Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This work illustrates possible diffusion paths for CuI ions in a highly disordered structure of a superionic conductor of the argyrodite family. The Cu6P(Se0.7S0.3)5Br cubic structure is built from a [P(Se0.7S0.3)5Br] framework in which CuI ions are distributed in various tetra­hedral, triangular and linear sites. There are two types of disorder in the structure. The first type results from the fact that there are fewer CuI ions than the number of positions available for them in the unit cell. The second type is due to the static distribution of Se and S atoms in the [P(Se0.7S0.3)5Br] framework. The title compound is a solid solution of two efficient ionic conductors, namely Cu6PSe5Br and Cu6PS5Br, in which high ionic conductivity results from order-disorder phenomena in the copper substructure. To shed light on the distribution of CuI ions in disordered Cu6P(Se0.7S0.3)5Br, we refined their positions using a combination of a nonharmonic approach and a split-atom model. At room temperature, CuI ions show strong anharmonic vibrations along the edge of the (Br)4 tetra­hedra. The probability density functions of the CuI ions overlap and reveal possible diffusion paths.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108005167/iz3043sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005167/iz3043Isup2.hkl
Contains datablock I

Comment top

The crystal structures of copper and silver argyrodites have recently been studied extensively because of their promising properties for electrochemical devices. Copper- and silver-based argyrodites are efficient ionic conductors. However, the ionic conductivity shows a significant dependence on the composition (Beeken et al., 2003, 2005; Gagor et al., 2006).

As for previously described argyrodites (Nilges & Pfitzner, 2005; Gaudin et al., 2000), the combination of a split-atom model and a nonharmonic [anharmonic?] development of displacement parameters in the structure determination reveals possible diffusion paths for the mobile ions. In the crystal structure of Cu6P(Se0.7S0.3)5Br, 24 Cu atoms are distributed among 72 permissible positions in the unit cell. Cu ions are statistically located on the edge of the (Br)4 tetrahedra and occupy two independent 24 g and 48 h Wyckoff positions. The 24 g position is triangularly coordinated by Se/S, while the 48 h position is tetrahedrally coordinated by Se/S and Br. Both triangular and tetrahedral environments are slightly deformed, because the Cu positions are shifted from the centre towards Se/S and the face of the tetrahedron, respectively. Fig. 1 shows the characteristic coordination and distribution of the Cu atoms in this phase.

At room temperature, Cu atoms show strong anharmonic vibrations along the edge of the (Br)4 tetrahedra. Taking into account both the close proximity of the Cu1 and Cu2 positions and their partial occupation, it is probable that a jump of a Cu ion between them is readily thermally activated and Cu ions are able to overcome the potential barrier to the neighbouring lattice site. The probability density functions (PDFs) of the Cu atoms overlap. The joint function reveals a possible pathway for copper migration [for more details concerning joint PDF analysis, see Bachmann & Shulz (1984)]. Fig. 2 shows the joint PDF of atoms Cu1 and Cu2 along the edge of the (Br)4 tetrahedra. From the shape of the joint PDF, we can categorize Cu6P(Se0.7S0.3)5Br as a Type 1 copper argyrodite, according to the classification introduced by Nilges & Pfitzner (2005). A similar copper substructure is demonstrated in the crystal structures of Cu6PS5I, Cu6PS5Br and Cu6AsS5I. For the Type 1 argyrodites, the most probable path of copper migration leads through a double tetrahedron face and a new 16 e position.

Related literature top

For related literature, see: Bachmann & Shulz (1984); Beeken et al. (2003, 2005); Coppens (1997); Gagor et al. (2006); Gaudin et al. (2000); Nilges & Pfitzner (2005); Studenyak et al. (2003).

Experimental top

Single crystals of Cu6P(Se0.7S0.3)5Br were obtained by the conventional vapour-transport method at Uzhhorod State University. For details of the crystal preparation, see Studenyak et al. (2003).

Refinement top

The displacement parameters of atoms Cu2 were refined in the third-order anharmonic approximation using the Gram–Chalier model [for more details, see Coppens (1997)]. The calculated tensor Cijk parameters (multiplied by 105) are as follows: C112 = C113 = -0.36 (4), C122 = C133 = 0.22 (3), C222 = C333 = -0.38 (5), C223 = C233 = 0.14 (4), and C123 = -0.10 (6). The nonharmonic [anharmonic?] refinement of the Cu2 displacement parameters improved the residual factor R1 and reduced the electron residuals in the difference Fourier maps in the vicinity of the Cu2 position. Anharmonic displacement parameters were refined separately. The occupancy, coordinates and anisotropic displacement parameters of the Cu2 position were constrained. For atom Cu1, anisotropic refinement was applied.

A separate refinement of the occupancy factors of the Se2 and Br1 positions was performed. The refined occupancies of Se2 and Br1 were 1.01 (1) and 0.99 (1), respectively. As a result, the occupancies of these two positions were set to 1 and were not refined. The sum of the occupancies of atoms Se1 and S1 was constrained to 1.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: (Jana2000; Petricek et al., 2000); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The coordination system in Cu6P(Se0.7S0.3)5Br. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Joint probability density function map of atoms Cu1 and Cu2. Contour intervals are 0.01 atom Å-3 and the positive cutoff is 1 atom Å-3; plane (110).
Hexacopper(I) phosphorus(V) bromide penta(selenide/sulfide) top
Crystal data top
Cu6P(Se0.7S0.3)5BrDx = 5.453 Mg m3
Mr = 816.8Mo Kα radiation, λ = 0.71069 Å
Cubic, F43mCell parameters from 4723 reflections
Hall symbol: F -4 2 3θ = 3.5–46.2°
a = 9.9821 (11) ŵ = 29.58 mm1
V = 994.64 (19) Å3T = 298 K
Z = 4Prism, dark red
F(000) = 1469.60.31 × 0.12 × 0.08 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
275 independent reflections
Radiation source: fine-focus sealed tube259 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 1024x1024 pixels mm-1θmax = 35.6°, θmin = 3.5°
ω scansh = 1616
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
k = 1616
Tmin = 0.028, Tmax = 0.227l = 1616
4723 measured reflections
Refinement top
Refinement on F(Δ/σ)max = 0.0002
R[F2 > 2σ(F2)] = 0.026Δρmax = 0.78 e Å3
wR(F2) = 0.042Δρmin = 0.70 e Å3
S = 1.44Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
275 reflectionsExtinction coefficient: 0.060 (10)
23 parametersAbsolute structure: Flack (1983), 121 Friedel pairs
0 restraintsAbsolute structure parameter: 0.02 (6)
Weighting scheme based on measured s.u.'s w = 1/[σ2(F) + 0.0004F2]
Crystal data top
Cu6P(Se0.7S0.3)5BrZ = 4
Mr = 816.8Mo Kα radiation
Cubic, F43mµ = 29.58 mm1
a = 9.9821 (11) ÅT = 298 K
V = 994.64 (19) Å30.31 × 0.12 × 0.08 mm
Data collection top
Kuma KM-4 with CCD area-detector
diffractometer
275 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
259 reflections with I > 3σ(I)
Tmin = 0.028, Tmax = 0.227Rint = 0.059
4723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.042Δρmax = 0.78 e Å3
S = 1.44Δρmin = 0.70 e Å3
275 reflectionsAbsolute structure: Flack (1983), 121 Friedel pairs
23 parametersAbsolute structure parameter: 0.02 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10000.0288 (2)
P100.500.0119 (3)
Se10.12481 (6)0.37519 (6)0.12481 (6)0.01599 (13)0.5921
S10.1248080.3751920.1248080.01599 (13)0.4079
Se20.250.250.250.0350 (3)
Cu10.0254 (2)0.250.250.0581 (8)0.486
Cu20.0184 (3)0.1762 (3)0.1762 (3)0.0445 (7)0.2653
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0288 (3)0.0288 (3)0.0288 (3)000
P10.0119 (5)0.0119 (5)0.0119 (5)000
Se10.0160 (2)0.0160 (2)0.0160 (2)0.00224 (12)0.00224 (12)0.00224 (12)
S10.0160 (2)0.0160 (2)0.0160 (2)0.00224 (12)0.00224 (12)0.00224 (12)
Se20.0350 (5)0.0350 (5)0.0350 (5)000
Cu10.0291 (11)0.0726 (15)0.0726 (15)000.044 (2)
Cu20.0431 (18)0.0451 (9)0.0451 (9)0.0081 (10)0.0081 (10)0.0065 (13)
Geometric parameters (Å, º) top
Br1—Cu22.494 (3)S1—Cu2viii2.501 (3)
Br1—Cu2i2.494 (3)S1—Cu2xviii2.501 (3)
Br1—Cu2ii2.494 (3)Se2—Cu12.242 (2)
Br1—Cu2iii2.494 (3)Se2—Cu1xix2.242 (2)
Br1—Cu2iv2.494 (3)Se2—Cu1iii2.242 (2)
Br1—Cu2v2.494 (3)Se2—Cu1xx2.242 (2)
Br1—Cu2vi2.494 (3)Se2—Cu1xxi2.242 (2)
Br1—Cu2vii2.494 (3)Se2—Cu1ix2.242 (2)
Br1—Cu2viii2.494 (3)Se2—Cu22.536 (3)
Br1—Cu2ix2.494 (3)Se2—Cu2xix2.536 (3)
Br1—Cu2x2.494 (3)Se2—Cu2xvi2.536 (3)
Br1—Cu2xi2.494 (3)Se2—Cu2iii2.536 (3)
P1—S12.1579Se2—Cu2xx2.536 (3)
P1—S1xii2.1579Se2—Cu2xxii2.536 (3)
P1—S1xiii2.1579Se2—Cu2xxiii2.536 (3)
P1—S1xiv2.1579Se2—Cu2xxiv2.536 (3)
Se1—Cu12.3174 (17)Se2—Cu2xxi2.536 (3)
Se1—Cu1xv2.3174 (17)Se2—Cu2ix2.536 (3)
Se1—Cu1viii2.3174 (17)Se2—Cu2xxv2.536 (3)
Se1—Cu22.501 (3)Se2—Cu2xxvi2.536 (3)
Se1—Cu2xvi2.501 (3)Cu1—Cu21.044 (3)
Se1—Cu2xv2.501 (3)Cu1—Cu2xix2.855 (3)
Se1—Cu2xvii2.501 (3)Cu1—Cu2xvi1.044 (3)
Se1—Cu2viii2.501 (3)Cu1—Cu2iii2.855 (3)
Se1—Cu2xviii2.501 (3)Cu1—Cu2ix2.855 (3)
S1—Cu12.3174 (15)Cu1—Cu2xxv2.855 (3)
S1—Cu1xv2.3174 (15)Cu2—Cu2xvi2.084 (4)
S1—Cu1viii2.3174 (15)Cu2—Cu2iii2.227 (4)
S1—Cu22.501 (3)Cu2—Cu2v2.747 (4)
S1—Cu2xvi2.501 (3)Cu2—Cu2viii2.747 (4)
S1—Cu2xv2.501 (3)Cu2—Cu2ix2.227 (4)
S1—Cu2xvii2.501 (3)
Cu2—Br1—Cu2i119.82 (9)Cu1xx—Se2—Cu1xxi90
Cu2—Br1—Cu2ii171.55 (9)Cu1xx—Se2—Cu1ix90
Cu2—Br1—Cu2iii53.05 (9)Cu1xx—Se2—Cu2155.73 (6)
Cu2—Br1—Cu2iv90.31 (8)Cu1xx—Se2—Cu2xix106.89 (6)
Cu2—Br1—Cu2v66.83 (9)Cu1xx—Se2—Cu2xvi155.73 (6)
Cu2—Br1—Cu2vi119.82 (9)Cu1xx—Se2—Cu2iii106.89 (6)
Cu2—Br1—Cu2vii90.31 (8)Cu1xx—Se2—Cu2xxii73.11 (6)
Cu2—Br1—Cu2viii66.83 (9)Cu1xx—Se2—Cu2xxiii73.11 (6)
Cu2—Br1—Cu2ix53.05 (9)Cu1xx—Se2—Cu2xxi73.11 (6)
Cu2—Br1—Cu2x119.82 (9)Cu1xx—Se2—Cu2ix106.89 (6)
Cu2—Br1—Cu2xi119.82 (9)Cu1xx—Se2—Cu2xxv106.89 (6)
Cu2i—Br1—Cu2119.82 (9)Cu1xx—Se2—Cu2xxvi73.11 (6)
Cu2i—Br1—Cu2ii53.05 (9)Cu1xxi—Se2—Cu190
Cu2i—Br1—Cu2iii90.31 (8)Cu1xxi—Se2—Cu1xix90
Cu2i—Br1—Cu2iv119.82 (9)Cu1xxi—Se2—Cu1iii90
Cu2i—Br1—Cu2v171.55 (9)Cu1xxi—Se2—Cu1xx90
Cu2i—Br1—Cu2vi90.31 (8)Cu1xxi—Se2—Cu1ix180
Cu2i—Br1—Cu2vii66.83 (9)Cu1xxi—Se2—Cu2106.89 (6)
Cu2i—Br1—Cu2viii119.82 (9)Cu1xxi—Se2—Cu2xix73.11 (6)
Cu2i—Br1—Cu2ix66.83 (9)Cu1xxi—Se2—Cu2xvi73.11 (6)
Cu2i—Br1—Cu2x53.05 (9)Cu1xxi—Se2—Cu2iii106.89 (6)
Cu2i—Br1—Cu2xi119.82 (9)Cu1xxi—Se2—Cu2xx106.89 (6)
Cu2ii—Br1—Cu2171.55 (9)Cu1xxi—Se2—Cu2xxii106.89 (6)
Cu2ii—Br1—Cu2i53.05 (9)Cu1xxi—Se2—Cu2xxiii73.11 (6)
Cu2ii—Br1—Cu2iii119.82 (9)Cu1xxi—Se2—Cu2xxiv73.11 (6)
Cu2ii—Br1—Cu2iv90.31 (8)Cu1xxi—Se2—Cu2ix155.73 (6)
Cu2ii—Br1—Cu2v119.82 (9)Cu1xxi—Se2—Cu2xxvi155.73 (6)
Cu2ii—Br1—Cu2vi66.83 (9)Cu1ix—Se2—Cu190
Cu2ii—Br1—Cu2vii90.31 (8)Cu1ix—Se2—Cu1xix90
Cu2ii—Br1—Cu2viii119.82 (9)Cu1ix—Se2—Cu1iii90
Cu2ii—Br1—Cu2ix119.82 (9)Cu1ix—Se2—Cu1xx90
Cu2ii—Br1—Cu2x53.05 (9)Cu1ix—Se2—Cu1xxi180
Cu2ii—Br1—Cu2xi66.83 (9)Cu1ix—Se2—Cu273.11 (6)
Cu2iii—Br1—Cu253.05 (9)Cu1ix—Se2—Cu2xix106.89 (6)
Cu2iii—Br1—Cu2i90.31 (8)Cu1ix—Se2—Cu2xvi106.89 (6)
Cu2iii—Br1—Cu2ii119.82 (9)Cu1ix—Se2—Cu2iii73.11 (6)
Cu2iii—Br1—Cu2iv66.83 (9)Cu1ix—Se2—Cu2xx73.11 (6)
Cu2iii—Br1—Cu2v90.31 (8)Cu1ix—Se2—Cu2xxii73.11 (6)
Cu2iii—Br1—Cu2vi171.55 (9)Cu1ix—Se2—Cu2xxiii106.89 (6)
Cu2iii—Br1—Cu2vii119.82 (9)Cu1ix—Se2—Cu2xxiv106.89 (6)
Cu2iii—Br1—Cu2viii119.82 (9)Cu1ix—Se2—Cu2xxi155.73 (6)
Cu2iii—Br1—Cu2ix53.05 (9)Cu1ix—Se2—Cu2xxv155.73 (6)
Cu2iii—Br1—Cu2x66.83 (9)Cu2—Se2—Cu2xix94.84 (8)
Cu2iii—Br1—Cu2xi119.82 (9)Cu2—Se2—Cu2xvi48.53 (8)
Cu2iv—Br1—Cu290.31 (8)Cu2—Se2—Cu2iii52.10 (8)
Cu2iv—Br1—Cu2i119.82 (9)Cu2—Se2—Cu2xx146.21 (8)
Cu2iv—Br1—Cu2ii90.31 (8)Cu2—Se2—Cu2xxii116.45 (8)
Cu2iv—Br1—Cu2iii66.83 (9)Cu2—Se2—Cu2xxiii94.84 (8)
Cu2iv—Br1—Cu2v53.05 (9)Cu2—Se2—Cu2xxiv146.21 (8)
Cu2iv—Br1—Cu2vi119.82 (9)Cu2—Se2—Cu2xxi116.45 (8)
Cu2iv—Br1—Cu2vii171.55 (9)Cu2—Se2—Cu2ix52.10 (8)
Cu2iv—Br1—Cu2viii119.82 (9)Cu2—Se2—Cu2xxv94.84 (8)
Cu2iv—Br1—Cu2ix119.82 (9)Cu2—Se2—Cu2xxvi94.84 (8)
Cu2iv—Br1—Cu2x66.83 (9)Cu2xix—Se2—Cu294.84 (8)
Cu2iv—Br1—Cu2xi53.05 (9)Cu2xix—Se2—Cu2xvi52.10 (8)
Cu2v—Br1—Cu266.83 (9)Cu2xix—Se2—Cu2iii146.21 (8)
Cu2v—Br1—Cu2i171.55 (9)Cu2xix—Se2—Cu2xx94.84 (8)
Cu2v—Br1—Cu2ii119.82 (9)Cu2xix—Se2—Cu2xxii48.53 (8)
Cu2v—Br1—Cu2iii90.31 (8)Cu2xix—Se2—Cu2xxiii146.21 (8)
Cu2v—Br1—Cu2iv53.05 (9)Cu2xix—Se2—Cu2xxiv116.45 (8)
Cu2v—Br1—Cu2vi90.31 (8)Cu2xix—Se2—Cu2xxi94.84 (8)
Cu2v—Br1—Cu2vii119.82 (9)Cu2xix—Se2—Cu2ix116.45 (8)
Cu2v—Br1—Cu2viii66.83 (9)Cu2xix—Se2—Cu2xxv52.10 (8)
Cu2v—Br1—Cu2ix119.82 (9)Cu2xix—Se2—Cu2xxvi94.84 (8)
Cu2v—Br1—Cu2x119.82 (9)Cu2xvi—Se2—Cu248.53 (8)
Cu2v—Br1—Cu2xi53.05 (9)Cu2xvi—Se2—Cu2xix52.10 (8)
Cu2vi—Br1—Cu2119.82 (9)Cu2xvi—Se2—Cu2iii94.84 (8)
Cu2vi—Br1—Cu2i90.31 (8)Cu2xvi—Se2—Cu2xx146.21 (8)
Cu2vi—Br1—Cu2ii66.83 (9)Cu2xvi—Se2—Cu2xxii94.84 (8)
Cu2vi—Br1—Cu2iii171.55 (9)Cu2xvi—Se2—Cu2xxiii116.45 (8)
Cu2vi—Br1—Cu2iv119.82 (9)Cu2xvi—Se2—Cu2xxiv146.21 (8)
Cu2vi—Br1—Cu2v90.31 (8)Cu2xvi—Se2—Cu2xxi94.84 (8)
Cu2vi—Br1—Cu2vii53.05 (9)Cu2xvi—Se2—Cu2ix94.84 (8)
Cu2vi—Br1—Cu2viii53.05 (9)Cu2xvi—Se2—Cu2xxv52.10 (8)
Cu2vi—Br1—Cu2ix119.82 (9)Cu2xvi—Se2—Cu2xxvi116.45 (8)
Cu2vi—Br1—Cu2x119.82 (9)Cu2iii—Se2—Cu252.10 (8)
Cu2vi—Br1—Cu2xi66.83 (9)Cu2iii—Se2—Cu2xix146.21 (8)
Cu2vii—Br1—Cu290.31 (8)Cu2iii—Se2—Cu2xvi94.84 (8)
Cu2vii—Br1—Cu2i66.83 (9)Cu2iii—Se2—Cu2xx116.45 (8)
Cu2vii—Br1—Cu2ii90.31 (8)Cu2iii—Se2—Cu2xxii146.21 (8)
Cu2vii—Br1—Cu2iii119.82 (9)Cu2iii—Se2—Cu2xxiii48.53 (8)
Cu2vii—Br1—Cu2iv171.55 (9)Cu2iii—Se2—Cu2xxiv94.84 (8)
Cu2vii—Br1—Cu2v119.82 (9)Cu2iii—Se2—Cu2xxi94.84 (8)
Cu2vii—Br1—Cu2vi53.05 (9)Cu2iii—Se2—Cu2ix52.10 (8)
Cu2vii—Br1—Cu2viii53.05 (9)Cu2iii—Se2—Cu2xxv116.45 (8)
Cu2vii—Br1—Cu2ix66.83 (9)Cu2iii—Se2—Cu2xxvi94.84 (8)
Cu2vii—Br1—Cu2x119.82 (9)Cu2xx—Se2—Cu2146.21 (8)
Cu2vii—Br1—Cu2xi119.82 (9)Cu2xx—Se2—Cu2xix94.84 (8)
Cu2viii—Br1—Cu266.83 (9)Cu2xx—Se2—Cu2xvi146.21 (8)
Cu2viii—Br1—Cu2i119.82 (9)Cu2xx—Se2—Cu2iii116.45 (8)
Cu2viii—Br1—Cu2ii119.82 (9)Cu2xx—Se2—Cu2xxii52.10 (8)
Cu2viii—Br1—Cu2iii119.82 (9)Cu2xx—Se2—Cu2xxiii94.84 (8)
Cu2viii—Br1—Cu2iv119.82 (9)Cu2xx—Se2—Cu2xxiv48.53 (8)
Cu2viii—Br1—Cu2v66.83 (9)Cu2xx—Se2—Cu2xxi94.84 (8)
Cu2viii—Br1—Cu2vi53.05 (9)Cu2xx—Se2—Cu2ix94.84 (8)
Cu2viii—Br1—Cu2vii53.05 (9)Cu2xx—Se2—Cu2xxv116.45 (8)
Cu2viii—Br1—Cu2ix90.31 (8)Cu2xx—Se2—Cu2xxvi52.10 (8)
Cu2viii—Br1—Cu2x171.55 (9)Cu2xxii—Se2—Cu2116.45 (8)
Cu2viii—Br1—Cu2xi90.31 (8)Cu2xxii—Se2—Cu2xix48.53 (8)
Cu2ix—Br1—Cu253.05 (9)Cu2xxii—Se2—Cu2xvi94.84 (8)
Cu2ix—Br1—Cu2i66.83 (9)Cu2xxii—Se2—Cu2iii146.21 (8)
Cu2ix—Br1—Cu2ii119.82 (9)Cu2xxii—Se2—Cu2xx52.10 (8)
Cu2ix—Br1—Cu2iii53.05 (9)Cu2xxii—Se2—Cu2xxiii146.21 (8)
Cu2ix—Br1—Cu2iv119.82 (9)Cu2xxii—Se2—Cu2xxiv94.84 (8)
Cu2ix—Br1—Cu2v119.82 (9)Cu2xxii—Se2—Cu2xxi116.45 (8)
Cu2ix—Br1—Cu2vi119.82 (9)Cu2xxii—Se2—Cu2ix94.84 (8)
Cu2ix—Br1—Cu2vii66.83 (9)Cu2xxii—Se2—Cu2xxv94.84 (8)
Cu2ix—Br1—Cu2viii90.31 (8)Cu2xxii—Se2—Cu2xxvi52.10 (8)
Cu2ix—Br1—Cu2x90.31 (8)Cu2xxiii—Se2—Cu294.84 (8)
Cu2ix—Br1—Cu2xi171.55 (9)Cu2xxiii—Se2—Cu2xix146.21 (8)
Cu2x—Br1—Cu2119.82 (9)Cu2xxiii—Se2—Cu2xvi116.45 (8)
Cu2x—Br1—Cu2i53.05 (9)Cu2xxiii—Se2—Cu2iii48.53 (8)
Cu2x—Br1—Cu2ii53.05 (9)Cu2xxiii—Se2—Cu2xx94.84 (8)
Cu2x—Br1—Cu2iii66.83 (9)Cu2xxiii—Se2—Cu2xxii146.21 (8)
Cu2x—Br1—Cu2iv66.83 (9)Cu2xxiii—Se2—Cu2xxiv52.10 (8)
Cu2x—Br1—Cu2v119.82 (9)Cu2xxiii—Se2—Cu2xxi52.10 (8)
Cu2x—Br1—Cu2vi119.82 (9)Cu2xxiii—Se2—Cu2ix94.84 (8)
Cu2x—Br1—Cu2vii119.82 (9)Cu2xxiii—Se2—Cu2xxv94.84 (8)
Cu2x—Br1—Cu2viii171.55 (9)Cu2xxiii—Se2—Cu2xxvi116.45 (8)
Cu2x—Br1—Cu2ix90.31 (8)Cu2xxiv—Se2—Cu2146.21 (8)
Cu2x—Br1—Cu2xi90.31 (8)Cu2xxiv—Se2—Cu2xix116.45 (8)
Cu2xi—Br1—Cu2119.82 (9)Cu2xxiv—Se2—Cu2xvi146.21 (8)
Cu2xi—Br1—Cu2i119.82 (9)Cu2xxiv—Se2—Cu2iii94.84 (8)
Cu2xi—Br1—Cu2ii66.83 (9)Cu2xxiv—Se2—Cu2xx48.53 (8)
Cu2xi—Br1—Cu2iii119.82 (9)Cu2xxiv—Se2—Cu2xxii94.84 (8)
Cu2xi—Br1—Cu2iv53.05 (9)Cu2xxiv—Se2—Cu2xxiii52.10 (8)
Cu2xi—Br1—Cu2v53.05 (9)Cu2xxiv—Se2—Cu2xxi52.10 (8)
Cu2xi—Br1—Cu2vi66.83 (9)Cu2xxiv—Se2—Cu2ix116.45 (8)
Cu2xi—Br1—Cu2vii119.82 (9)Cu2xxiv—Se2—Cu2xxv94.84 (8)
Cu2xi—Br1—Cu2viii90.31 (8)Cu2xxiv—Se2—Cu2xxvi94.84 (8)
Cu2xi—Br1—Cu2ix171.55 (9)Cu2xxi—Se2—Cu2116.45 (8)
Cu2xi—Br1—Cu2x90.31 (8)Cu2xxi—Se2—Cu2xix94.84 (8)
S1—P1—S1xii109.471Cu2xxi—Se2—Cu2xvi94.84 (8)
S1—P1—S1xiii109.471Cu2xxi—Se2—Cu2iii94.84 (8)
S1—P1—S1xiv109.471Cu2xxi—Se2—Cu2xx94.84 (8)
S1xii—P1—S1109.471Cu2xxi—Se2—Cu2xxii116.45 (8)
S1xii—P1—S1xiii109.471Cu2xxi—Se2—Cu2xxiii52.10 (8)
S1xii—P1—S1xiv109.471Cu2xxi—Se2—Cu2xxiv52.10 (8)
S1xiii—P1—S1109.471Cu2xxi—Se2—Cu2ix146.21 (8)
S1xiii—P1—S1xii109.471Cu2xxi—Se2—Cu2xxv48.53 (8)
S1xiii—P1—S1xiv109.471Cu2xxi—Se2—Cu2xxvi146.21 (8)
S1xiv—P1—S1109.471Cu2ix—Se2—Cu252.10 (8)
S1xiv—P1—S1xii109.471Cu2ix—Se2—Cu2xix116.45 (8)
S1xiv—P1—S1xiii109.471Cu2ix—Se2—Cu2xvi94.84 (8)
P1—Se1—Cu1104.43 (5)Cu2ix—Se2—Cu2iii52.10 (8)
P1—Se1—Cu1xv104.43 (5)Cu2ix—Se2—Cu2xx94.84 (8)
P1—Se1—Cu1viii104.43 (5)Cu2ix—Se2—Cu2xxii94.84 (8)
P1—Se1—Cu2104.30 (7)Cu2ix—Se2—Cu2xxiii94.84 (8)
P1—Se1—Cu2xvi104.30 (7)Cu2ix—Se2—Cu2xxiv116.45 (8)
P1—Se1—Cu2xv104.30 (7)Cu2ix—Se2—Cu2xxi146.21 (8)
P1—Se1—Cu2xvii104.30 (7)Cu2ix—Se2—Cu2xxv146.21 (8)
P1—Se1—Cu2viii104.30 (7)Cu2ix—Se2—Cu2xxvi48.53 (8)
P1—Se1—Cu2xviii104.30 (7)Cu2xxv—Se2—Cu294.84 (8)
Cu1—Se1—Cu1xv114.01 (4)Cu2xxv—Se2—Cu2xix52.10 (8)
Cu1—Se1—Cu1viii114.01 (4)Cu2xxv—Se2—Cu2xvi52.10 (8)
Cu1—Se1—Cu2xv135.36 (7)Cu2xxv—Se2—Cu2iii116.45 (8)
Cu1—Se1—Cu2xvii90.72 (7)Cu2xxv—Se2—Cu2xx116.45 (8)
Cu1—Se1—Cu2viii90.72 (7)Cu2xxv—Se2—Cu2xxii94.84 (8)
Cu1—Se1—Cu2xviii135.36 (7)Cu2xxv—Se2—Cu2xxiii94.84 (8)
Cu1xv—Se1—Cu1114.01 (4)Cu2xxv—Se2—Cu2xxiv94.84 (8)
Cu1xv—Se1—Cu1viii114.01 (4)Cu2xxv—Se2—Cu2xxi48.53 (8)
Cu1xv—Se1—Cu2135.36 (7)Cu2xxv—Se2—Cu2ix146.21 (8)
Cu1xv—Se1—Cu2xvi90.72 (7)Cu2xxv—Se2—Cu2xxvi146.21 (8)
Cu1xv—Se1—Cu2viii135.36 (7)Cu2xxvi—Se2—Cu294.84 (8)
Cu1xv—Se1—Cu2xviii90.72 (7)Cu2xxvi—Se2—Cu2xix94.84 (8)
Cu1viii—Se1—Cu1114.01 (4)Cu2xxvi—Se2—Cu2xvi116.45 (8)
Cu1viii—Se1—Cu1xv114.01 (4)Cu2xxvi—Se2—Cu2iii94.84 (8)
Cu1viii—Se1—Cu290.72 (7)Cu2xxvi—Se2—Cu2xx52.10 (8)
Cu1viii—Se1—Cu2xvi135.36 (7)Cu2xxvi—Se2—Cu2xxii52.10 (8)
Cu1viii—Se1—Cu2xv90.72 (7)Cu2xxvi—Se2—Cu2xxiii116.45 (8)
Cu1viii—Se1—Cu2xvii135.36 (7)Cu2xxvi—Se2—Cu2xxiv94.84 (8)
Cu2—Se1—Cu2xvi49.26 (9)Cu2xxvi—Se2—Cu2xxi146.21 (8)
Cu2—Se1—Cu2xv150.03 (9)Cu2xxvi—Se2—Cu2ix48.53 (8)
Cu2—Se1—Cu2xvii114.11 (9)Cu2xxvi—Se2—Cu2xxv146.21 (8)
Cu2—Se1—Cu2viii66.63 (9)S1—Cu1—S1xxvii99.39 (9)
Cu2—Se1—Cu2xviii114.11 (9)S1—Cu1—Se2130.30 (5)
Cu2xvi—Se1—Cu249.26 (9)S1—Cu1—Cu287.53 (17)
Cu2xvi—Se1—Cu2xv114.11 (9)S1—Cu1—Cu2xix92.50 (5)
Cu2xvi—Se1—Cu2xvii66.63 (9)S1—Cu1—Cu2xvi87.53 (17)
Cu2xvi—Se1—Cu2viii114.11 (9)S1—Cu1—Cu2iii129.68 (5)
Cu2xvi—Se1—Cu2xviii150.03 (9)S1—Cu1—Cu2ix92.50 (5)
Cu2xv—Se1—Cu2150.03 (9)S1—Cu1—Cu2xxv129.68 (5)
Cu2xv—Se1—Cu2xvi114.11 (9)S1xxvii—Cu1—S199.39 (9)
Cu2xv—Se1—Cu2xvii49.26 (9)S1xxvii—Cu1—Se2130.30 (5)
Cu2xv—Se1—Cu2viii114.11 (9)S1xxvii—Cu1—Cu287.53 (17)
Cu2xv—Se1—Cu2xviii66.63 (9)S1xxvii—Cu1—Cu2xix129.68 (5)
Cu2xvii—Se1—Cu2114.11 (9)S1xxvii—Cu1—Cu2xvi87.53 (17)
Cu2xvii—Se1—Cu2xvi66.63 (9)S1xxvii—Cu1—Cu2iii92.50 (5)
Cu2xvii—Se1—Cu2xv49.26 (9)S1xxvii—Cu1—Cu2ix129.68 (5)
Cu2xvii—Se1—Cu2viii150.03 (9)S1xxvii—Cu1—Cu2xxv92.50 (5)
Cu2xvii—Se1—Cu2xviii114.11 (9)Se2—Cu1—Cu293.8 (2)
Cu2viii—Se1—Cu266.63 (9)Se2—Cu1—Cu2xix58.18 (7)
Cu2viii—Se1—Cu2xvi114.11 (9)Se2—Cu1—Cu2xvi93.8 (2)
Cu2viii—Se1—Cu2xv114.11 (9)Se2—Cu1—Cu2iii58.18 (7)
Cu2viii—Se1—Cu2xvii150.03 (9)Se2—Cu1—Cu2ix58.18 (7)
Cu2viii—Se1—Cu2xviii49.26 (9)Se2—Cu1—Cu2xxv58.18 (7)
Cu2xviii—Se1—Cu2114.11 (9)Cu2—Cu1—Cu2xix142.0 (2)
Cu2xviii—Se1—Cu2xvi150.03 (9)Cu2—Cu1—Cu2xvi172.4 (3)
Cu2xviii—Se1—Cu2xv66.63 (9)Cu2—Cu1—Cu2iii44.09 (18)
Cu2xviii—Se1—Cu2xvii114.11 (9)Cu2—Cu1—Cu2ix44.09 (18)
Cu2xviii—Se1—Cu2viii49.26 (9)Cu2—Cu1—Cu2xxv142.0 (2)
P1—S1—Cu1104.43 (5)Cu2xix—Cu1—Cu2142.0 (2)
P1—S1—Cu1xv104.43 (5)Cu2xix—Cu1—Cu2xvi44.09 (18)
P1—S1—Cu1viii104.43 (5)Cu2xix—Cu1—Cu2iii116.37 (11)
P1—S1—Cu2104.30 (6)Cu2xix—Cu1—Cu2ix98.04 (9)
P1—S1—Cu2xvi104.30 (6)Cu2xix—Cu1—Cu2xxv45.91 (8)
P1—S1—Cu2xv104.30 (6)Cu2xvi—Cu1—Cu2172.4 (3)
P1—S1—Cu2xvii104.30 (6)Cu2xvi—Cu1—Cu2xix44.09 (18)
P1—S1—Cu2viii104.30 (6)Cu2xvi—Cu1—Cu2iii142.0 (2)
P1—S1—Cu2xviii104.30 (6)Cu2xvi—Cu1—Cu2ix142.0 (2)
Cu1—S1—Cu1xv114.01 (3)Cu2xvi—Cu1—Cu2xxv44.09 (18)
Cu1—S1—Cu1viii114.01 (3)Cu2iii—Cu1—Cu244.09 (18)
Cu1—S1—Cu2xv135.36 (7)Cu2iii—Cu1—Cu2xix116.37 (11)
Cu1—S1—Cu2xvii90.72 (6)Cu2iii—Cu1—Cu2xvi142.0 (2)
Cu1—S1—Cu2viii90.72 (6)Cu2iii—Cu1—Cu2ix45.91 (8)
Cu1—S1—Cu2xviii135.36 (7)Cu2iii—Cu1—Cu2xxv98.04 (9)
Cu1xv—S1—Cu1114.01 (3)Cu2ix—Cu1—Cu244.09 (18)
Cu1xv—S1—Cu1viii114.01 (3)Cu2ix—Cu1—Cu2xix98.04 (9)
Cu1xv—S1—Cu2135.36 (7)Cu2ix—Cu1—Cu2xvi142.0 (2)
Cu1xv—S1—Cu2xvi90.72 (6)Cu2ix—Cu1—Cu2iii45.91 (8)
Cu1xv—S1—Cu2viii135.36 (7)Cu2ix—Cu1—Cu2xxv116.37 (11)
Cu1xv—S1—Cu2xviii90.72 (6)Cu2xxv—Cu1—Cu2142.0 (2)
Cu1viii—S1—Cu1114.01 (3)Cu2xxv—Cu1—Cu2xix45.91 (8)
Cu1viii—S1—Cu1xv114.01 (3)Cu2xxv—Cu1—Cu2xvi44.09 (18)
Cu1viii—S1—Cu290.72 (6)Cu2xxv—Cu1—Cu2iii98.04 (9)
Cu1viii—S1—Cu2xvi135.36 (7)Cu2xxv—Cu1—Cu2ix116.37 (11)
Cu1viii—S1—Cu2xv90.72 (6)Br1—Cu2—S1111.93 (10)
Cu1viii—S1—Cu2xvii135.36 (7)Br1—Cu2—S1xxvii111.93 (10)
Cu2—S1—Cu2xvi49.26 (8)Br1—Cu2—Se2118.49 (11)
Cu2—S1—Cu2xv150.03 (9)Br1—Cu2—Cu1179.6 (3)
Cu2—S1—Cu2xvii114.11 (9)Br1—Cu2—Cu1iii82.52 (8)
Cu2—S1—Cu2viii66.63 (9)Br1—Cu2—Cu1ix82.52 (8)
Cu2—S1—Cu2xviii114.11 (9)Br1—Cu2—Cu2xvi175.78 (16)
Cu2xvi—S1—Cu249.26 (8)Br1—Cu2—Cu2iii63.48 (10)
Cu2xvi—S1—Cu2xv114.11 (9)Br1—Cu2—Cu2v56.58 (8)
Cu2xvi—S1—Cu2xvii66.63 (9)Br1—Cu2—Cu2viii56.58 (8)
Cu2xvi—S1—Cu2viii114.11 (9)Br1—Cu2—Cu2ix63.48 (10)
Cu2xvi—S1—Cu2xviii150.03 (9)S1—Cu2—S1xxvii89.94 (9)
Cu2xv—S1—Cu2150.03 (9)S1—Cu2—Se2110.48 (10)
Cu2xv—S1—Cu2xvi114.11 (9)S1—Cu2—Cu167.80 (16)
Cu2xv—S1—Cu2xvii49.26 (8)S1—Cu2—Cu1iii159.16 (12)
Cu2xv—S1—Cu2viii114.11 (9)S1—Cu2—Cu1ix98.61 (9)
Cu2xv—S1—Cu2xviii66.63 (9)S1—Cu2—Cu2xvi65.37 (10)
Cu2xvii—S1—Cu2114.11 (9)S1—Cu2—Cu2iii165.01 (14)
Cu2xvii—S1—Cu2xvi66.63 (9)S1—Cu2—Cu2v99.06 (11)
Cu2xvii—S1—Cu2xv49.26 (8)S1—Cu2—Cu2viii56.69 (8)
Cu2xvii—S1—Cu2viii150.03 (9)S1—Cu2—Cu2ix105.03 (12)
Cu2xvii—S1—Cu2xviii114.11 (9)S1xxvii—Cu2—S189.94 (9)
Cu2viii—S1—Cu266.63 (9)S1xxvii—Cu2—Se2110.48 (10)
Cu2viii—S1—Cu2xvi114.11 (9)S1xxvii—Cu2—Cu167.80 (16)
Cu2viii—S1—Cu2xv114.11 (9)S1xxvii—Cu2—Cu1iii98.61 (9)
Cu2viii—S1—Cu2xvii150.03 (9)S1xxvii—Cu2—Cu1ix159.16 (12)
Cu2viii—S1—Cu2xviii49.26 (8)S1xxvii—Cu2—Cu2xvi65.37 (10)
Cu2xviii—S1—Cu2114.11 (9)S1xxvii—Cu2—Cu2iii105.03 (12)
Cu2xviii—S1—Cu2xvi150.03 (9)S1xxvii—Cu2—Cu2v56.69 (8)
Cu2xviii—S1—Cu2xv66.63 (9)S1xxvii—Cu2—Cu2viii99.06 (11)
Cu2xviii—S1—Cu2xvii114.11 (9)S1xxvii—Cu2—Cu2ix165.01 (14)
Cu2xviii—S1—Cu2viii49.26 (8)Se2—Cu2—Cu161.92 (19)
Cu1—Se2—Cu1xix90Se2—Cu2—Cu1iii48.71 (6)
Cu1—Se2—Cu1iii90Se2—Cu2—Cu1ix48.71 (6)
Cu1—Se2—Cu1xx180Se2—Cu2—Cu2xvi65.73 (11)
Cu1—Se2—Cu1xxi90Se2—Cu2—Cu2iii63.95 (10)
Cu1—Se2—Cu1ix90Se2—Cu2—Cu2v148.22 (12)
Cu1—Se2—Cu2xix73.11 (6)Se2—Cu2—Cu2viii148.22 (12)
Cu1—Se2—Cu2iii73.11 (6)Se2—Cu2—Cu2ix63.95 (10)
Cu1—Se2—Cu2xx155.73 (6)Cu1—Cu2—Cu1iii97.8 (2)
Cu1—Se2—Cu2xxii106.89 (6)Cu1—Cu2—Cu1ix97.8 (2)
Cu1—Se2—Cu2xxiii106.89 (6)Cu1—Cu2—Cu2xvi3.81 (17)
Cu1—Se2—Cu2xxiv155.73 (6)Cu1—Cu2—Cu2iii116.9 (2)
Cu1—Se2—Cu2xxi106.89 (6)Cu1—Cu2—Cu2v123.1 (2)
Cu1—Se2—Cu2ix73.11 (6)Cu1—Cu2—Cu2viii123.1 (2)
Cu1—Se2—Cu2xxv73.11 (6)Cu1—Cu2—Cu2ix116.9 (2)
Cu1—Se2—Cu2xxvi106.89 (6)Cu1iii—Cu2—Cu197.8 (2)
Cu1xix—Se2—Cu190Cu1iii—Cu2—Cu1ix67.46 (7)
Cu1xix—Se2—Cu1iii180Cu1iii—Cu2—Cu2xvi100.97 (13)
Cu1xix—Se2—Cu1xx90Cu1iii—Cu2—Cu2iii19.04 (8)
Cu1xix—Se2—Cu1xxi90Cu1iii—Cu2—Cu2v101.52 (11)
Cu1xix—Se2—Cu1ix90Cu1iii—Cu2—Cu2viii139.02 (12)
Cu1xix—Se2—Cu2106.89 (6)Cu1iii—Cu2—Cu2ix67.05 (10)
Cu1xix—Se2—Cu2xvi73.11 (6)Cu1ix—Cu2—Cu197.8 (2)
Cu1xix—Se2—Cu2iii155.73 (6)Cu1ix—Cu2—Cu1iii67.46 (7)
Cu1xix—Se2—Cu2xx73.11 (6)Cu1ix—Cu2—Cu2xvi100.97 (13)
Cu1xix—Se2—Cu2xxiii155.73 (6)Cu1ix—Cu2—Cu2iii67.05 (10)
Cu1xix—Se2—Cu2xxiv106.89 (6)Cu1ix—Cu2—Cu2v139.02 (12)
Cu1xix—Se2—Cu2xxi106.89 (6)Cu1ix—Cu2—Cu2viii101.52 (11)
Cu1xix—Se2—Cu2ix106.89 (6)Cu1ix—Cu2—Cu2ix19.04 (8)
Cu1xix—Se2—Cu2xxv73.11 (6)Cu2xvi—Cu2—Cu2iii120.00 (16)
Cu1xix—Se2—Cu2xxvi73.11 (6)Cu2xvi—Cu2—Cu2v120.00 (15)
Cu1iii—Se2—Cu190Cu2xvi—Cu2—Cu2viii120.00 (15)
Cu1iii—Se2—Cu1xix180Cu2xvi—Cu2—Cu2ix120.00 (16)
Cu1iii—Se2—Cu1xx90Cu2iii—Cu2—Cu2xvi120.00 (16)
Cu1iii—Se2—Cu1xxi90Cu2iii—Cu2—Cu2v90
Cu1iii—Se2—Cu1ix90Cu2iii—Cu2—Cu2viii120.00 (14)
Cu1iii—Se2—Cu273.11 (6)Cu2iii—Cu2—Cu2ix60.00 (12)
Cu1iii—Se2—Cu2xix155.73 (6)Cu2v—Cu2—Cu2xvi120.00 (15)
Cu1iii—Se2—Cu2xvi106.89 (6)Cu2v—Cu2—Cu2iii90
Cu1iii—Se2—Cu2xx106.89 (6)Cu2v—Cu2—Cu2viii60.00 (10)
Cu1iii—Se2—Cu2xxii155.73 (6)Cu2v—Cu2—Cu2ix120.00 (14)
Cu1iii—Se2—Cu2xxiv73.11 (6)Cu2viii—Cu2—Cu2xvi120.00 (15)
Cu1iii—Se2—Cu2xxi73.11 (6)Cu2viii—Cu2—Cu2iii120.00 (14)
Cu1iii—Se2—Cu2ix73.11 (6)Cu2viii—Cu2—Cu2v60.00 (10)
Cu1iii—Se2—Cu2xxv106.89 (6)Cu2viii—Cu2—Cu2ix90
Cu1iii—Se2—Cu2xxvi106.89 (6)Cu2ix—Cu2—Cu2xvi120.00 (16)
Cu1xx—Se2—Cu1180Cu2ix—Cu2—Cu2iii60.00 (12)
Cu1xx—Se2—Cu1xix90Cu2ix—Cu2—Cu2v120.00 (14)
Cu1xx—Se2—Cu1iii90Cu2ix—Cu2—Cu2viii90
Symmetry codes: (i) y, x, z; (ii) x, y, z; (iii) z, x, y; (iv) x, y, z; (v) y, x, z; (vi) y, x, z; (vii) x, y, z; (viii) z, y, x; (ix) y, z, x; (x) z, y, x; (xi) y, z, x; (xii) y1/2, x+1/2, z; (xiii) z, x+1/2, y1/2; (xiv) x, y+1, z; (xv) z1/2, x+1/2, y; (xvi) x, y+1/2, z+1/2; (xvii) y, x+1/2, z+1/2; (xviii) z1/2, y+1/2, x; (xix) y, x+1/2, z+1/2; (xx) x+1/2, y+1/2, z; (xxi) z+1/2, y, x+1/2; (xxii) y+1/2, x+1/2, z; (xxiii) y+1/2, x, z+1/2; (xxiv) x+1/2, y, z+1/2; (xxv) z, y+1/2, x+1/2; (xxvi) y+1/2, z+1/2, x; (xxvii) y1/2, x, z+1/2.

Experimental details

Crystal data
Chemical formulaCu6P(Se0.7S0.3)5Br
Mr816.8
Crystal system, space groupCubic, F43m
Temperature (K)298
a (Å)9.9821 (11)
V3)994.64 (19)
Z4
Radiation typeMo Kα
µ (mm1)29.58
Crystal size (mm)0.31 × 0.12 × 0.08
Data collection
DiffractometerKuma KM-4 with CCD area-detector
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1999)
Tmin, Tmax0.028, 0.227
No. of measured, independent and
observed [I > 3σ(I)] reflections
4723, 275, 259
Rint0.059
(sin θ/λ)max1)0.819
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.042, 1.44
No. of reflections275
No. of parameters23
Δρmax, Δρmin (e Å3)0.78, 0.70
Absolute structureFlack (1983), 121 Friedel pairs
Absolute structure parameter0.02 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 2008), (Jana2000; Petricek et al., 2000), Diamond (Brandenburg & Putz, 2005), publCIF (Westrip, 2007).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds