparation of open metal–organic frameworks. These possibilities may be anticipated for a series of new extended ligands, which unite two pyridazine functions separated by a rigid covalent spacer, i.e. para-phenylene. Such species are readily accessible via the inverse electron demand Diels–Alder cycloaddition of 1,2,4,5-tetrazine (Sauer et al., 1998), and they may be viewed as new attractive `building blocks' for crystal design. We report here the structure of the hitherto unknown ligand 4,4'-(p-phenylene)bipyridazine, (I), and two new copper(II) complexes, (II) and (III), which feature two different bidentate coordination modes.
The asymmetric unit of structure (I) comprises a half-molecule of 4,4'-(p-phenylene)bipyridazine lying across a center of inversion (Fig. 1). The geometry of the heteroaromatic ring is consistent with the structure of pyridazine itself (Blake & Rankin, 1991). In the molecule of (I), the two pyridazine rings are coplanar, while exhibiting a significant twist angle of 43.15 (9)° with respect to the plane of the phenylene spacer. This suggests conformational flexibility of the molecule and a lack of conjugation between the hetero- and carbocyclic fragments, as is indicated also by the standard length of the C2—C5 [1.482 (2) Å]. The corresponding torsion angle [C1—C2—C5—C6 = -43.1 (3)°] appreciably exceeds the value for terphenyl (14.4°; Baudour et al., 1986), but it is consistent with a molecular geometry optimization (37.6°) performed using density function theory (DFT) with the 6–311(d,p) basis set and B3LYP hybrid functional defined in GAMESS (Schmidt et al., 1993).
In the crystal structure of (I), the molecules associate via a set of very weak interactions, namely C—H···N hydrogen bonding (Table 2) and π–π contacts. A pair of C4—H4···N1i bonds connects the molecules into centrosymmetric dimers, similar to those observed for unsubstituted pyridazine (Blake & Rankin, 1991), and C3—H3···N2ii interactions extend this motif along the a-axis direction with the formation of a layer parallel to the (021) plane [symmetry codes: (i) -x + 1, -y + 1, -z - 1; (ii) x + 1, y, z; Fig. 2]. Weak slipped π–π stacking occurs between a pair of antiparallel pyridazine rings related by inversion (symmetry code: -x + 1, -y + 1, -z). The parameters of this interaction [the interplanar and intercentroid distances are 3.4683 (11) and 3.564 (2) Å, respectively, and the slippage angle is 13.31 (8)°] are characteristic of weak π–π contacts of electron-deficient heteroaromatic rings (Janiak, 2000).
In the copper(II) complexes (II) and (III), the primary connectivity exists in the form of one-dimensional coordination chains supported by bridging of the ligand between the copper ions. In both structures, the molecules of the ligand are situated across a center of inversion, and therefore they adopt symmetric N,N'-bidentate bridging modes, while each of the pyridazine rings is coordinated in a monodentate manner. This is consistent with the coordination preferences of the simpler 4,4'-bipyridazine ligand, which is an efficient tetradentate linker towards silver(I) ions (Domasevitch, Solntsev et al., 2007) but is typically bidentate towards Cu2+ and Zn2+ ions (Domasevitch, Gural'skiy et al., 2007). The coordination modes in (II) and (III), however, are different, namely N2,N2'- and linear N1,N1'-coordinations, respectively. This may reflect the adaptability of the ligand to the demands of the crystal packing.
In the bromide (II), the copper ion is situated on a center of inversion and displays Jahn–Teller distorted octahedral (4+2)-coordination, with a trans-CuN2Br2 equatorial plane [Cu1—Br1 = 2.4151 (4) Å] (Fig. 3); the octahedron is completed by two very long axial contacts [Cu1···Br1i = 3.2421 (4) Å; symmetry code: (i) -x + 1, -y, -z]. These weak bonds connect linear Br—Cu—Br units into a chain of vertex-sharing Cu2Br2 rhombes running along the a-axis direction, and overall this generates coordination layers that lie parallel to the ab plane (Fig. 4). These features are analogous to the situation in dibromo-bis(pyridine)copper(II) (Cu—Br = 2.451 and 3.240 Å; Morosin, 1975), while shorter chloride bridges were essential for stabilization of the bidentate coordination of pyridazine in the copper(II) chloride complex (Fetzer et al., 1990). The axial Cu···Br contacts are accompanied also by weak C1—H1···Br1i hydrogen bonding [3.449 (4) Å; angle C—H···Br = 133°].
Structure of (III) is based on very characteristic dicopper(II)–tetracetate units, which are situated across a center of inversion [Cu1···Cu1i = 2.6332 (7) Å; symmetry code: (i) -x + 1, -y + 1, -z + 1; Fig. 5]. The ligands act as N1,N1'-bidentate linear bridges connecting these Cu2(AcO)4 units into rod-like linear chains, with a separation between the dinuclear unit centroids of 18.2164 (13) Å. This motif is similar to that found for a related 4,4'-bipyridazine complex (Domasevitch, Gural'skiy et al., 2007). The copper ions adopt tetragonal–pyramidal coordination, with four basal acetate O atoms [Cu—O = 1.960 (2)–1.975 (2) Å] and pyridazine atom N1 in at the apex [2.199 (2) Å]. The latter separation is consistent with the Cu—N bond length for the orthorhombic polymorph of tetracetato-bis(pyridine)dicopper(II) [2.191 (2) Å; Uekusa et al., 1989].
The uncoordinated N atoms (N2) are also functional as acceptors of hydrogen bonding and, together with two adjacent carboxylate atoms (O2 and O4), they provide three-center acceptor sites for the accommodation of chloroform molecules. The latter are held between the coordination chains (Fig. 6) and interact with them by means of weak trifurcated hydrogen bonding [C12—H12···O(N) = 3.298 (5)–3.541 (4) Å and 130–138°; Table 5 and Fig. 5]. Comparable trifurcated hydrogen bonding is known for chloroform solvates of molecular metal complexes such as tris(1-hydroxy-2-pyridinethionato-O,S)cobalt(III) (C—H···O = 3.07–3.39 Å; Manivannan et al., 1993). However, this supramolecular pattern is unprecedented for pyridazine and related polynitrogen heterocycles, and it may be relevant for functionalization of the metal–organic structure towards specific interactions with the guest species.
There are no π–π or C—H···π contacts in the structures (II) and (III), and no C—H···π bonding in (I). Thus the inherent electron deficiency of the pyridazine ring actually appears to preclude the formation of hydrogen bonds involving π acceptors. Such closely packed motifs supported by extensive C—H···π bonding are typical for lengthy aromatic ligands (Domasevitch et al., 2002), and they mitigate the formation of open structures. In this view, the combination of heterocyclic functions and carbocyclic spacer provided by 4,4'-(p-phenylene)bipyridazine could be especially favorable for the preparation of open metal–organic frameworks.