Buy article online - an online subscription or single-article purchase is required to access this article.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.
Supporting information
The lithium trimolybdate starting material, Li3Mo3O10 was synthesized
following the solid-state reaction described previously by Beaurain et
al. (2006). GaPO4 powder compound with the α-quartz structure was
obtained by dissolving 4 N Ga metal in nitric acid followed by precipitation
with phosphoric acid. FePO4.nH2O used as starting material was a
commercial product (LABOSI). The crystal growth experiments were carried out
in air in a single temperature zone in an SiC resistance heater furnace with a
Eurotherm temperature controller. Different amounts [70 and 85 wt% for (III)
and (II), respectively] of Li2Mo3O10 were mixed with α-GaPO4 and
homogenized in an agate mortar. The mixtures were placed in Pt crucibles
covered with a lid, heated from room temperature to 1223 K at a ramp rate of
100 K h-1 and held at this temperature for 5 h for homogenization. The
melted charges were then slowly cooled down at a rate of 1 K h-1 to 873 K.
After 5 h at 873 K, the charges were cooled to room temperature at 200 K h-1. In order to obtain crystals of (I), 15 wt% of FePO4.nH2O was
thoroughly mixed with 85 wt% of Li2Mo3O10 and charged in a Pt crucible.
In order to release the water molecules, the mixture was heated at 623 K for 3 h. The temperature of the furnace was then increased at a rate of 100 K h-1
up to 973 K and kept at this temperature for 5 h for homogenization. Slow
cooling (2 K h-1) down to 723 K was programmed before switching off the
furnace.
The data for the structure of (I) were collected at 173 K by placing the crystal
in a stream of nitrogen (Cryojet, Oxford Instruments). The structures of (I)
and (II) were solved using default charge-flipping parameters as determined by
JANA2000 (Petrícek et al., 2000). The Li atoms were found in
difference Fourier maps. The refinement of these two structures proceeded
without problems. The presence of the inversion centre in the structure was
established using an analysis of the electron-density map before attribution
of the atom types (Palatinus & Chapuis, 2007).
The structure of (III) was also solved using default parameters, and the proper
space group symmetry Pnma was established on the basis of an analysis
of the electron-density map before attribution of the atom types; the
agreement factors for the three generators nx, my and
az are 0.23, 1.89, and 0.64%, respectively, proving that the
inversion centre is indeed present. It is noted that the same space group was
proposed for the previously determined structure (Efremov & Trunov, 1975), and
also for the isostructural compounds Li3Fe(MoO4)3 (Klevtsova & Magarill,
1970) and Li3Sc(MoO4)3 (Kolitsch & Tillmanns, 2003). The occupancy of
the presumed Ga site needed to be set at 0.50 in order to have acceptable
displacement parameters. Only one Li atom could be located in the difference
map, which is not sufficient for the charge balance, but no accessible voids
could be located in the resulting structure. Therefore, a subsititional
disorder of Ga/Li was proposed, approximately in line with what was found in
the structure of Li3Fe(MoO4)3 for the Fe/Li sites (Klevtsova & Magarill,
1970). There, the occupancies of the two sites were fixed at 0.3333/0.66667
for Fe and Li, respectively. In the present case, the occupancies of the
Ga1/Li2 and Ga3/Li4 sites in the structure of (III) were constrained to a
value of 1.00, whereas restraints with an s.u. of 0.001 were used for keeping
the total number of Li atoms in the structural formula at 3.0 and the total
number of Ga atoms at 1.0, i.e. 0.5 × occupancy(Ga1) +
occupancy(Ga3) = 1/2, and 0.5 × occupancy(Li2) + occupancy(Li4) = 1.0.
There is no indication that the third trigonal prismatic site contains a small
amount of Ga.
For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and DrawXtl (Finger et al., 2007); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).
(I) lithium iron dimolybdate
top
Crystal data top
LiFe(MoO4)2 | Z = 2 |
Mr = 382.66 | F(000) = 354 |
Triclinic, P1 | Dx = 4.029 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 6.7592 (2) Å | Cell parameters from 4835 reflections |
b = 7.1773 (2) Å | θ = 3.0–32.2° |
c = 7.2398 (2) Å | µ = 6.19 mm−1 |
α = 90.806 (3)° | T = 173 K |
β = 110.315 (3)° | Prism, brown-yellow |
γ = 105.3850 (15)° | 0.49 × 0.28 × 0.16 mm |
V = 315.38 (2) Å3 | |
Data collection top
Oxford Diffraction Xcalibur-I diffractometer | 1977 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1966 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 8.4205 pixels mm-1 | θmax = 32.3°, θmin = 3.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | k = −10→10 |
Tmin = 0.420, Tmax = 1.000 | l = −10→10 |
5166 measured reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.014 | Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.01P)2 + 0.66P],
where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.035 | (Δ/σ)max = 0.001 |
S = 1.20 | Δρmax = 0.46 e Å−3 |
2007 reflections | Δρmin = −0.66 e Å−3 |
109 parameters | |
Crystal data top
LiFe(MoO4)2 | γ = 105.3850 (15)° |
Mr = 382.66 | V = 315.38 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7592 (2) Å | Mo Kα radiation |
b = 7.1773 (2) Å | µ = 6.19 mm−1 |
c = 7.2398 (2) Å | T = 173 K |
α = 90.806 (3)° | 0.49 × 0.28 × 0.16 mm |
β = 110.315 (3)° | |
Data collection top
Oxford Diffraction Xcalibur-I diffractometer | 1977 independent reflections |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | 1966 reflections with I > 2σ(I) |
Tmin = 0.420, Tmax = 1.000 | Rint = 0.020 |
5166 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.014 | 109 parameters |
wR(F2) = 0.035 | 0 restraints |
S = 1.20 | Δρmax = 0.46 e Å−3 |
2007 reflections | Δρmin = −0.66 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Mo1 | 0.33314 (3) | 0.57612 (2) | 0.29130 (2) | 0.0054 | |
Mo2 | 0.82113 (2) | −0.03786 (2) | 0.22280 (2) | 0.0046 | |
Fe3 | 0.39993 (4) | 0.10025 (4) | 0.31839 (4) | 0.0041 | |
Li4 | 0.7711 (6) | 0.4465 (6) | 0.2593 (6) | 0.0142 | |
O5 | 0.4178 (2) | 0.84077 (19) | 0.3846 (2) | 0.0062 | |
O6 | 0.2536 (3) | 0.5702 (2) | 0.0397 (2) | 0.0120 | |
O7 | 0.0947 (2) | 0.4847 (2) | 0.3361 (2) | 0.0111 | |
O8 | 0.4814 (2) | 0.3844 (2) | 0.3508 (2) | 0.0077 | |
O9 | 0.6858 (2) | 0.1297 (2) | 0.2697 (2) | 0.0075 | |
O10 | 0.7680 (2) | −0.0471 (2) | −0.0336 (2) | 0.0114 | |
O11 | 0.7130 (2) | −0.2750 (2) | 0.2649 (2) | 0.0096 | |
O12 | 1.1113 (2) | 0.0466 (2) | 0.3552 (2) | 0.0083 | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mo1 | 0.00488 (7) | 0.00357 (7) | 0.00636 (7) | 0.00158 (5) | 0.00027 (5) | 0.00015 (5) |
Mo2 | 0.00306 (7) | 0.00566 (7) | 0.00493 (7) | 0.00144 (5) | 0.00102 (5) | −0.00004 (5) |
Fe3 | 0.00384 (11) | 0.00372 (10) | 0.00487 (11) | 0.00124 (8) | 0.00148 (9) | 0.00045 (8) |
Li4 | 0.0099 (16) | 0.0157 (17) | 0.0186 (18) | 0.0055 (13) | 0.0055 (14) | 0.0029 (14) |
O5 | 0.0076 (6) | 0.0046 (5) | 0.0065 (6) | 0.0022 (5) | 0.0024 (5) | 0.0012 (4) |
O6 | 0.0130 (6) | 0.0130 (7) | 0.0079 (6) | 0.0047 (5) | 0.0007 (5) | 0.0005 (5) |
O7 | 0.0066 (6) | 0.0105 (6) | 0.0147 (7) | 0.0013 (5) | 0.0027 (5) | 0.0029 (5) |
O8 | 0.0080 (6) | 0.0048 (6) | 0.0098 (6) | 0.0028 (5) | 0.0020 (5) | 0.0010 (5) |
O9 | 0.0066 (6) | 0.0075 (6) | 0.0107 (6) | 0.0028 (5) | 0.0052 (5) | 0.0024 (5) |
O10 | 0.0084 (6) | 0.0183 (7) | 0.0067 (6) | 0.0030 (5) | 0.0023 (5) | −0.0002 (5) |
O11 | 0.0098 (6) | 0.0069 (6) | 0.0117 (6) | 0.0019 (5) | 0.0038 (5) | 0.0001 (5) |
O12 | 0.0046 (6) | 0.0111 (6) | 0.0089 (6) | 0.0020 (5) | 0.0025 (5) | 0.0009 (5) |
Geometric parameters (Å, º) top
Mo1—O8i | 2.4291 (14) | Fe3—O5i | 2.0444 (14) |
Mo1—O11ii | 2.5812 (15) | Fe3—O12iii | 1.9977 (14) |
Mo1—Fe3i | 3.2691 (3) | Fe3—Fe3iv | 3.0798 (5) |
Mo1—Mo1i | 3.4759 (3) | Fe3—O5v | 1.9537 (13) |
Mo1—O5 | 1.8736 (13) | Fe3—O10vi | 1.9514 (15) |
Mo1—O6 | 1.7074 (15) | Fe3—O8 | 1.9543 (14) |
Mo1—O7 | 1.7148 (15) | Fe3—O9 | 2.0397 (14) |
Mo1—O8 | 1.8792 (13) | Li4—O6vii | 2.112 (4) |
Mo2—Fe3 | 3.5232 (3) | Li4—O7viii | 2.001 (4) |
Mo2—O9 | 1.7851 (14) | Li4—O7i | 2.743 (4) |
Mo2—O10 | 1.7608 (15) | Li4—O8 | 2.217 (4) |
Mo2—O11 | 1.7417 (14) | Li4—O9 | 2.202 (4) |
Mo2—O12 | 1.7835 (14) | Li4—O11ii | 2.139 (4) |
| | | |
O8i—Mo1—O11ii | 88.05 (5) | Fe3iv—Fe3—Mo1i | 70.379 (10) |
O8i—Mo1—Fe3i | 36.49 (3) | O5v—Fe3—Mo1i | 111.08 (4) |
O11ii—Mo1—Fe3i | 75.97 (3) | O10vi—Fe3—Mo1i | 147.68 (5) |
O8i—Mo1—Mo1i | 31.16 (3) | O5i—Fe3—Mo2 | 91.52 (4) |
O11ii—Mo1—Mo1i | 79.99 (3) | O12iii—Fe3—Mo2 | 153.74 (4) |
Fe3i—Mo1—Mo1i | 63.653 (7) | Fe3iv—Fe3—Mo2 | 75.867 (10) |
O8i—Mo1—O5 | 71.43 (5) | O5v—Fe3—Mo2 | 65.62 (4) |
O11ii—Mo1—O5 | 73.86 (5) | O10vi—Fe3—Mo2 | 87.53 (4) |
Fe3i—Mo1—O5 | 35.14 (4) | O5i—Fe3—O8 | 79.27 (6) |
Mo1i—Mo1—O5 | 98.07 (4) | O12iii—Fe3—O8 | 98.59 (6) |
O8i—Mo1—O6 | 168.64 (6) | Fe3iv—Fe3—O8 | 117.49 (4) |
O11ii—Mo1—O6 | 80.60 (6) | O5v—Fe3—O8 | 157.28 (6) |
Fe3i—Mo1—O6 | 137.80 (5) | O10vi—Fe3—O8 | 100.13 (6) |
Mo1i—Mo1—O6 | 144.59 (5) | O5i—Fe3—O9 | 88.22 (6) |
O5—Mo1—O6 | 104.56 (7) | O12iii—Fe3—O9 | 174.86 (6) |
O8i—Mo1—O7 | 85.81 (6) | Fe3iv—Fe3—O9 | 86.07 (4) |
O11ii—Mo1—O7 | 173.77 (6) | O5v—Fe3—O9 | 85.66 (6) |
Fe3i—Mo1—O7 | 98.36 (5) | O10vi—Fe3—O9 | 90.56 (6) |
Mo1i—Mo1—O7 | 95.24 (5) | Mo1i—Fe3—Mo2 | 103.551 (9) |
O5—Mo1—O7 | 103.07 (7) | Mo1i—Fe3—O8 | 47.66 (4) |
O8i—Mo1—O8 | 73.13 (6) | Mo2—Fe3—O8 | 107.66 (4) |
O11ii—Mo1—O8 | 73.88 (5) | Mo1i—Fe3—O9 | 89.85 (4) |
Fe3i—Mo1—O8 | 102.61 (4) | Mo2—Fe3—O9 | 21.34 (4) |
Mo1i—Mo1—O8 | 41.97 (4) | O8—Fe3—O9 | 86.33 (6) |
O5—Mo1—O8 | 132.18 (6) | Fe3i—O5—Fe3ii | 100.74 (6) |
O6—Mo1—O7 | 105.52 (7) | Fe3i—O5—Mo1 | 113.03 (7) |
O6—Mo1—O8 | 103.90 (7) | Fe3ii—O5—Mo1 | 146.20 (8) |
O7—Mo1—O8 | 105.26 (7) | Mo1i—O8—Fe3 | 95.85 (6) |
Fe3—Mo2—O9 | 24.57 (4) | Mo1i—O8—Mo1 | 106.87 (6) |
Fe3—Mo2—O10 | 108.85 (5) | Fe3—O8—Mo1 | 136.55 (8) |
O9—Mo2—O10 | 104.70 (7) | Fe3—O9—Mo2 | 134.08 (8) |
Fe3—Mo2—O11 | 90.01 (5) | Fe3vi—O10—Mo2 | 158.81 (9) |
O9—Mo2—O11 | 114.10 (7) | Mo1v—O11—Mo2 | 127.16 (7) |
O10—Mo2—O11 | 105.95 (7) | Fe3viii—O12—Mo2 | 142.30 (8) |
Fe3—Mo2—O12 | 128.60 (5) | O6vii—Li4—O7viii | 87.75 (16) |
O9—Mo2—O12 | 111.45 (7) | O6vii—Li4—O7i | 166.37 (19) |
O10—Mo2—O12 | 109.19 (7) | O7viii—Li4—O7i | 79.70 (14) |
O11—Mo2—O12 | 111.01 (7) | O6vii—Li4—O8 | 123.46 (19) |
O5i—Fe3—O12iii | 94.15 (6) | O7viii—Li4—O8 | 148.0 (2) |
O5i—Fe3—Fe3iv | 38.55 (4) | O7i—Li4—O8 | 69.76 (12) |
O12iii—Fe3—Fe3iv | 92.94 (4) | O6vii—Li4—O9 | 95.07 (17) |
O5i—Fe3—O5v | 79.26 (6) | O7viii—Li4—O9 | 95.34 (16) |
O12iii—Fe3—O5v | 90.29 (6) | O7i—Li4—O9 | 91.39 (14) |
Fe3iv—Fe3—O5v | 40.71 (4) | O8—Li4—O9 | 76.40 (14) |
O5i—Fe3—O10vi | 178.67 (6) | O6vii—Li4—O11ii | 95.30 (17) |
O12iii—Fe3—O10vi | 87.11 (6) | O7viii—Li4—O11ii | 108.95 (19) |
Fe3iv—Fe3—O10vi | 141.86 (5) | O7i—Li4—O11ii | 83.91 (14) |
O5v—Fe3—O10vi | 101.17 (6) | O8—Li4—O11ii | 77.89 (14) |
O5i—Fe3—Mo1i | 31.83 (4) | O9—Li4—O11ii | 153.9 (2) |
O12iii—Fe3—Mo1i | 94.57 (4) | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x−1, y, z; (iv) −x+1, −y, −z+1; (v) x, y−1, z; (vi) −x+1, −y, −z; (vii) −x+1, −y+1, −z; (viii) x+1, y, z. |
(II) lithium gallium dimolybdate
top
Crystal data top
LiGa(MoO4)2 | Z = 2 |
Mr = 396.54 | F(000) = 364 |
Triclinic, P1 | Dx = 4.242 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 6.7232 (3) Å | Cell parameters from 5267 reflections |
b = 7.0982 (3) Å | θ = 3.0–32.3° |
c = 7.2580 (4) Å | µ = 8.29 mm−1 |
α = 90.915 (4)° | T = 293 K |
β = 110.648 (4)° | Prism, light-pink |
γ = 105.253 (4)° | 0.43 × 0.32 × 0.11 mm |
V = 310.43 (3) Å3 | |
Data collection top
Oxford Diffraction Xcalibur diffractometer | 1977 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1880 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 8.4205 pixels mm-1 | θmax = 32.4°, θmin = 3.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | k = −10→10 |
Tmin = 0.173, Tmax = 1.000 | l = −10→10 |
5166 measured reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.042 | Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.1P)2 + 8.34P],
where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.116 | (Δ/σ)max = 0.000266 |
S = 0.82 | Δρmax = 1.34 e Å−3 |
1977 reflections | Δρmin = −3.97 e Å−3 |
109 parameters | |
Crystal data top
LiGa(MoO4)2 | γ = 105.253 (4)° |
Mr = 396.54 | V = 310.43 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7232 (3) Å | Mo Kα radiation |
b = 7.0982 (3) Å | µ = 8.29 mm−1 |
c = 7.2580 (4) Å | T = 293 K |
α = 90.915 (4)° | 0.43 × 0.32 × 0.11 mm |
β = 110.648 (4)° | |
Data collection top
Oxford Diffraction Xcalibur diffractometer | 1977 independent reflections |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | 1880 reflections with I > 2σ(I) |
Tmin = 0.173, Tmax = 1.000 | Rint = 0.021 |
5166 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | 109 parameters |
wR(F2) = 0.116 | 0 restraints |
S = 0.82 | Δρmax = 1.34 e Å−3 |
1977 reflections | Δρmin = −3.97 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Mo1 | 0.33063 (7) | 0.57523 (6) | 0.29138 (6) | 0.0066 | |
Mo2 | 0.82150 (6) | −0.03507 (6) | 0.21800 (6) | 0.0055 | |
Ga3 | 0.40267 (9) | 0.09926 (8) | 0.31997 (8) | 0.0050 | |
Li4 | 0.771 (2) | 0.448 (2) | 0.2679 (18) | 0.0223 | |
O5 | 0.4190 (6) | 0.8422 (5) | 0.3865 (6) | 0.0072 | |
O6 | 0.2492 (8) | 0.5715 (7) | 0.0399 (6) | 0.0168 | |
O7 | 0.0929 (7) | 0.4831 (7) | 0.3369 (7) | 0.0157 | |
O8 | 0.4794 (7) | 0.3815 (5) | 0.3496 (6) | 0.0098 | |
O9 | 0.6875 (6) | 0.1321 (6) | 0.2738 (6) | 0.0091 | |
O10 | 0.7610 (7) | −0.0413 (7) | −0.0394 (6) | 0.0150 | |
O11 | 0.7163 (7) | −0.2742 (6) | 0.2614 (7) | 0.0137 | |
O12 | 1.1128 (6) | 0.0500 (6) | 0.3484 (6) | 0.0100 | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mo1 | 0.0064 (2) | 0.0035 (2) | 0.0082 (2) | 0.00214 (14) | 0.00038 (15) | 0.00054 (14) |
Mo2 | 0.00429 (19) | 0.0061 (2) | 0.0059 (2) | 0.00210 (14) | 0.00137 (14) | 0.00033 (14) |
Ga3 | 0.0059 (2) | 0.0038 (2) | 0.0055 (2) | 0.00177 (18) | 0.00191 (19) | 0.00095 (17) |
Li4 | 0.017 (5) | 0.030 (6) | 0.016 (5) | 0.004 (5) | 0.003 (4) | 0.004 (4) |
O5 | 0.0106 (16) | 0.0039 (14) | 0.0078 (15) | 0.0030 (12) | 0.0035 (12) | 0.0015 (12) |
O6 | 0.0196 (19) | 0.021 (2) | 0.0069 (17) | 0.0063 (16) | 0.0009 (14) | 0.0009 (15) |
O7 | 0.0101 (17) | 0.0141 (18) | 0.022 (2) | 0.0042 (15) | 0.0038 (15) | 0.0062 (16) |
O8 | 0.0101 (16) | 0.0045 (15) | 0.0142 (17) | 0.0033 (12) | 0.0028 (13) | 0.0015 (13) |
O9 | 0.0074 (15) | 0.0079 (15) | 0.0147 (17) | 0.0029 (12) | 0.0067 (13) | 0.0033 (13) |
O10 | 0.0104 (16) | 0.026 (2) | 0.0046 (16) | 0.0029 (15) | 0.0004 (13) | −0.0004 (15) |
O11 | 0.0156 (18) | 0.0082 (16) | 0.0182 (19) | 0.0025 (14) | 0.0078 (15) | 0.0016 (14) |
O12 | 0.0043 (14) | 0.0136 (17) | 0.0113 (17) | 0.0020 (13) | 0.0024 (12) | 0.0009 (13) |
Geometric parameters (Å, º) top
Mo1—O8i | 2.437 (4) | Ga3—O12iii | 1.972 (4) |
Mo1—O11ii | 2.619 (4) | Ga3—O10iv | 1.919 (4) |
Mo1—Mo1i | 3.4665 (8) | Ga3—O5v | 1.916 (4) |
Mo1—Ga3i | 3.2489 (7) | Ga3—Ga3vi | 3.0338 (11) |
Mo1—O5 | 1.870 (4) | Ga3—O8 | 1.921 (4) |
Mo1—O6 | 1.709 (4) | Ga3—O9 | 2.014 (4) |
Mo1—O7 | 1.709 (4) | Li4—O6vii | 2.188 (13) |
Mo1—O8 | 1.874 (4) | Li4—O7viii | 1.985 (13) |
Mo2—O9 | 1.786 (4) | Li4—O7i | 2.679 (13) |
Mo2—O10 | 1.763 (4) | Li4—O8 | 2.183 (13) |
Mo2—O11 | 1.739 (4) | Li4—O9 | 2.167 (14) |
Mo2—O12 | 1.775 (4) | Li4—O11ii | 2.099 (14) |
Ga3—O5i | 2.014 (4) | | |
| | | |
O8i—Mo1—O11ii | 88.42 (14) | O12iii—Ga3—Mo1i | 94.96 (12) |
O8i—Mo1—Mo1i | 31.26 (9) | O10iv—Ga3—Mo1i | 148.74 (15) |
O11ii—Mo1—Mo1i | 80.22 (10) | O5v—Ga3—Mo1i | 110.83 (12) |
O8i—Mo1—Ga3i | 36.04 (9) | O5i—Ga3—Ga3vi | 38.31 (10) |
O11ii—Mo1—Ga3i | 76.80 (10) | O12iii—Ga3—Ga3vi | 93.83 (12) |
Mo1i—Mo1—Ga3i | 63.451 (16) | O10iv—Ga3—Ga3vi | 141.00 (15) |
O8i—Mo1—O5 | 70.57 (14) | O5v—Ga3—Ga3vi | 40.67 (11) |
O11ii—Mo1—O5 | 73.82 (15) | Mo1i—Ga3—Ga3vi | 70.17 (2) |
Mo1i—Mo1—O5 | 97.24 (12) | O5i—Ga3—O8 | 79.99 (16) |
Ga3i—Mo1—O5 | 34.66 (11) | O12iii—Ga3—O8 | 97.31 (17) |
O8i—Mo1—O6 | 168.27 (19) | O10iv—Ga3—O8 | 100.52 (19) |
O11ii—Mo1—O6 | 79.96 (19) | O5v—Ga3—O8 | 157.94 (17) |
Mo1i—Mo1—O6 | 145.21 (17) | Mo1i—Ga3—O8 | 48.27 (12) |
Ga3i—Mo1—O6 | 137.31 (16) | O5i—Ga3—O9 | 88.69 (16) |
O5—Mo1—O6 | 104.3 (2) | O12iii—Ga3—O9 | 175.54 (16) |
O8i—Mo1—O7 | 85.70 (18) | O10iv—Ga3—O9 | 89.94 (18) |
O11ii—Mo1—O7 | 174.08 (18) | O5v—Ga3—O9 | 86.88 (15) |
Mo1i—Mo1—O7 | 95.03 (15) | Mo1i—Ga3—O9 | 89.46 (12) |
Ga3i—Mo1—O7 | 97.95 (16) | Ga3vi—Ga3—O8 | 118.03 (12) |
O5—Mo1—O7 | 103.48 (19) | Ga3vi—Ga3—O9 | 87.16 (11) |
O8i—Mo1—O8 | 73.69 (17) | O8—Ga3—O9 | 86.03 (16) |
O11ii—Mo1—O8 | 73.84 (15) | Ga3i—O5—Ga3ii | 101.01 (17) |
Mo1i—Mo1—O8 | 42.43 (13) | Ga3i—O5—Mo1 | 113.48 (18) |
Ga3i—Mo1—O8 | 102.98 (12) | Ga3ii—O5—Mo1 | 145.5 (2) |
O5—Mo1—O8 | 131.73 (17) | Mo1i—O8—Ga3 | 95.69 (16) |
O6—Mo1—O7 | 105.9 (2) | Mo1i—O8—Mo1 | 106.31 (17) |
O6—Mo1—O8 | 104.2 (2) | Ga3—O8—Mo1 | 137.4 (2) |
O7—Mo1—O8 | 105.05 (19) | Ga3—O9—Mo2 | 134.1 (2) |
O9—Mo2—O10 | 105.2 (2) | Ga3iv—O10—Mo2 | 160.1 (3) |
O9—Mo2—O11 | 113.25 (19) | Mo1v—O11—Mo2 | 126.6 (2) |
O10—Mo2—O11 | 106.8 (2) | Ga3viii—O12—Mo2 | 144.0 (2) |
O9—Mo2—O12 | 110.97 (18) | O6vii—Li4—O7i | 165.2 (6) |
O10—Mo2—O12 | 109.8 (2) | O6vii—Li4—O8 | 123.1 (6) |
O11—Mo2—O12 | 110.6 (2) | O7i—Li4—O8 | 71.5 (4) |
O5i—Ga3—O12iii | 94.78 (16) | O6vii—Li4—O9 | 94.0 (5) |
O5i—Ga3—O10iv | 178.50 (17) | O7i—Li4—O9 | 92.2 (5) |
O12iii—Ga3—O10iv | 86.56 (18) | O8—Li4—O9 | 76.2 (4) |
O5i—Ga3—O5v | 78.99 (17) | O6vii—Li4—O11ii | 93.5 (5) |
O12iii—Ga3—O5v | 91.04 (16) | O7i—Li4—O11ii | 86.3 (5) |
O10iv—Ga3—O5v | 100.34 (19) | O8—Li4—O11ii | 80.4 (5) |
O5i—Ga3—Mo1i | 31.86 (10) | O9—Li4—O11ii | 155.8 (7) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x−1, y, z; (iv) −x+1, −y, −z; (v) x, y−1, z; (vi) −x+1, −y, −z+1; (vii) −x+1, −y+1, −z; (viii) x+1, y, z. |
(III) trilithium gallium trimolybdate
top
Crystal data top
Li3Ga(MoO4)3 | F(000) = 1048.266 |
Mr = 570.51 | Dx = 4.139 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 12240 reflections |
a = 5.04022 (13) Å | θ = 3.0–32.3° |
b = 10.4054 (3) Å | µ = 7.00 mm−1 |
c = 17.4541 (5) Å | T = 293 K |
V = 915.39 (4) Å3 | Prism, red-pink |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Data collection top
Oxford Diffraction Xcalibur diffractometer | 1610 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1353 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 8.4205 pixels mm-1 | θmax = 32.4°, θmin = 3.9° |
ω scans | h = −7→7 |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | k = −14→15 |
Tmin = 0.768, Tmax = 1.000 | l = −24→23 |
17688 measured reflections | |
Refinement top
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.031 | Method = Modified Sheldrick, w = 1/[σ2(F2) + (0.05P)2 + 1.63P],
where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.085 | (Δ/σ)max = 0.002 |
S = 1.14 | Δρmax = 1.35 e Å−3 |
1610 reflections | Δρmin = −3.02 e Å−3 |
96 parameters | |
Crystal data top
Li3Ga(MoO4)3 | V = 915.39 (4) Å3 |
Mr = 570.51 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 5.04022 (13) Å | µ = 7.00 mm−1 |
b = 10.4054 (3) Å | T = 293 K |
c = 17.4541 (5) Å | 0.35 × 0.30 × 0.25 mm |
Data collection top
Oxford Diffraction Xcalibur diffractometer | 1610 independent reflections |
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | 1353 reflections with I > 2σ(I) |
Tmin = 0.768, Tmax = 1.000 | Rint = 0.030 |
17688 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.031 | 96 parameters |
wR(F2) = 0.085 | 2 restraints |
S = 1.14 | Δρmax = 1.35 e Å−3 |
1610 reflections | Δρmin = −3.02 e Å−3 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Mo1 | 0.78007 (12) | 0.7500 | 0.55723 (4) | 0.0066 | |
Mo2 | 0.77953 (10) | 0.47532 (5) | 0.84394 (3) | 0.0078 | |
Ga3 | 0.24238 (12) | 0.92817 (12) | 0.47388 (9) | 0.0056 | 0.2909 (17) |
Li4 | 0.24238 (12) | 0.92817 (12) | 0.47388 (9) | 0.0056 | 0.7091 (17) |
Ga5 | 1.10960 (13) | 0.7500 | 0.75024 (10) | 0.0120 | 0.421 (3) |
Li6 | 1.10960 (13) | 0.7500 | 0.75024 (10) | 0.0120 | 0.579 (3) |
Li7 | 0.74424 (18) | 0.2500 | 0.69454 (18) | 0.0171 | |
O8 | 0.86190 (18) | 0.7500 | 0.65560 (17) | 0.0143 | |
O9 | 1.05797 (18) | 0.7500 | 0.49290 (17) | 0.0155 | |
O10 | 0.57942 (18) | 0.88452 (17) | 0.53714 (16) | 0.0145 | |
O11 | 0.58087 (18) | 0.37806 (17) | 0.78722 (16) | 0.0173 | |
O12 | 0.85878 (18) | 0.61997 (17) | 0.79391 (16) | 0.0138 | |
O13 | 0.58027 (18) | 0.51281 (17) | 0.92573 (16) | 0.0142 | |
O14 | 1.06124 (18) | 0.38821 (17) | 0.87424 (16) | 0.0158 | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Mo1 | 0.00644 (12) | 0.00787 (16) | 0.00563 (16) | 0.0000 | −0.00007 (15) | 0.0000 |
Mo2 | 0.00745 (11) | 0.00772 (15) | 0.00818 (15) | −0.00062 (13) | 0.00064 (13) | 0.00190 (13) |
Ga3 | 0.00419 (9) | 0.00752 (13) | 0.00508 (13) | −0.00015 (13) | 0.00030 (13) | 0.00112 (13) |
Li4 | 0.00419 (9) | 0.00752 (13) | 0.00508 (13) | 0.00013 (13) | 0.00030 (13) | −0.00113 (13) |
Ga5 | 0.02661 (9) | 0.00408 (13) | 0.00537 (13) | 0.0000 | 0.00453 (13) | 0.0000 |
Li6 | 0.02661 (9) | 0.00408 (13) | 0.00537 (13) | 0.0000 | 0.00453 (13) | 0.0000 |
Li7 | 0.00965 (13) | 0.01213 (18) | 0.02948 (18) | 0.0000 | −0.00329 (18) | 0.0000 |
O8 | 0.01759 (13) | 0.01642 (18) | 0.00883 (18) | 0.0000 | −0.00166 (18) | 0.0000 |
O9 | 0.01136 (13) | 0.02193 (18) | 0.01315 (18) | 0.0000 | 0.00162 (18) | 0.0000 |
O10 | 0.01402 (13) | 0.01610 (18) | 0.01336 (18) | 0.00151 (18) | −0.00269 (18) | 0.00076 (18) |
O11 | 0.01445 (13) | 0.01998 (18) | 0.01753 (18) | −0.00543 (18) | −0.00075 (18) | −0.00498 (18) |
O12 | 0.01934 (13) | 0.01011 (18) | 0.01209 (18) | 0.00097 (18) | 0.00020 (18) | 0.00238 (18) |
O13 | 0.01354 (13) | 0.01809 (18) | 0.01101 (18) | −0.00023 (18) | −0.00006 (18) | 0.00092 (18) |
O14 | 0.01706 (13) | 0.01388 (18) | 0.01649 (18) | 0.00381 (18) | 0.00332 (18) | 0.00143 (18) |
Geometric parameters (Å, º) top
Mo1—Ga3i | 3.3141 (12) | Ga5—Ga5xi | 2.5201 (1) |
Mo1—Ga3ii | 3.3141 (12) | Ga5—O8 | 2.071 (3) |
Mo1—O8 | 1.766 (3) | Ga5—O12 | 2.0025 (18) |
Mo1—O9 | 1.795 (2) | Li4—O9xiii | 2.1002 (13) |
Mo1—O10 | 1.7621 (17) | Li4—O10iii | 2.076 (2) |
Mo1—O10iii | 1.7621 (17) | Li4—O10xiv | 2.155 (2) |
Mo2—Ga3iv | 3.3453 (13) | Li4—O13xv | 2.0315 (18) |
Mo2—Ga5v | 3.4066 (10) | Li4—O13xvi | 2.029 (3) |
Mo2—O11 | 1.734 (2) | Li4—O14xvii | 2.044 (3) |
Mo2—O12 | 1.785 (2) | Li6—Ga5v | 2.5201 (1) |
Mo2—O13 | 1.788 (2) | Li6—Ga5xi | 2.5201 (1) |
Mo2—O14 | 1.7656 (15) | Li6—Li6v | 2.5201 (1) |
Ga3—O9vi | 2.1003 (13) | Li6—Li6xi | 2.5201 (1) |
Ga3—O14vii | 2.044 (3) | Li6—O8 | 2.071 (3) |
Ga3—O13viii | 2.0314 (18) | Li6—O8xi | 2.078 (3) |
Ga3—O13v | 2.029 (3) | Li6—O12 | 2.0025 (18) |
Ga3—O10ix | 2.155 (2) | Li6—O12xi | 2.0004 (19) |
Ga3—Ga3x | 3.0059 (19) | Li6—O12iii | 2.0025 (18) |
Ga3—Ga3ix | 3.1320 (18) | Li6—O12xii | 2.0004 (19) |
Ga3—O10 | 2.076 (2) | Li7—O11 | 2.252 (3) |
Ga5—O8xi | 2.078 (3) | Li7—O11xviii | 2.1808 (16) |
Ga5—O12iii | 2.0025 (18) | Li7—O11xix | 2.252 (3) |
Ga5—O12xii | 2.0004 (19) | Li7—O11xii | 2.1808 (16) |
Ga5—O12xi | 2.0004 (19) | Li7—O14xx | 2.088 (3) |
Ga5—Ga5v | 2.5201 (1) | Li7—O14xvi | 2.088 (3) |
| | | |
Ga3i—Mo1—Ga3ii | 68.03 (4) | O8xi—Ga5—O12 | 94.89 (10) |
Ga3i—Mo1—O10iii | 139.51 (9) | O12iii—Ga5—O12 | 85.01 (11) |
Ga3ii—Mo1—O10iii | 82.64 (6) | O12xii—Ga5—O12 | 94.93 (9) |
Ga3i—Mo1—O8 | 105.22 (4) | O12xi—Ga5—O12 | 179.67 (9) |
Ga3ii—Mo1—O8 | 105.22 (4) | Ga5v—Ga5—O12 | 50.94 (5) |
O10iii—Mo1—O8 | 109.12 (9) | Ga5xi—Ga5—Mo2xi | 75.34 (4) |
Ga3i—Mo1—O9 | 34.60 (3) | Ga5xi—Ga5—Mo2xii | 75.34 (4) |
Ga3ii—Mo1—O9 | 34.60 (3) | Mo2xi—Ga5—Mo2xii | 114.07 (5) |
O10iii—Mo1—O9 | 108.86 (9) | Ga5xi—Ga5—O8 | 126.89 (12) |
O8—Mo1—O9 | 115.21 (9) | Mo2xi—Ga5—O8 | 76.50 (4) |
Ga3i—Mo1—O10 | 82.64 (6) | Mo2xii—Ga5—O8 | 76.50 (4) |
Ga3ii—Mo1—O10 | 139.51 (9) | Ga5xi—Ga5—O12 | 129.24 (7) |
O10iii—Mo1—O10 | 105.19 (10) | Mo2xi—Ga5—O12 | 155.41 (5) |
O8—Mo1—O10 | 109.12 (9) | Mo2xii—Ga5—O12 | 77.03 (6) |
O9—Mo1—O10 | 108.86 (9) | O8—Ga5—O12 | 85.58 (8) |
Ga3iv—Mo2—Ga5v | 129.15 (3) | Ga5xvi—O8—Ga5 | 74.81 (10) |
Ga3iv—Mo2—O11 | 135.84 (7) | Ga5xvi—O8—Mo1 | 128.76 (7) |
Ga5v—Mo2—O11 | 93.95 (7) | Ga5—O8—Mo1 | 156.43 (9) |
Ga3iv—Mo2—O12 | 107.10 (6) | Ga3i—O9—Ga3ii | 123.94 (8) |
Ga5v—Mo2—O12 | 27.49 (4) | Ga3i—O9—Mo1 | 116.37 (7) |
O11—Mo2—O12 | 109.99 (11) | Ga3ii—O9—Mo1 | 116.37 (7) |
Ga3iv—Mo2—O13 | 83.99 (6) | Ga3—O10—Ga3ix | 95.49 (9) |
Ga5v—Mo2—O13 | 93.50 (7) | Ga3—O10—Mo1 | 138.52 (12) |
O11—Mo2—O13 | 105.00 (9) | Ga3ix—O10—Mo1 | 119.81 (6) |
O12—Mo2—O13 | 109.40 (9) | Ga5—O12—Ga5xvi | 78.04 (7) |
Ga3iv—Mo2—O14 | 30.95 (8) | Ga5—O12—Mo2 | 153.77 (8) |
Ga5v—Mo2—O14 | 141.03 (6) | Ga5xvi—O12—Mo2 | 128.18 (6) |
O11—Mo2—O14 | 109.62 (9) | Ga3xxi—O13—Ga3xi | 95.53 (11) |
O12—Mo2—O14 | 113.54 (7) | Ga3xxi—O13—Mo2 | 133.25 (12) |
O13—Mo2—O14 | 108.93 (11) | Ga3xi—O13—Mo2 | 121.96 (6) |
O9vi—Ga3—O14vii | 99.74 (10) | Ga3iv—O14—Mo2 | 122.68 (12) |
O9vi—Ga3—O13viii | 95.38 (7) | O9xiii—Li4—O10iii | 94.88 (9) |
O14vii—Ga3—O13viii | 97.11 (11) | O9xiii—Li4—O10xiv | 175.61 (13) |
O9vi—Ga3—O13v | 87.28 (10) | O10iii—Li4—O10xiv | 84.51 (9) |
O14vii—Ga3—O13v | 172.60 (8) | O9xiii—Li4—O13xv | 95.38 (7) |
O13viii—Ga3—O13v | 84.47 (11) | O10iii—Li4—O13xv | 165.88 (11) |
O9vi—Ga3—O10ix | 175.61 (13) | O10xiv—Li4—O13xv | 84.52 (8) |
O14vii—Ga3—O10ix | 84.62 (9) | O9xiii—Li4—O13xvi | 87.28 (10) |
O13viii—Ga3—O10ix | 84.53 (8) | O10iii—Li4—O13xvi | 86.35 (10) |
O13v—Ga3—O10ix | 88.35 (10) | O10xiv—Li4—O13xvi | 88.35 (10) |
O9vi—Ga3—Ga3x | 91.79 (5) | O13xv—Li4—O13xvi | 84.47 (11) |
O14vii—Ga3—Ga3x | 138.84 (10) | O9xiii—Li4—O14xvii | 99.74 (10) |
O13viii—Ga3—Ga3x | 42.20 (8) | O10iii—Li4—O14xvii | 90.68 (9) |
O13v—Ga3—Ga3x | 42.27 (6) | O10xiv—Li4—O14xvii | 84.61 (9) |
O10ix—Ga3—Ga3x | 85.19 (7) | O13xv—Li4—O14xvii | 97.11 (11) |
O9vi—Ga3—Mo1vi | 29.03 (6) | O13xvi—Li4—O14xvii | 172.59 (8) |
O14vii—Ga3—Mo1vi | 126.89 (7) | Ga5v—Li6—Ga5xi | 179.62 (16) |
O13viii—Ga3—Mo1vi | 82.03 (6) | Ga5xi—Li6—Li6v | 179.62 (16) |
O13v—Ga3—Mo1vi | 60.46 (5) | Ga5v—Li6—Li6xi | 179.62 (16) |
O10ix—Ga3—Mo1vi | 146.96 (8) | Li6v—Li6—Li6xi | 179.62 (16) |
O9vi—Ga3—Mo2vii | 123.74 (8) | Ga5v—Li6—O8 | 52.73 (7) |
O14vii—Ga3—Mo2vii | 26.38 (5) | Ga5xi—Li6—O8 | 126.89 (12) |
O13viii—Ga3—Mo2vii | 103.45 (8) | Li6v—Li6—O8 | 52.73 (7) |
O13v—Ga3—Mo2vii | 146.24 (6) | Li6xi—Li6—O8 | 126.89 (12) |
O10ix—Ga3—Mo2vii | 60.43 (6) | Ga5v—Li6—O8xi | 127.92 (12) |
O9vi—Ga3—Ga3ix | 137.92 (9) | Ga5xi—Li6—O8xi | 52.46 (7) |
O14vii—Ga3—Ga3ix | 86.75 (6) | Li6v—Li6—O8xi | 127.92 (12) |
O13viii—Ga3—Ga3ix | 125.26 (9) | Li6xi—Li6—O8xi | 52.46 (7) |
O13v—Ga3—Ga3ix | 86.45 (8) | O8—Li6—O8xi | 179.35 (8) |
O10ix—Ga3—Ga3ix | 41.29 (5) | Ga5v—Li6—O12 | 50.94 (5) |
O9vi—Ga3—O10 | 94.87 (9) | Ga5xi—Li6—O12 | 129.24 (7) |
O14vii—Ga3—O10 | 90.67 (9) | Li6v—Li6—O12 | 50.94 (5) |
O13viii—Ga3—O10 | 165.89 (11) | Li6xi—Li6—O12 | 129.24 (7) |
O13v—Ga3—O10 | 86.36 (10) | O8—Li6—O12 | 85.58 (8) |
O10ix—Ga3—O10 | 84.51 (9) | Ga5v—Li6—O12xi | 128.80 (7) |
Ga3x—Ga3—Mo1vi | 64.76 (4) | Ga5xi—Li6—O12xi | 51.02 (5) |
Ga3x—Ga3—Mo2vii | 135.91 (7) | Li6v—Li6—O12xi | 128.80 (7) |
Mo1vi—Ga3—Mo2vii | 152.39 (5) | Li6xi—Li6—O12xi | 51.02 (5) |
Ga3x—Ga3—Ga3ix | 110.39 (8) | O8—Li6—O12xi | 94.09 (10) |
Mo1vi—Ga3—Ga3ix | 136.23 (8) | Ga5v—Li6—O12iii | 50.94 (5) |
Mo2vii—Ga3—Ga3ix | 61.97 (4) | Ga5xi—Li6—O12iii | 129.24 (7) |
Ga3x—Ga3—O10 | 127.77 (11) | Li6v—Li6—O12iii | 50.94 (5) |
Mo1vi—Ga3—O10 | 102.67 (8) | Li6xi—Li6—O12iii | 129.24 (7) |
Mo2vii—Ga3—O10 | 78.65 (7) | O8—Li6—O12iii | 85.58 (8) |
Ga3ix—Ga3—O10 | 43.22 (5) | Ga5v—Li6—O12xii | 128.80 (7) |
O8xi—Ga5—O12iii | 94.89 (10) | Ga5xi—Li6—O12xii | 51.02 (5) |
O8xi—Ga5—O12xii | 85.44 (8) | Li6v—Li6—O12xii | 128.80 (7) |
O12iii—Ga5—O12xii | 179.67 (9) | Li6xi—Li6—O12xii | 51.02 (5) |
O8xi—Ga5—O12xi | 85.44 (8) | O8—Li6—O12xii | 94.09 (10) |
O12iii—Ga5—O12xi | 94.93 (9) | O8xi—Li6—O12 | 94.89 (10) |
O12xii—Ga5—O12xi | 85.12 (11) | O8xi—Li6—O12xi | 85.44 (8) |
O8xi—Ga5—Ga5v | 127.92 (12) | O12—Li6—O12xi | 179.67 (9) |
O12iii—Ga5—Ga5v | 50.94 (5) | O8xi—Li6—O12iii | 94.89 (10) |
O12xii—Ga5—Ga5v | 128.80 (7) | O12—Li6—O12iii | 85.01 (11) |
O12xi—Ga5—Ga5v | 128.80 (7) | O12xi—Li6—O12iii | 94.93 (9) |
O8xi—Ga5—Ga5xi | 52.46 (7) | O8xi—Li6—O12xii | 85.44 (8) |
O12iii—Ga5—Ga5xi | 129.24 (7) | O12—Li6—O12xii | 94.93 (9) |
O12xii—Ga5—Ga5xi | 51.02 (5) | O12xi—Li6—O12xii | 85.12 (11) |
O12xi—Ga5—Ga5xi | 51.02 (5) | O12iii—Li6—O12xii | 179.67 (9) |
Ga5v—Ga5—Ga5xi | 179.62 (16) | O11—Li7—O11xviii | 122.77 (14) |
O8xi—Ga5—Mo2xi | 103.17 (3) | O11—Li7—O11xix | 72.57 (14) |
O12iii—Ga5—Mo2xi | 77.03 (6) | O11xviii—Li7—O11xix | 79.51 (9) |
O12xii—Ga5—Mo2xi | 102.93 (8) | O11—Li7—O11xii | 79.51 (9) |
O12xi—Ga5—Mo2xi | 24.33 (4) | O11xviii—Li7—O11xii | 75.33 (9) |
Ga5v—Ga5—Mo2xi | 104.47 (4) | O11xix—Li7—O11xii | 122.77 (14) |
O8xi—Ga5—Mo2xii | 103.17 (3) | O11—Li7—O14xx | 131.23 (7) |
O12iii—Ga5—Mo2xii | 155.41 (5) | O11xviii—Li7—O14xx | 90.39 (7) |
O12xii—Ga5—Mo2xii | 24.33 (4) | O11xix—Li7—O14xx | 81.02 (9) |
O12xi—Ga5—Mo2xii | 102.93 (8) | O11xii—Li7—O14xx | 148.04 (15) |
Ga5v—Ga5—Mo2xii | 104.47 (4) | O11—Li7—O14xvi | 81.02 (9) |
O8xi—Ga5—O8 | 179.35 (8) | O11xviii—Li7—O14xvi | 148.04 (15) |
O12iii—Ga5—O8 | 85.58 (8) | O11xix—Li7—O14xvi | 131.23 (7) |
O12xii—Ga5—O8 | 94.09 (10) | O11xii—Li7—O14xvi | 90.39 (7) |
O12xi—Ga5—O8 | 94.09 (10) | O14xx—Li7—O14xvi | 87.06 (15) |
Ga5v—Ga5—O8 | 52.73 (7) | | |
Symmetry codes: (i) x+1, y, z; (ii) x+1, −y+3/2, z; (iii) x, −y+3/2, z; (iv) −x+3/2, y−1/2, z+1/2; (v) x−1/2, −y+3/2, −z+3/2; (vi) x−1, −y+3/2, z; (vii) −x+3/2, y+1/2, z−1/2; (viii) −x+1/2, y+1/2, z−1/2; (ix) −x+1, −y+2, −z+1; (x) −x, −y+2, −z+1; (xi) x+1/2, −y+3/2, −z+3/2; (xii) x+1/2, y, −z+3/2; (xiii) x−1, y, z; (xiv) −x+1, y−1/2, −z+1; (xv) −x+1/2, −y+1, z−1/2; (xvi) x−1/2, y, −z+3/2; (xvii) −x+3/2, −y+1, z−1/2; (xviii) x+1/2, −y+1/2, −z+3/2; (xix) x, −y+1/2, z; (xx) x−1/2, −y+1/2, −z+3/2; (xxi) −x+1/2, y−1/2, z+1/2. |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | LiFe(MoO4)2 | LiGa(MoO4)2 | Li3Ga(MoO4)3 |
Mr | 382.66 | 396.54 | 570.51 |
Crystal system, space group | Triclinic, P1 | Triclinic, P1 | Orthorhombic, Pnma |
Temperature (K) | 173 | 293 | 293 |
a, b, c (Å) | 6.7592 (2), 7.1773 (2), 7.2398 (2) | 6.7232 (3), 7.0982 (3), 7.2580 (4) | 5.04022 (13), 10.4054 (3), 17.4541 (5) |
α, β, γ (°) | 90.806 (3), 110.315 (3), 105.3850 (15) | 90.915 (4), 110.648 (4), 105.253 (4) | 90, 90, 90 |
V (Å3) | 315.38 (2) | 310.43 (3) | 915.39 (4) |
Z | 2 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 6.19 | 8.29 | 7.00 |
Crystal size (mm) | 0.49 × 0.28 × 0.16 | 0.43 × 0.32 × 0.11 | 0.35 × 0.30 × 0.25 |
|
Data collection |
Diffractometer | Oxford Diffraction Xcalibur-I diffractometer | Oxford Diffraction Xcalibur diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | Multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] | Multi-scan [CrysAlis RED (Oxford Diffraction, 2007);
empirical (using intensity measurements) absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm] |
Tmin, Tmax | 0.420, 1.000 | 0.173, 1.000 | 0.768, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5166, 1977, 1966 | 5166, 1977, 1880 | 17688, 1610, 1353 |
Rint | 0.020 | 0.021 | 0.030 |
(sin θ/λ)max (Å−1) | 0.752 | 0.754 | 0.754 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.014, 0.035, 1.20 | 0.042, 0.116, 0.82 | 0.031, 0.085, 1.14 |
No. of reflections | 2007 | 1977 | 1610 |
No. of parameters | 109 | 109 | 96 |
No. of restraints | 0 | 0 | 2 |
Δρmax, Δρmin (e Å−3) | 0.46, −0.66 | 1.34, −3.97 | 1.35, −3.02 |
Selected bond lengths (Å) for (I) topMo1—O5 | 1.8736 (13) | Fe3—O5iii | 1.9537 (13) |
Mo1—O6 | 1.7074 (15) | Fe3—O10iv | 1.9514 (15) |
Mo1—O7 | 1.7148 (15) | Fe3—O8 | 1.9543 (14) |
Mo1—O8 | 1.8792 (13) | Fe3—O9 | 2.0397 (14) |
Mo2—O9 | 1.7851 (14) | Li4—O6v | 2.112 (4) |
Mo2—O10 | 1.7608 (15) | Li4—O7vi | 2.001 (4) |
Mo2—O11 | 1.7417 (14) | Li4—O7i | 2.743 (4) |
Mo2—O12 | 1.7835 (14) | Li4—O8 | 2.217 (4) |
Fe3—O5i | 2.0444 (14) | Li4—O9 | 2.202 (4) |
Fe3—O12ii | 1.9977 (14) | Li4—O11vii | 2.139 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x, y−1, z; (iv) −x+1, −y, −z; (v) −x+1, −y+1, −z; (vi) x+1, y, z; (vii) x, y+1, z. |
Selected bond lengths (Å) for (II) topMo1—O5 | 1.870 (4) | Ga3—O10iii | 1.919 (4) |
Mo1—O6 | 1.709 (4) | Ga3—O5iv | 1.916 (4) |
Mo1—O7 | 1.709 (4) | Ga3—O8 | 1.921 (4) |
Mo1—O8 | 1.874 (4) | Ga3—O9 | 2.014 (4) |
Mo2—O9 | 1.786 (4) | Li4—O6v | 2.188 (13) |
Mo2—O10 | 1.763 (4) | Li4—O7vi | 1.985 (13) |
Mo2—O11 | 1.739 (4) | Li4—O7i | 2.679 (13) |
Mo2—O12 | 1.775 (4) | Li4—O8 | 2.183 (13) |
Ga3—O5i | 2.014 (4) | Li4—O9 | 2.167 (14) |
Ga3—O12ii | 1.972 (4) | Li4—O11vii | 2.099 (14) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z; (iv) x, y−1, z; (v) −x+1, −y+1, −z; (vi) x+1, y, z; (vii) x, y+1, z. |
Selected bond lengths (Å) for (III) topMo1—O8 | 1.766 (3) | Ga3—O10 | 2.076 (2) |
Mo1—O9 | 1.795 (2) | Ga5—O8vii | 2.078 (3) |
Mo1—O10 | 1.7621 (17) | Ga5—O12i | 2.0025 (18) |
Mo1—O10i | 1.7621 (17) | Ga5—O12viii | 2.0004 (19) |
Mo2—O11 | 1.734 (2) | Ga5—O12vii | 2.0004 (19) |
Mo2—O12 | 1.785 (2) | Ga5—O8 | 2.071 (3) |
Mo2—O13 | 1.788 (2) | Ga5—O12 | 2.0025 (18) |
Mo2—O14 | 1.7656 (15) | Li7—O11 | 2.252 (3) |
Ga3—O9ii | 2.1003 (13) | Li7—O11ix | 2.1808 (16) |
Ga3—O14iii | 2.044 (3) | Li7—O11x | 2.252 (3) |
Ga3—O13iv | 2.0314 (18) | Li7—O11viii | 2.1808 (16) |
Ga3—O13v | 2.029 (3) | Li7—O14xi | 2.088 (3) |
Ga3—O10vi | 2.155 (2) | Li7—O14xii | 2.088 (3) |
Symmetry codes: (i) x, −y+3/2, z; (ii) x−1, −y+3/2, z; (iii) −x+3/2, y+1/2, z−1/2; (iv) −x+1/2, y+1/2, z−1/2; (v) x−1/2, −y+3/2, −z+3/2; (vi) −x+1, −y+2, −z+1; (vii) x+1/2, −y+3/2, −z+3/2; (viii) x+1/2, y, −z+3/2; (ix) x+1/2, −y+1/2, −z+3/2; (x) x, −y+1/2, z; (xi) x−1/2, −y+1/2, −z+3/2; (xii) x−1/2, y, −z+3/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
LiFe(MoO4)2, (I), is the fourth known compound in the quaternary Li/Fe/Mo/O system, besides two known variants of Li2Fe2(MoO4)3 (Klevtsova & Magarill, 1970; Torardi & Prince, 1986) and Li3Fe(MoO4)3 (Klevtsova & Magarill, 1970), whereas its isostructural variant LiGa(MoO4)2, (II), is the first compound in the quaternary Li/Ga/Mo/O system. The structures of (I) and (II) appear to be isostructural with LiAl(MoO4)2 (Solov'eva & Borisov, 1970). The structure of Li3Ga(MoO4)3, (III), the second member in the Li/Ga/Mo/O system, is isostructural with Li3Fe(MoO4)3 (Klevtsova & Magarill, 1970) and Li3Sc(MoO4)3 (Kolitsch & Tillmanns, 2003). It is noted that the existence of Li3Ga(MoO4)3 was previously reported by Klevtsov (1970) and Trunov & Efremov (1971), and its structure determined by Efremov & Trunov (1975), but the substitional disorder present in the structure was poorly described. The isostructural compound Li3Cr(MoO4)3 was also reported in that study [Which one?], but with the same poor description of the disorder. For a further determination of this phase, see entry 1200897 in Pearson's Crystal Data (Villars & Cenzual, 2007). These phases are of interest because of their relatively high Li ionic conductivity (Sebastian et al., 2003).
[Abstract states that (I) and (II) "are shown to be isostructural", but there does not appear to be any discussion of (I) here. Text missing?]
Fig. 1 shows the constituent polyhedra for the structure of (II). The two Mo atoms (oxidation state VI) are in close to tetrahedral coordination by O, whereas Ga (oxidation state III) is in close to octahedral coordination. Atom Li4 is surrounded by six O atoms, of which five are within 2.20 Å, and the sixth is at 2.743 (4) and 2.683 (13) Å from the central atom for LiFe(MoO4)2 and LiGa(MoO4)2, respectively. The bond-valence contribution (Wills & Brown, 1999) of this atom O9 is 0.032 and 0.037, respectively, to a total bond-valence sum (BVS) of 0.872 and 0.901, respectively, thus amounting to 3.7 and 4.1% of the total BVS for LiFe(MoO4)2 and LiGa(MoO4)2, respectively. According to the Brown criterion that a ligand should contribute at least 4% to the total sum in order to be considered being bonded (Brown, 2002), this O atom is thus on the borderline of being weakly bonded. The five short-bonded O atoms form a trigonal bipyramid, which is capped by the sixth Li atom at longer distance. This environment is not uncommon in Li-containing oxides; see, for example, Johnston & Harrison (2007) for Li(VO2)3(TeO3)2.
The constituent polyhedra in the structure of (III) are shown in Fig. 2. The tetrahedral coordination of Mo is very similar to that in the structures of (I) and (II). The fully occupied Li7 site has sixfold O coordination, with distances ranging between 2.088 (9) and 2.252 (11) Å in a close to trigonal-prismatic environment. The two remaining metal sites are found to be substitionally occupied by both Ga and Li, with occupation probabilities of 0.421 (3)/0.579 (3) and 0.2909 (17)/0.7191 (17) for the Ga1/Li2 and the Ga3/Li4 sites, respectively. The mixed Ga/Li sites have a close to octahedral coordination, with Ga/Li—O distances between 2.000 (3) and 2.078 (3) Å for the Ga1/Li2—O polyhedron, and between 2.028 (3) and 2.155 (3) Å for the Ga3/Li4—O polyhedron, somewhat larger than the Ga—O distances found in (I) and (II). This is expected because of the mixed occupancy of the sites, which also gives rise to too small artificial bond-valence sums for Ga1 and Ga3 (2.710 and 2.395, respectively) and too high sums for Li2 and Li4 (1.328 and 1.173, respectively). The higher average Li/Ga—O distance for the Ga3/Li4 polyhedron is in line with the lower proportion of Ga on that site compared with the Ga1/Li2 polyhedron.
Fig. 3 shows the resulting polyhedral connectivity of (I) and (II). All Mo tetrahedra are isolated from each other, and they are linked to adjacent polyhedra only by corner-sharing. Three corners are shared with Li-monocapped trigonal bipyramids, whereas two corners are shared with two Ga octahedra, thus giving one corner that is shared simultaneously with a Ga octahedron and a Li-monocapped trigonal bipyramid. The Li and Ga polyhedra appear solely as dimers, sharing one edge. The resulting layer structure is given in Fig. 4: the Li and Fe(Ga) polyhedra line up in layers and are clearly separated and linked by MoO4 tetrahedra.
Fig. 5 shows the resulting polyhedral connectivity of (III). Mo tetrahedra are again isolated from each other and corner-linked to Ga/Li octahedra and Li trigonal prisms. The latter form infinite chains in the a direction, where the individual trigonal prisms are joined by edge-sharing. The Ga/Li octahedra form two types of mutually perpendicular chains. The first type consists of face-shared octahedra travelling along the a axis, whereas the other type of Ga/Li octahedra form infinite parallel chains along the b axis, each chain being composed of edge-sharing octahedron dimers, which are themselves linked by corner sharing (Fig. 6). The chains are linked into parallel chains by corner sharing. Sebastian et al. (2003) reported that the Li ionic mobility in the isotypic phases Li3Fe(MoO4)3 and Li3Cr(MoO4)3 takes place in the one-dimensional trigonal prismatic chains.