Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108026565/hj3086sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108026565/hj3086Isup2.hkl |
CCDC reference: 707214
For related literature, see: Adler et al. (1966); Brunow et al. (1988); Grell et al. (1999); Hanessian et al. (2006); Hunter & Sanders (1990); Jakobsons et al. (1986); Kónya et al. (2004); Lee & Ley (2003); Li & Lundquist (2001); Stomberg et al. (1993); Wallis (1998); Wallis et al. (1991, 1996).
Compound (I) was synthesized by reduction of 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanone with BH3.S(CH3)2 in tetrahydrofuran solution (argon atmosphere) (Adler et al., 1966). Excess BH3.S(CH3)2 was decomposed by addition of methanol. Work-up gave a product consisting primarily of (I) (1H NMR). Crystals of melting point 386–387 K were obtained from acetone (Li & Lundquist, 2001).
Friedel pairs were averaged, and the R conformation was adopted for atoms C8 and C9. H atoms were constrained to an ideal geometry using an appropriate riding model, with C—H = 0.95–1.00 Å. For the hydroxy and methyl groups, the O—H (0.84 Å) (or C—H) distances and C—O—H (C—C—H or O—C—H for methyl groups) angles (109.5°) were kept fixed, while the torsion angles were allowed to refine with the starting positions based on the circular Fourier synthesis. Uiso(H) values were set at 1.5Ueq(O), 1.5Ueq(Cmethyl) and 1.2Ueq(C) in other cases.
Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
C17H20O5 | Dx = 1.286 Mg m−3 |
Mr = 304.33 | Melting point = 386–387 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 7726 reflections |
a = 23.2847 (11) Å | θ = 2.4–31.6° |
b = 12.1184 (6) Å | µ = 0.09 mm−1 |
c = 5.5709 (3) Å | T = 153 K |
V = 1571.96 (14) Å3 | Needle, colourless |
Z = 4 | 1.00 × 0.17 × 0.07 mm |
F(000) = 648 |
Siemens SMART CCD area-detector diffractometer | 3175 independent reflections |
Radiation source: fine-focus sealed tube | 2688 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
Detector resolution: 120 µm pixels mm-1 | θmax = 33.1°, θmin = 2.4° |
ω scans | h = −34→35 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −18→18 |
Tmin = 0.461, Tmax = 0.993 | l = −8→8 |
27834 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1222P] where P = (Fo2 + 2Fc2)/3 |
3175 reflections | (Δ/σ)max = 0.001 |
204 parameters | Δρmax = 0.37 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C17H20O5 | V = 1571.96 (14) Å3 |
Mr = 304.33 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 23.2847 (11) Å | µ = 0.09 mm−1 |
b = 12.1184 (6) Å | T = 153 K |
c = 5.5709 (3) Å | 1.00 × 0.17 × 0.07 mm |
Siemens SMART CCD area-detector diffractometer | 3175 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2688 reflections with I > 2σ(I) |
Tmin = 0.461, Tmax = 0.993 | Rint = 0.062 |
27834 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.37 e Å−3 |
3175 reflections | Δρmin = −0.18 e Å−3 |
204 parameters |
Experimental. Data were collected at 153 K using a Siemens SMART CCD diffractometer equipped with LT-2 A cooling device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 20 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Bruker, 2003). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 7726 reflections with I>10σ(I) after integration of all the frames data using SAINT (Bruker, 2003). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.78121 (5) | 0.38521 (9) | 1.3188 (3) | 0.0316 (3) | |
O2 | 0.75452 (5) | 0.23189 (9) | 0.9902 (3) | 0.0319 (3) | |
H2 | 0.7812 | 0.2337 | 1.0916 | 0.048* | |
O3 | 0.64633 (5) | 0.69179 (8) | 0.7416 (3) | 0.0284 (3) | |
H3 | 0.6319 | 0.7553 | 0.7403 | 0.043* | |
O4 | 0.55540 (5) | 0.75094 (8) | 1.0324 (2) | 0.0233 (2) | |
O5 | 0.57727 (5) | 0.88639 (9) | 0.6754 (3) | 0.0284 (3) | |
C1 | 0.66931 (6) | 0.53329 (11) | 0.9765 (3) | 0.0228 (3) | |
C2 | 0.71051 (6) | 0.51306 (11) | 1.1516 (3) | 0.0230 (3) | |
H2A | 0.7190 | 0.5682 | 1.2675 | 0.028* | |
C3 | 0.73931 (6) | 0.41258 (11) | 1.1581 (3) | 0.0214 (3) | |
C4 | 0.72700 (6) | 0.33110 (11) | 0.9870 (3) | 0.0222 (3) | |
C5 | 0.68638 (7) | 0.35174 (12) | 0.8126 (3) | 0.0247 (3) | |
H5 | 0.6780 | 0.2969 | 0.6960 | 0.030* | |
C6 | 0.65743 (7) | 0.45266 (12) | 0.8061 (3) | 0.0252 (3) | |
H6 | 0.6296 | 0.4662 | 0.6850 | 0.030* | |
C7 | 0.80036 (8) | 0.46919 (15) | 1.4790 (4) | 0.0340 (4) | |
H7A | 0.8103 | 0.5355 | 1.3873 | 0.051* | |
H7B | 0.8343 | 0.4431 | 1.5665 | 0.051* | |
H7C | 0.7697 | 0.4867 | 1.5933 | 0.051* | |
C8 | 0.63948 (6) | 0.64411 (11) | 0.9746 (3) | 0.0240 (3) | |
H8 | 0.6585 | 0.6932 | 1.0951 | 0.029* | |
C9 | 0.57537 (6) | 0.63680 (11) | 1.0338 (3) | 0.0224 (3) | |
H9 | 0.5551 | 0.5943 | 0.9053 | 0.027* | |
C10 | 0.56255 (9) | 0.58584 (15) | 1.2757 (4) | 0.0365 (4) | |
H10A | 0.5847 | 0.6241 | 1.4001 | 0.055* | |
H10B | 0.5732 | 0.5076 | 1.2735 | 0.055* | |
H10C | 0.5214 | 0.5928 | 1.3103 | 0.055* | |
C11 | 0.51113 (6) | 0.77356 (11) | 0.8765 (3) | 0.0217 (3) | |
C12 | 0.52213 (6) | 0.84637 (12) | 0.6865 (3) | 0.0229 (3) | |
C13 | 0.47874 (7) | 0.87181 (13) | 0.5254 (4) | 0.0299 (3) | |
H13 | 0.4858 | 0.9216 | 0.3971 | 0.036* | |
C14 | 0.42464 (8) | 0.82384 (14) | 0.5529 (4) | 0.0339 (4) | |
H14 | 0.3951 | 0.8401 | 0.4406 | 0.041* | |
C15 | 0.41360 (7) | 0.75319 (15) | 0.7409 (4) | 0.0345 (4) | |
H15 | 0.3766 | 0.7213 | 0.7587 | 0.041* | |
C16 | 0.45694 (7) | 0.72855 (13) | 0.9050 (4) | 0.0285 (3) | |
H16 | 0.4493 | 0.6809 | 1.0365 | 0.034* | |
C17 | 0.59077 (8) | 0.95625 (15) | 0.4767 (4) | 0.0356 (4) | |
H17A | 0.5816 | 0.9180 | 0.3265 | 0.053* | |
H17B | 0.6318 | 0.9743 | 0.4798 | 0.053* | |
H17C | 0.5682 | 1.0243 | 0.4875 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0307 (5) | 0.0264 (5) | 0.0377 (7) | 0.0092 (4) | −0.0159 (5) | −0.0100 (5) |
O2 | 0.0349 (6) | 0.0206 (5) | 0.0402 (7) | 0.0090 (4) | −0.0117 (6) | −0.0093 (5) |
O3 | 0.0246 (5) | 0.0184 (5) | 0.0423 (7) | 0.0008 (4) | 0.0041 (5) | 0.0065 (5) |
O4 | 0.0241 (5) | 0.0187 (4) | 0.0271 (6) | 0.0043 (3) | −0.0059 (4) | −0.0003 (4) |
O5 | 0.0242 (5) | 0.0257 (5) | 0.0354 (7) | −0.0003 (4) | 0.0012 (5) | 0.0089 (5) |
C1 | 0.0204 (6) | 0.0178 (5) | 0.0301 (8) | 0.0017 (4) | −0.0039 (6) | −0.0010 (6) |
C2 | 0.0222 (6) | 0.0188 (6) | 0.0282 (8) | 0.0020 (5) | −0.0053 (6) | −0.0050 (6) |
C3 | 0.0189 (6) | 0.0192 (6) | 0.0262 (7) | 0.0015 (4) | −0.0030 (6) | −0.0029 (6) |
C4 | 0.0208 (6) | 0.0167 (5) | 0.0289 (7) | 0.0007 (4) | −0.0009 (6) | −0.0036 (5) |
C5 | 0.0269 (7) | 0.0203 (6) | 0.0270 (7) | −0.0001 (5) | −0.0047 (6) | −0.0067 (6) |
C6 | 0.0256 (6) | 0.0227 (6) | 0.0275 (8) | 0.0020 (5) | −0.0076 (6) | −0.0016 (6) |
C7 | 0.0303 (7) | 0.0336 (8) | 0.0381 (10) | 0.0034 (6) | −0.0150 (8) | −0.0108 (8) |
C8 | 0.0230 (6) | 0.0174 (6) | 0.0314 (8) | 0.0004 (4) | −0.0059 (6) | −0.0009 (6) |
C9 | 0.0228 (6) | 0.0178 (5) | 0.0264 (8) | 0.0027 (5) | −0.0021 (6) | 0.0025 (5) |
C10 | 0.0432 (9) | 0.0330 (8) | 0.0332 (10) | 0.0083 (7) | 0.0044 (8) | 0.0130 (8) |
C11 | 0.0218 (6) | 0.0193 (6) | 0.0241 (7) | 0.0032 (5) | −0.0007 (6) | −0.0011 (5) |
C12 | 0.0213 (6) | 0.0207 (6) | 0.0266 (7) | 0.0036 (5) | −0.0001 (6) | 0.0001 (6) |
C13 | 0.0325 (8) | 0.0277 (7) | 0.0294 (9) | 0.0078 (6) | −0.0043 (7) | 0.0014 (6) |
C14 | 0.0281 (7) | 0.0365 (8) | 0.0370 (10) | 0.0075 (6) | −0.0124 (7) | −0.0038 (8) |
C15 | 0.0221 (7) | 0.0365 (8) | 0.0448 (11) | −0.0016 (6) | −0.0053 (7) | −0.0047 (8) |
C16 | 0.0238 (6) | 0.0254 (6) | 0.0364 (9) | −0.0016 (5) | −0.0002 (7) | 0.0007 (7) |
C17 | 0.0384 (9) | 0.0351 (8) | 0.0334 (9) | −0.0043 (7) | 0.0077 (8) | 0.0079 (8) |
O1—C3 | 1.3647 (19) | C7—H7C | 0.9800 |
O1—C7 | 1.425 (2) | C8—C9 | 1.531 (2) |
O2—C4 | 1.3624 (16) | C8—H8 | 1.0000 |
O2—H2 | 0.8400 | C9—C10 | 1.512 (3) |
O3—C8 | 1.430 (2) | C9—H9 | 1.0000 |
O3—H3 | 0.8400 | C10—H10A | 0.9800 |
O4—C11 | 1.3755 (18) | C10—H10B | 0.9800 |
O4—C9 | 1.4593 (16) | C10—H10C | 0.9800 |
O5—C12 | 1.3739 (18) | C11—C16 | 1.384 (2) |
O5—C17 | 1.428 (2) | C11—C12 | 1.402 (2) |
C1—C6 | 1.390 (2) | C12—C13 | 1.386 (2) |
C1—C2 | 1.390 (2) | C13—C14 | 1.396 (3) |
C1—C8 | 1.5120 (19) | C13—H13 | 0.9500 |
C2—C3 | 1.3905 (19) | C14—C15 | 1.377 (3) |
C2—H2A | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.402 (2) | C15—C16 | 1.394 (3) |
C4—C5 | 1.379 (2) | C15—H15 | 0.9500 |
C5—C6 | 1.397 (2) | C16—H16 | 0.9500 |
C5—H5 | 0.9500 | C17—H17A | 0.9800 |
C6—H6 | 0.9500 | C17—H17B | 0.9800 |
C7—H7A | 0.9800 | C17—H17C | 0.9800 |
C7—H7B | 0.9800 | ||
C3—O1—C7 | 117.44 (12) | O4—C9—C8 | 104.75 (11) |
C4—O2—H2 | 109.5 | C10—C9—C8 | 114.09 (14) |
C8—O3—H3 | 109.5 | O4—C9—H9 | 109.5 |
C11—O4—C9 | 115.54 (11) | C10—C9—H9 | 109.5 |
C12—O5—C17 | 116.73 (14) | C8—C9—H9 | 109.5 |
C6—C1—C2 | 119.52 (13) | C9—C10—H10A | 109.5 |
C6—C1—C8 | 121.87 (14) | C9—C10—H10B | 109.5 |
C2—C1—C8 | 118.60 (13) | H10A—C10—H10B | 109.5 |
C1—C2—C3 | 120.37 (14) | C9—C10—H10C | 109.5 |
C1—C2—H2A | 119.8 | H10A—C10—H10C | 109.5 |
C3—C2—H2A | 119.8 | H10B—C10—H10C | 109.5 |
O1—C3—C4 | 114.89 (12) | O4—C11—C16 | 122.16 (15) |
O1—C3—C2 | 125.07 (14) | O4—C11—C12 | 117.74 (13) |
C4—C3—C2 | 120.02 (14) | C16—C11—C12 | 120.09 (15) |
C5—C4—O2 | 119.46 (14) | O5—C12—C13 | 125.00 (15) |
C5—C4—C3 | 119.44 (12) | O5—C12—C11 | 115.28 (13) |
O2—C4—C3 | 121.09 (14) | C13—C12—C11 | 119.72 (14) |
C4—C5—C6 | 120.56 (14) | C12—C13—C14 | 119.63 (17) |
C4—C5—H5 | 119.7 | C12—C13—H13 | 120.2 |
C6—C5—H5 | 119.7 | C14—C13—H13 | 120.2 |
C1—C6—C5 | 120.09 (15) | C15—C14—C13 | 120.70 (17) |
C1—C6—H6 | 120.0 | C15—C14—H14 | 119.6 |
C5—C6—H6 | 120.0 | C13—C14—H14 | 119.6 |
O1—C7—H7A | 109.5 | C14—C15—C16 | 119.81 (16) |
O1—C7—H7B | 109.5 | C14—C15—H15 | 120.1 |
H7A—C7—H7B | 109.5 | C16—C15—H15 | 120.1 |
O1—C7—H7C | 109.5 | C11—C16—C15 | 120.01 (17) |
H7A—C7—H7C | 109.5 | C11—C16—H16 | 120.0 |
H7B—C7—H7C | 109.5 | C15—C16—H16 | 120.0 |
O3—C8—C1 | 108.31 (14) | O5—C17—H17A | 109.5 |
O3—C8—C9 | 109.14 (12) | O5—C17—H17B | 109.5 |
C1—C8—C9 | 113.25 (12) | H17A—C17—H17B | 109.5 |
O3—C8—H8 | 108.7 | O5—C17—H17C | 109.5 |
C1—C8—H8 | 108.7 | H17A—C17—H17C | 109.5 |
C9—C8—H8 | 108.7 | H17B—C17—H17C | 109.5 |
O4—C9—C10 | 109.21 (13) | ||
C6—C1—C2—C3 | −0.6 (2) | C11—O4—C9—C8 | 122.83 (14) |
C8—C1—C2—C3 | −179.38 (15) | O3—C8—C9—O4 | −61.50 (15) |
C7—O1—C3—C4 | 172.78 (16) | C1—C8—C9—O4 | 177.76 (14) |
C7—O1—C3—C2 | −5.7 (3) | O3—C8—C9—C10 | 179.13 (13) |
C1—C2—C3—O1 | 178.58 (16) | C1—C8—C9—C10 | 58.39 (19) |
C1—C2—C3—C4 | 0.2 (2) | C9—O4—C11—C16 | 65.80 (19) |
O1—C3—C4—C5 | −178.31 (16) | C9—O4—C11—C12 | −115.35 (15) |
C2—C3—C4—C5 | 0.2 (2) | C17—O5—C12—C13 | −2.4 (2) |
O1—C3—C4—O2 | 1.7 (2) | C17—O5—C12—C11 | 176.81 (14) |
C2—C3—C4—O2 | −179.79 (15) | O4—C11—C12—O5 | 0.95 (19) |
O2—C4—C5—C6 | 179.77 (16) | C16—C11—C12—O5 | 179.81 (14) |
C3—C4—C5—C6 | −0.2 (3) | O4—C11—C12—C13 | −179.80 (14) |
C2—C1—C6—C5 | 0.6 (3) | C16—C11—C12—C13 | −0.9 (2) |
C8—C1—C6—C5 | 179.32 (15) | O5—C12—C13—C14 | 178.59 (16) |
C4—C5—C6—C1 | −0.2 (3) | C11—C12—C13—C14 | −0.6 (2) |
C6—C1—C8—O3 | −53.49 (19) | C12—C13—C14—C15 | 1.3 (3) |
C2—C1—C8—O3 | 125.25 (15) | C13—C14—C15—C16 | −0.4 (3) |
C6—C1—C8—C9 | 67.7 (2) | O4—C11—C16—C15 | −179.40 (15) |
C2—C1—C8—C9 | −113.55 (17) | C12—C11—C16—C15 | 1.8 (2) |
C11—O4—C9—C10 | −114.57 (16) | C14—C15—C16—C11 | −1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.23 | 2.6813 (18) | 114 |
O2—H2···O3i | 0.84 | 1.95 | 2.7438 (18) | 157 |
O3—H3···O4 | 0.84 | 2.41 | 2.7606 (17) | 106 |
O3—H3···O5 | 0.84 | 2.07 | 2.8781 (15) | 162 |
C2—H2A···O2ii | 0.95 | 2.42 | 3.3545 (19) | 168 |
C10—H10A···O3iii | 0.98 | 2.52 | 3.491 (3) | 171 |
Symmetry codes: (i) −x+3/2, y−1/2, z+1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C17H20O5 |
Mr | 304.33 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 153 |
a, b, c (Å) | 23.2847 (11), 12.1184 (6), 5.5709 (3) |
V (Å3) | 1571.96 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 1.00 × 0.17 × 0.07 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.461, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27834, 3175, 2688 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.769 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.112, 1.00 |
No. of reflections | 3175 |
No. of parameters | 204 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.18 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2003), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.84 | 2.23 | 2.6813 (18) | 114 |
O2—H2···O3i | 0.84 | 1.95 | 2.7438 (18) | 157 |
O3—H3···O4 | 0.84 | 2.41 | 2.7606 (17) | 106 |
O3—H3···O5 | 0.84 | 2.07 | 2.8781 (15) | 162 |
C2—H2A···O2ii | 0.95 | 2.42 | 3.3545 (19) | 168 |
C10—H10A···O3iii | 0.98 | 2.52 | 3.491 (3) | 171 |
Symmetry codes: (i) −x+3/2, y−1/2, z+1/2; (ii) −x+3/2, y+1/2, z+1/2; (iii) x, y, z+1. |
Compound/CSDa code | C-O-C-C | O-C-C-C | D | A | reference |
(I) | 122.83 (14) | 177.76 (14) | 7.128 (2) | 75.68 (8) | This work |
(II)/not in CSD | -141.69 | 173.29 | 7.259 | 56.32 | Jakobsons et al. (1986) |
(III)/WALSUX | 116.29 | -178.60 | 7.126 | 94.60 | Stomberg et al. (1993) |
(IV)/WALTAE | 113.47 | 175.02 | 7.141 | 74.39 | Stomberg et al. (1993) |
(Va)/IMICEM | 140.69 | 171.70 | 7.333 | 92.36 | Lee & Ley (2003) |
(Vb)/IMICEM | 114.55 | 178.99 | 7.024 | 72.09 | Lee & Ley (2003) |
(VI)/IMICIQ | 142.84 | 169.62 | 7.360 | 110.17 | Lee & Ley (2003) |
(VII)/TAHKIW | -175.87 | 172.78 | 7.487 | 133.74 | Wallis et al. (1991) |
(VIII)/TAHKOC01 | 169.56 | 169.15 | 7.391 | 123.83 | Wallis et al. (1996) |
(IX)/WALTEI | -44.09 | 168.51 | 6.435 | 39.09 | Stomberg et al. (1993) |
For comparison we have consistently considered the isomer with R configuration at Cα. (a) Cambridge Structural Database (Allen, 2002). |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
1-Aryl-2-aryloxy-1-propanols are of interest as lignin model compounds (Adler et al., 1966; Wallis et al., 1991; Stomberg et al., 1993; Li & Lundquist, 2001). Quite a few neolignans with this type of structure have been isolated from plants (Stomberg et al.,1993; Wallis, 1998; Lee & Ley, 2003; Kónya et al., 2004; Hanessian et al., 2006). Crystal structures of a number of 1-aryl-2-aryloxy-1-propanols have been reported (Jakobsons et al., 1986; Wallis et al., 1991; Stomberg et al., 1993; Wallis et al., 1996; Lee & Ley, 2003). The crystal structure of threo-1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanol, (I), is reported in this paper. Jakobsons et al. (1986) have reported the crystal structure of the erythro form of this compound, (II). The synthesis of the threo and erythro forms of 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanol by reduction of 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-propanone has been described by Adler et al. (1966). The erythro/threo ratio in the reaction products obtained depends on the particular reducing reagent used and the reaction conditions (Brunow et al., 1988). Reduction with borane dimethyl sulfide complex gives predominantly the threo form, (I) (Li & Lundquist, 2001).
A perspective drawing and the atom numbering of (I) are shown in Fig. 1. There are strong O—H···O hydrogen bonds (Fig. 2) present in the crystal structure of (I) (for geometrical details of hydrogen bonds see Table 1). Three of them are intramolecular, supporting the rigidity of the molecule, and one is intermolecular, forming C(8) chains on the first-level graph set, as defined by Bernstein et al. (1995) and Grell et al. (1999). There are also two weak C—H···O hydrogen bonds present in the crystal structure, consolidating the crystal framework, both of them forming C(5) chains on the first-level graph set (Fig. 3).
Geometric details of (I) are given in Table 2. For comparison, the corresponding geometric data for the related compounds (II), (III)–(VI),and acetate derivatives (VII)–(IX) (see Scheme 2) are included in the table. To enable comparison we have consistently considered the isomer with R-configuration at Cα. The torsion angles C(aryl)—O—Cβ—Cα and O(aryloxy)—C—C—C(aryl) [C11—O4—C9—C8 and O4—C9—C8—C1 for (I)], the distances between the centers of the aromatic rings and the angles between the aromatic ring mean planes are given in Table 2.
In all the compounds, the torsion angle O(aryloxy)—-C—C—C(aryl) is close to 180°. In most of the compounds, the distance between the centers of the aromatic rings is close to the maximum achievable. The erythro acetate (IX) constitutes an exception in the sense that the C(aryl)—O—Cβ—Cα torsion angle is comparatively small, and as a consequence of this the distance between the ring centers deviates notably from the maximum. The separation of the aromatic rings in compounds (I)–(IX) might be attributed to π–π electron repulsion (Hunter & Sanders, 1990). The orientations of the torsion angle C(aryl)—O—Cβ—Cα for the threo and erythro forms (I) and (II) differ considerably, which explains the larger distance between the aromatic ring centers for (II) (see Table 2). The aromatic plane angles of the acetate derivatives (VII)–(IX) deviate considerably from the average of those of compounds (I)–(VI).