Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of rubidium gadolinium bis­(tungstate), RbGd(WO4)2, has been determined. The crystal is built up from corner- and edge-sharing WO6 octa­hedral and GdO8 polyhedral groups, giving rise to a Gd-WO4 polyhedral backbone surrounding structural cavities filled with Rb+ cations. The Gd and Rb atoms lie on twofold axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010504/iz1053sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010504/iz1053Isup2.hkl
Contains datablock I

Comment top

Monoclinic double tungstate single crystals, with the formula KRE(WO4)2 (KGW), RE being the rare earths, are currently receiving attention as hosts for self-induced frequency shifting (Kaminskii et al., 1998). The low-temperature phase of potassium gadolinium tungstate, KGd(WO4)2, is a promising laser material and has been extensively studied (Kushawaha et al., 1993). In this paper, we present the synthesis and structural determination of the new rubidium gadolinium bis(tungstate), RbGd (WO4)2 (RGW), refined from single-crystal data. The structure is a three-dimensional network of WO6 octahedra and GdO8 square-antiprism polyhedra sharing edges and corners. Fig. 1 shows the framework of the RGW crystal projected along the [101] direction.

The WO6 ocatahedra are distorted, with each coordinating W cation displaced by 0.36 Å from the mean of its six O vertices. This displacement `dipole' is orientated along a pseudo threefold axis of the octahedra, with inversion-related octahedral pairs joined by a common O1···O1i edge [2.405 Å; symmetry code: (i) −x, −y + 1, −z]. The inversion symmetry centre at the shared edge midpoint is strongly suggestive of antiferroelectric properties. The W—O bonds span the range 1.768 (9)–2.325 (1) Å, with a mean distance of 1.959 (7) Å. Pairs of distorted octahedral units form a double chain along the crystallographic c axis and are connected by sharing common O3 vertices. The shortest W1···W1i distance is 3.265 (0) Å, across the shared edge of the edge-sharing octahedra. Between the corner-sharing octahedra, the distance between W atoms is significantly larger, at 3.80 (3) Å [W1···W1ii; symmetry code: (ii) x, −y + 1, z + 1/2]. These values are almost in the same range as those found in KGd(WO4)2 and KYb(WO4)2 (Pujol et al., 2001)

The Gd sites are eight-coordinated, with four pairs of Gd—O distances ranging from 2.310 (1) to 2.707 (9) Å, and arranged as a square antiprism. These polyhedra form a single chain along the [101] direction by alternately sharing O2—O4iii edges [3.039 Å; symmetry code: (iii) −x + 1/2, y − 1/2, −z + 1/2] and O2iv···O2v edges [3.028 Å; symmetry codes: (iv) x − 1/2, −y + 1/2, z − 1/2; (v) −x, y,-z + 1/2]. The Gd···Gd1vi distance within a chain is 4.049 Å [symmetry code: (vi) −x + 1/2, −y + 1/2, −z + 1], while between chains the Gd1···Gd1i distance is 6.7 Å. The shared edge between WO6 octahedra, O1···O1i [2.405 Å], is the shortest in the structure and, likewise, the second-shortest edge, O1vii···O2 [2.519 Å; symmetry code: (vii) Please provide symmetry code] is one that is shared between the tungstate and gadolinium polyhedra.

The Rb+ cation is 12-coordinated by O atoms, forming a distorted icosahedron. These polyhedra form a bidimensional layer consisting of chains, which share edges in the [101] and [110] directions. These chains fill the holes in the framework of gadolinium and tungstate polyhedra. All the polyhedra contributing to the monoclinic RGW structure are strongly connected by shared edges and vertices.

Experimental top

GdRb(WO4)2 single crystals were grown by the top-seeded solution growth (TSSG) slow-cooling technique, using Rb2W2O7 as solvent. The solution composition of 20mol% of solute and 80% of solvent was chosen. The solutions used in the crystal growth experiments, weighing about 200 g, were prepared in a cylindrical Pt crucible, 60 mm in diameter, by melting and decomposing the appropriate quantities of Gd2O3, Rb2O3 and WO3. Homogenization of the solutions was achieved by maintaining them at about 323 K above the expected saturation temperature for 24 h. After homogenization of the solution, a Pt disc, diameter 11 mm, rotating at 30 r.p.m. was placed in it. The solution temperature was then decreased at a rate of 0.1 K h−1 until crystals nucleated on the disc, and then at a rate of 1–1.5 K h−1. Crystals of RGW were removed after the sample had reached room temperature.

Refinement top

A numerical or analytical absorption correction should be used for the intensity data, because the product of the linear absorption coefficient (µ) and the median crystal dimension is greater than 3.0, but there are no regular faces of the crystal for that approach. Therefore, a ψ-scan absorption correction was attempted. After the correction, the structure was solved easily. The positions of three heavy atoms were obtained correctly from the Patterson map and four O atoms from Fourier syntheses. All atoms were refined with anisotropic displacement parameters. The value of the maximum residual electron density in the final difference Fourier map is less than 0.1 of the heaviest atomic number and the value of the minimum is larger than −0.1 of that. The peak and hole are 0.79 and 0.74 Å, respectively, from the W atom. The result of the structure analysis proved that the ψ-scan absorption correction can work well for this data.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: Please provide missing details.

Figures top
[Figure 1] Fig. 1. A projection of the RGW structure along the [101] direction. Displacement ellipsoids are drawn at the 50% probability level.
Rubidium gadolinium bis(tungstate) top
Crystal data top
RbGd(WO4)2F(000) = 1252
Mr = 738.42Dx = 7.550 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.6953 (12) ÅCell parameters from 33 reflections
b = 10.5017 (11) Åθ = 5.0–15.0°
c = 7.6064 (11) ŵ = 52.87 mm1
β = 130.504 (7)°T = 293 K
V = 649.61 (14) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.13 mm
Data collection top
Bruker P4
diffractometer
848 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Graphite monochromatorθmax = 30.0°, θmin = 3.2°
/w scansh = 115
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 141
Tmin = 0.013, Tmax = 0.045l = 108
1197 measured reflections3 standard reflections every 97 reflections
951 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.089P)2 + 31.6366P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.11Δρmax = 5.38 e Å3
951 reflectionsΔρmin = 6.38 e Å3
57 parametersExtinction correction: SHELXTL (Bruker, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (5)
Crystal data top
RbGd(WO4)2V = 649.61 (14) Å3
Mr = 738.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.6953 (12) ŵ = 52.87 mm1
b = 10.5017 (11) ÅT = 293 K
c = 7.6064 (11) Å0.20 × 0.18 × 0.13 mm
β = 130.504 (7)°
Data collection top
Bruker P4
diffractometer
848 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.085
Tmin = 0.013, Tmax = 0.0453 standard reflections every 97 reflections
1197 measured reflections intensity decay: none
951 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.089P)2 + 31.6366P]
where P = (Fo2 + 2Fc2)/3
S = 1.11Δρmax = 5.38 e Å3
951 reflectionsΔρmin = 6.38 e Å3
57 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.19389 (6)0.49876 (4)0.23272 (9)0.0093 (3)
Gd10.00000.22800 (8)0.25000.0102 (3)
Rb10.00000.8015 (2)0.25000.0207 (4)
O10.0228 (11)0.6071 (9)0.0297 (17)0.0131 (17)
O20.2728 (12)0.3423 (8)0.3698 (16)0.0127 (16)
O30.1869 (13)0.5719 (10)0.4367 (18)0.0154 (18)
O40.3688 (13)0.5767 (9)0.3062 (17)0.0152 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0088 (4)0.0102 (4)0.0111 (4)0.00011 (13)0.0074 (3)0.00057 (13)
Gd10.0114 (4)0.0099 (5)0.0122 (5)0.0000.0090 (4)0.000
Rb10.0179 (9)0.0247 (10)0.0221 (10)0.0000.0141 (8)0.000
O10.009 (4)0.016 (4)0.011 (4)0.002 (3)0.004 (4)0.001 (3)
O20.012 (4)0.008 (4)0.011 (4)0.002 (3)0.004 (3)0.002 (3)
O30.015 (4)0.019 (4)0.019 (4)0.001 (3)0.014 (4)0.002 (4)
O40.020 (5)0.010 (4)0.019 (5)0.005 (3)0.014 (4)0.000 (3)
Geometric parameters (Å, º) top
W1—O41.768 (9)Rb1—O3x2.853 (11)
W1—O31.776 (10)Rb1—O32.853 (10)
W1—O21.832 (9)Rb1—O3iii2.880 (10)
W1—O11.970 (10)Rb1—O3xii2.880 (10)
W1—O1i2.084 (9)Rb1—O4iii2.975 (10)
W1—O3ii2.325 (10)Rb1—O4xii2.975 (10)
W1—Gd13.5717 (9)Rb1—O13.070 (10)
W1—Rb1iii3.7238 (15)Rb1—O1x3.070 (10)
W1—Rb1iv3.8037 (15)Rb1—O2xiii3.130 (10)
W1—Rb13.844 (2)Rb1—O2xiv3.130 (10)
W1—Rb1i4.2231 (19)Rb1—O4xiii3.359 (10)
Gd1—O1v2.310 (10)Rb1—O4xiv3.359 (10)
Gd1—O1i2.310 (10)O1—W1i2.084 (9)
Gd1—O4vi2.335 (9)O1—Gd1i2.310 (10)
Gd1—O4vii2.335 (9)O2—Gd1ix2.384 (9)
Gd1—O2viii2.384 (9)O2—Rb1iv3.130 (10)
Gd1—O2ix2.384 (9)O3—W1v2.325 (10)
Gd1—O22.707 (9)O3—Rb1iii2.880 (10)
Gd1—O2x2.707 (9)O4—Gd1xv2.335 (9)
Gd1—W1x3.5717 (9)O4—Rb1iii2.975 (10)
Gd1—Rb1i3.8158 (6)O4—Rb1iv3.359 (10)
Gd1—Rb1xi3.8158 (6)
O4—W1—O399.2 (5)O2—Gd1—Rb1i71.0 (2)
O4—W1—O2103.5 (4)O2x—Gd1—Rb1i113.5 (2)
O3—W1—O299.0 (5)W1—Gd1—Rb1i69.64 (3)
O4—W1—O198.6 (4)W1x—Gd1—Rb1i118.50 (4)
O3—W1—O195.6 (4)O1v—Gd1—Rb1xi53.6 (3)
O2—W1—O1151.1 (4)O1i—Gd1—Rb1xi135.7 (3)
O4—W1—O1i157.0 (4)O4vi—Gd1—Rb1xi51.2 (2)
O3—W1—O1i102.8 (4)O4vii—Gd1—Rb1xi121.1 (2)
O2—W1—O1i79.8 (4)O2viii—Gd1—Rb1xi121.6 (2)
O1—W1—O1i72.7 (4)O2ix—Gd1—Rb1xi55.0 (2)
O4—W1—O3ii79.4 (4)O2—Gd1—Rb1xi113.5 (2)
O3—W1—O3ii172.3 (3)O2x—Gd1—Rb1xi71.0 (2)
O2—W1—O3ii88.7 (4)W1—Gd1—Rb1xi118.50 (4)
O1—W1—O3ii77.2 (4)W1x—Gd1—Rb1xi69.64 (3)
O1i—W1—O3ii78.0 (4)Rb1i—Gd1—Rb1xi170.69 (8)
O4—W1—Gd1151.4 (3)O3x—Rb1—O364.6 (4)
O3—W1—Gd187.6 (3)O3x—Rb1—O3iii149.8 (3)
O2—W1—Gd147.8 (3)O3—Rb1—O3iii85.2 (3)
O1—W1—Gd1108.5 (3)O3x—Rb1—O3xii85.2 (3)
O1i—W1—Gd137.8 (3)O3—Rb1—O3xii149.8 (3)
O3ii—W1—Gd197.3 (2)O3iii—Rb1—O3xii125.0 (4)
O4—W1—Rb1iii51.8 (3)O3x—Rb1—O4iii126.2 (3)
O3—W1—Rb1iii48.7 (3)O3—Rb1—O4iii97.9 (3)
O2—W1—Rb1iii98.0 (3)O3iii—Rb1—O4iii54.9 (3)
O1—W1—Rb1iii110.2 (3)O3xii—Rb1—O4iii100.3 (3)
O1i—W1—Rb1iii151.0 (3)O3x—Rb1—O4xii97.9 (3)
O3ii—W1—Rb1iii131.0 (2)O3—Rb1—O4xii126.2 (3)
Gd1—W1—Rb1iii122.86 (3)O3iii—Rb1—O4xii100.3 (3)
O4—W1—Rb1iv62.0 (3)O3xii—Rb1—O4xii54.9 (3)
O3—W1—Rb1iv136.8 (3)O4iii—Rb1—O4xii129.1 (4)
O2—W1—Rb1iv54.8 (3)O3x—Rb1—O155.8 (3)
O1—W1—Rb1iv124.2 (3)O3—Rb1—O155.8 (3)
O1i—W1—Rb1iv104.7 (3)O3iii—Rb1—O1107.9 (3)
O3ii—W1—Rb1iv49.1 (3)O3xii—Rb1—O1107.8 (3)
Gd1—W1—Rb1iv94.15 (4)O4iii—Rb1—O1151.8 (3)
Rb1iii—W1—Rb1iv97.12 (4)O4xii—Rb1—O172.0 (3)
O4—W1—Rb195.2 (3)O3x—Rb1—O1x55.8 (3)
O3—W1—Rb144.2 (3)O3—Rb1—O1x55.8 (3)
O2—W1—Rb1141.4 (3)O3iii—Rb1—O1x107.8 (3)
O1—W1—Rb152.4 (3)O3xii—Rb1—O1x107.9 (3)
O1i—W1—Rb195.8 (3)O4iii—Rb1—O1x72.0 (3)
O3ii—W1—Rb1128.2 (3)O4xii—Rb1—O1x151.8 (3)
Gd1—W1—Rb1108.55 (3)O1—Rb1—O1x96.6 (4)
Rb1iii—W1—Rb167.767 (19)O3x—Rb1—O2xiii113.3 (3)
Rb1iv—W1—Rb1157.00 (6)O3—Rb1—O2xiii80.5 (3)
O4—W1—Rb1i116.2 (3)O3iii—Rb1—O2xiii58.2 (3)
O3—W1—Rb1i143.8 (3)O3xii—Rb1—O2xiii113.7 (3)
O2—W1—Rb1i67.0 (3)O4iii—Rb1—O2xiii112.9 (3)
O1—W1—Rb1i86.7 (3)O4xii—Rb1—O2xiii59.6 (3)
O1i—W1—Rb1i43.6 (3)O1—Rb1—O2xiii57.5 (2)
O3ii—W1—Rb1i39.7 (2)O1x—Rb1—O2xiii136.0 (2)
Gd1—W1—Rb1i57.900 (19)O3x—Rb1—O2xiv80.5 (3)
Rb1iii—W1—Rb1i159.64 (4)O3—Rb1—O2xiv113.3 (3)
Rb1iv—W1—Rb1i63.190 (17)O3iii—Rb1—O2xiv113.7 (2)
Rb1—W1—Rb1i132.54 (3)O3xii—Rb1—O2xiv58.2 (3)
O1v—Gd1—O1i82.9 (5)O4iii—Rb1—O2xiv59.6 (3)
O1v—Gd1—O4vi99.8 (3)O4xii—Rb1—O2xiv112.9 (3)
O1i—Gd1—O4vi148.2 (3)O1—Rb1—O2xiv136.0 (2)
O1v—Gd1—O4vii148.2 (3)O1x—Rb1—O2xiv57.5 (2)
O1i—Gd1—O4vii99.8 (3)O2xiii—Rb1—O2xiv164.3 (3)
O4vi—Gd1—O4vii94.3 (5)O3x—Rb1—O4xiii151.6 (3)
O1v—Gd1—O2viii131.0 (3)O3—Rb1—O4xiii125.1 (3)
O1i—Gd1—O2viii78.9 (3)O3iii—Rb1—O4xiii49.5 (3)
O4vi—Gd1—O2viii75.6 (3)O3xii—Rb1—O4xiii81.7 (3)
O4vii—Gd1—O2viii80.1 (3)O4iii—Rb1—O4xiii81.16 (16)
O1v—Gd1—O2ix78.9 (3)O4xii—Rb1—O4xiii54.1 (3)
O1i—Gd1—O2ix131.0 (3)O1—Rb1—O4xiii104.9 (2)
O4vi—Gd1—O2ix80.1 (3)O1x—Rb1—O4xiii152.6 (3)
O4vii—Gd1—O2ix75.6 (3)O2xiii—Rb1—O4xiii51.5 (2)
O2viii—Gd1—O2ix143.9 (4)O2xiv—Rb1—O4xiii112.7 (2)
O1v—Gd1—O280.8 (3)O3x—Rb1—O4xiv125.1 (3)
O1i—Gd1—O259.6 (3)O3—Rb1—O4xiv151.6 (3)
O4vi—Gd1—O2152.1 (3)O3iii—Rb1—O4xiv81.7 (3)
O4vii—Gd1—O273.7 (3)O3xii—Rb1—O4xiv49.5 (3)
O2viii—Gd1—O2124.9 (4)O4iii—Rb1—O4xiv54.1 (3)
O2ix—Gd1—O272.7 (3)O4xii—Rb1—O4xiv81.16 (16)
O1v—Gd1—O2x59.6 (3)O1—Rb1—O4xiv152.6 (3)
O1i—Gd1—O2x80.8 (3)O1x—Rb1—O4xiv104.9 (2)
O4vi—Gd1—O2x73.7 (3)O2xiii—Rb1—O4xiv112.7 (2)
O4vii—Gd1—O2x152.1 (3)O2xiv—Rb1—O4xiv51.5 (2)
O2viii—Gd1—O2x72.7 (3)O4xiii—Rb1—O4xiv61.3 (3)
O2ix—Gd1—O2x124.9 (4)W1—O1—W1i107.3 (4)
O2—Gd1—O2x127.4 (4)W1—O1—Gd1i139.3 (5)
O1v—Gd1—W168.9 (2)W1i—O1—Gd1i108.7 (4)
O1i—Gd1—W133.6 (2)W1—O1—Rb197.0 (4)
O4vi—Gd1—W1168.7 (2)W1i—O1—Rb1108.5 (4)
O4vii—Gd1—W195.9 (2)Gd1i—O1—Rb189.2 (3)
O2viii—Gd1—W1111.1 (2)W1—O2—Gd1ix134.3 (5)
O2ix—Gd1—W197.6 (2)W1—O2—Gd1102.0 (4)
O2—Gd1—W130.11 (19)Gd1ix—O2—Gd1107.3 (3)
O2x—Gd1—W199.16 (19)W1—O2—Rb1iv96.6 (4)
O1v—Gd1—W1x33.6 (2)Gd1ix—O2—Rb1iv86.5 (3)
O1i—Gd1—W1x68.9 (2)Gd1—O2—Rb1iv135.4 (3)
O4vi—Gd1—W1x95.9 (2)W1—O3—W1v135.6 (5)
O4vii—Gd1—W1x168.7 (2)W1—O3—Rb1110.1 (5)
O2viii—Gd1—W1x97.6 (2)W1v—O3—Rb1108.9 (3)
O2ix—Gd1—W1x111.1 (2)W1—O3—Rb1iii103.7 (4)
O2—Gd1—W1x99.16 (19)W1v—O3—Rb1iii93.3 (3)
O2x—Gd1—W1x30.1 (2)Rb1—O3—Rb1iii94.8 (3)
W1—Gd1—W1x74.48 (2)W1—O4—Gd1xv153.6 (6)
O1v—Gd1—Rb1i135.7 (3)W1—O4—Rb1iii100.4 (4)
O1i—Gd1—Rb1i53.6 (3)Gd1xv—O4—Rb1iii91.1 (3)
O4vi—Gd1—Rb1i121.1 (2)W1—O4—Rb1iv90.3 (3)
O4vii—Gd1—Rb1i51.2 (2)Gd1xv—O4—Rb1iv102.2 (3)
O2viii—Gd1—Rb1i55.0 (2)Rb1iii—O4—Rb1iv125.9 (3)
O2ix—Gd1—Rb1i121.6 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y1/2, z; (v) x, y+1, z+1/2; (vi) x1/2, y1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z+1; (x) x, y, z+1/2; (xi) x, y+1, z+1; (xii) x1/2, y+3/2, z1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaRbGd(WO4)2
Mr738.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)10.6953 (12), 10.5017 (11), 7.6064 (11)
β (°) 130.504 (7)
V3)649.61 (14)
Z4
Radiation typeMo Kα
µ (mm1)52.87
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.013, 0.045
No. of measured, independent and
observed [I > 2σ(I)] reflections
1197, 951, 848
Rint0.085
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.11
No. of reflections951
No. of parameters57
w = 1/[σ2(Fo2) + (0.089P)2 + 31.6366P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)5.38, 6.38

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Bruker, 1997), SHELXTL, Please provide missing details.

Selected bond lengths (Å) top
W1—O41.768 (9)Gd1—O2viii2.707 (9)
W1—O31.776 (10)Rb1—O3viii2.853 (11)
W1—O21.832 (9)Rb1—O32.853 (10)
W1—O11.970 (10)Rb1—O3ix2.880 (10)
W1—O1i2.084 (9)Rb1—O3x2.880 (10)
W1—O3ii2.325 (10)Rb1—O4ix2.975 (10)
Gd1—O1iii2.310 (10)Rb1—O4x2.975 (10)
Gd1—O1i2.310 (10)Rb1—O13.070 (10)
Gd1—O4iv2.335 (9)Rb1—O1viii3.070 (10)
Gd1—O4v2.335 (9)Rb1—O2xi3.130 (10)
Gd1—O2vi2.384 (9)Rb1—O2xii3.130 (10)
Gd1—O2vii2.384 (9)Rb1—O4xi3.359 (10)
Gd1—O22.707 (9)Rb1—O4xii3.359 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x1/2, y1/2, z; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x+1/2, y+1/2, z+1; (viii) x, y, z+1/2; (ix) x+1/2, y+3/2, z+1; (x) x1/2, y+3/2, z1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds