Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108005167/iz3043sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108005167/iz3043Isup2.hkl |
For related literature, see: Bachmann & Shulz (1984); Beeken et al. (2003, 2005); Coppens (1997); Gagor et al. (2006); Gaudin et al. (2000); Nilges & Pfitzner (2005); Studenyak et al. (2003).
Single crystals of Cu6P(Se0.7S0.3)5Br were obtained by the conventional vapour-transport method at Uzhhorod State University. For details of the crystal preparation, see Studenyak et al. (2003).
The displacement parameters of atoms Cu2 were refined in the third-order anharmonic approximation using the Gram–Chalier model [for more details, see Coppens (1997)]. The calculated tensor Cijk parameters (multiplied by 105) are as follows: C112 = C113 = -0.36 (4), C122 = C133 = 0.22 (3), C222 = C333 = -0.38 (5), C223 = C233 = 0.14 (4), and C123 = -0.10 (6). The nonharmonic [anharmonic?] refinement of the Cu2 displacement parameters improved the residual factor R1 and reduced the electron residuals in the difference Fourier maps in the vicinity of the Cu2 position. Anharmonic displacement parameters were refined separately. The occupancy, coordinates and anisotropic displacement parameters of the Cu2 position were constrained. For atom Cu1, anisotropic refinement was applied.
A separate refinement of the occupancy factors of the Se2 and Br1 positions was performed. The refined occupancies of Se2 and Br1 were 1.01 (1) and 0.99 (1), respectively. As a result, the occupancies of these two positions were set to 1 and were not refined. The sum of the occupancies of atoms Se1 and S1 was constrained to 1.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: (Jana2000; Petricek et al., 2000); molecular graphics: Diamond (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2007).
Cu6P(Se0.7S0.3)5Br | Dx = 5.453 Mg m−3 |
Mr = 816.8 | Mo Kα radiation, λ = 0.71069 Å |
Cubic, F43m | Cell parameters from 4723 reflections |
Hall symbol: F -4 2 3 | θ = 3.5–46.2° |
a = 9.9821 (11) Å | µ = 29.58 mm−1 |
V = 994.64 (19) Å3 | T = 298 K |
Z = 4 | Prism, dark red |
F(000) = 1469.6 | 0.31 × 0.12 × 0.08 mm |
Kuma KM-4 with CCD area-detector diffractometer | 275 independent reflections |
Radiation source: fine-focus sealed tube | 259 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.059 |
Detector resolution: 1024x1024 pixels mm-1 | θmax = 35.6°, θmin = 3.5° |
ω scans | h = −16→16 |
Absorption correction: numerical (X-RED; Stoe & Cie, 1999) | k = −16→16 |
Tmin = 0.028, Tmax = 0.227 | l = −16→16 |
4723 measured reflections |
Refinement on F | (Δ/σ)max = 0.0002 |
R[F2 > 2σ(F2)] = 0.026 | Δρmax = 0.78 e Å−3 |
wR(F2) = 0.042 | Δρmin = −0.70 e Å−3 |
S = 1.44 | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
275 reflections | Extinction coefficient: 0.060 (10) |
23 parameters | Absolute structure: Flack (1983), 121 Friedel pairs |
0 restraints | Absolute structure parameter: −0.02 (6) |
Weighting scheme based on measured s.u.'s w = 1/[σ2(F) + 0.0004F2] |
Cu6P(Se0.7S0.3)5Br | Z = 4 |
Mr = 816.8 | Mo Kα radiation |
Cubic, F43m | µ = 29.58 mm−1 |
a = 9.9821 (11) Å | T = 298 K |
V = 994.64 (19) Å3 | 0.31 × 0.12 × 0.08 mm |
Kuma KM-4 with CCD area-detector diffractometer | 275 independent reflections |
Absorption correction: numerical (X-RED; Stoe & Cie, 1999) | 259 reflections with I > 3σ(I) |
Tmin = 0.028, Tmax = 0.227 | Rint = 0.059 |
4723 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.042 | Δρmax = 0.78 e Å−3 |
S = 1.44 | Δρmin = −0.70 e Å−3 |
275 reflections | Absolute structure: Flack (1983), 121 Friedel pairs |
23 parameters | Absolute structure parameter: −0.02 (6) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0 | 0 | 0 | 0.0288 (2) | |
P1 | 0 | 0.5 | 0 | 0.0119 (3) | |
Se1 | −0.12481 (6) | 0.37519 (6) | 0.12481 (6) | 0.01599 (13) | 0.5921 |
S1 | −0.124808 | 0.375192 | 0.124808 | 0.01599 (13) | 0.4079 |
Se2 | 0.25 | 0.25 | 0.25 | 0.0350 (3) | |
Cu1 | 0.0254 (2) | 0.25 | 0.25 | 0.0581 (8) | 0.486 |
Cu2 | 0.0184 (3) | 0.1762 (3) | 0.1762 (3) | 0.0445 (7) | 0.2653 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0288 (3) | 0.0288 (3) | 0.0288 (3) | 0 | 0 | 0 |
P1 | 0.0119 (5) | 0.0119 (5) | 0.0119 (5) | 0 | 0 | 0 |
Se1 | 0.0160 (2) | 0.0160 (2) | 0.0160 (2) | −0.00224 (12) | 0.00224 (12) | 0.00224 (12) |
S1 | 0.0160 (2) | 0.0160 (2) | 0.0160 (2) | −0.00224 (12) | 0.00224 (12) | 0.00224 (12) |
Se2 | 0.0350 (5) | 0.0350 (5) | 0.0350 (5) | 0 | 0 | 0 |
Cu1 | 0.0291 (11) | 0.0726 (15) | 0.0726 (15) | 0 | 0 | 0.044 (2) |
Cu2 | 0.0431 (18) | 0.0451 (9) | 0.0451 (9) | −0.0081 (10) | −0.0081 (10) | 0.0065 (13) |
Br1—Cu2 | 2.494 (3) | S1—Cu2viii | 2.501 (3) |
Br1—Cu2i | 2.494 (3) | S1—Cu2xviii | 2.501 (3) |
Br1—Cu2ii | 2.494 (3) | Se2—Cu1 | 2.242 (2) |
Br1—Cu2iii | 2.494 (3) | Se2—Cu1xix | 2.242 (2) |
Br1—Cu2iv | 2.494 (3) | Se2—Cu1iii | 2.242 (2) |
Br1—Cu2v | 2.494 (3) | Se2—Cu1xx | 2.242 (2) |
Br1—Cu2vi | 2.494 (3) | Se2—Cu1xxi | 2.242 (2) |
Br1—Cu2vii | 2.494 (3) | Se2—Cu1ix | 2.242 (2) |
Br1—Cu2viii | 2.494 (3) | Se2—Cu2 | 2.536 (3) |
Br1—Cu2ix | 2.494 (3) | Se2—Cu2xix | 2.536 (3) |
Br1—Cu2x | 2.494 (3) | Se2—Cu2xvi | 2.536 (3) |
Br1—Cu2xi | 2.494 (3) | Se2—Cu2iii | 2.536 (3) |
P1—S1 | 2.1579 | Se2—Cu2xx | 2.536 (3) |
P1—S1xii | 2.1579 | Se2—Cu2xxii | 2.536 (3) |
P1—S1xiii | 2.1579 | Se2—Cu2xxiii | 2.536 (3) |
P1—S1xiv | 2.1579 | Se2—Cu2xxiv | 2.536 (3) |
Se1—Cu1 | 2.3174 (17) | Se2—Cu2xxi | 2.536 (3) |
Se1—Cu1xv | 2.3174 (17) | Se2—Cu2ix | 2.536 (3) |
Se1—Cu1viii | 2.3174 (17) | Se2—Cu2xxv | 2.536 (3) |
Se1—Cu2 | 2.501 (3) | Se2—Cu2xxvi | 2.536 (3) |
Se1—Cu2xvi | 2.501 (3) | Cu1—Cu2 | 1.044 (3) |
Se1—Cu2xv | 2.501 (3) | Cu1—Cu2xix | 2.855 (3) |
Se1—Cu2xvii | 2.501 (3) | Cu1—Cu2xvi | 1.044 (3) |
Se1—Cu2viii | 2.501 (3) | Cu1—Cu2iii | 2.855 (3) |
Se1—Cu2xviii | 2.501 (3) | Cu1—Cu2ix | 2.855 (3) |
S1—Cu1 | 2.3174 (15) | Cu1—Cu2xxv | 2.855 (3) |
S1—Cu1xv | 2.3174 (15) | Cu2—Cu2xvi | 2.084 (4) |
S1—Cu1viii | 2.3174 (15) | Cu2—Cu2iii | 2.227 (4) |
S1—Cu2 | 2.501 (3) | Cu2—Cu2v | 2.747 (4) |
S1—Cu2xvi | 2.501 (3) | Cu2—Cu2viii | 2.747 (4) |
S1—Cu2xv | 2.501 (3) | Cu2—Cu2ix | 2.227 (4) |
S1—Cu2xvii | 2.501 (3) | ||
Cu2—Br1—Cu2i | 119.82 (9) | Cu1xx—Se2—Cu1xxi | 90 |
Cu2—Br1—Cu2ii | 171.55 (9) | Cu1xx—Se2—Cu1ix | 90 |
Cu2—Br1—Cu2iii | 53.05 (9) | Cu1xx—Se2—Cu2 | 155.73 (6) |
Cu2—Br1—Cu2iv | 90.31 (8) | Cu1xx—Se2—Cu2xix | 106.89 (6) |
Cu2—Br1—Cu2v | 66.83 (9) | Cu1xx—Se2—Cu2xvi | 155.73 (6) |
Cu2—Br1—Cu2vi | 119.82 (9) | Cu1xx—Se2—Cu2iii | 106.89 (6) |
Cu2—Br1—Cu2vii | 90.31 (8) | Cu1xx—Se2—Cu2xxii | 73.11 (6) |
Cu2—Br1—Cu2viii | 66.83 (9) | Cu1xx—Se2—Cu2xxiii | 73.11 (6) |
Cu2—Br1—Cu2ix | 53.05 (9) | Cu1xx—Se2—Cu2xxi | 73.11 (6) |
Cu2—Br1—Cu2x | 119.82 (9) | Cu1xx—Se2—Cu2ix | 106.89 (6) |
Cu2—Br1—Cu2xi | 119.82 (9) | Cu1xx—Se2—Cu2xxv | 106.89 (6) |
Cu2i—Br1—Cu2 | 119.82 (9) | Cu1xx—Se2—Cu2xxvi | 73.11 (6) |
Cu2i—Br1—Cu2ii | 53.05 (9) | Cu1xxi—Se2—Cu1 | 90 |
Cu2i—Br1—Cu2iii | 90.31 (8) | Cu1xxi—Se2—Cu1xix | 90 |
Cu2i—Br1—Cu2iv | 119.82 (9) | Cu1xxi—Se2—Cu1iii | 90 |
Cu2i—Br1—Cu2v | 171.55 (9) | Cu1xxi—Se2—Cu1xx | 90 |
Cu2i—Br1—Cu2vi | 90.31 (8) | Cu1xxi—Se2—Cu1ix | 180 |
Cu2i—Br1—Cu2vii | 66.83 (9) | Cu1xxi—Se2—Cu2 | 106.89 (6) |
Cu2i—Br1—Cu2viii | 119.82 (9) | Cu1xxi—Se2—Cu2xix | 73.11 (6) |
Cu2i—Br1—Cu2ix | 66.83 (9) | Cu1xxi—Se2—Cu2xvi | 73.11 (6) |
Cu2i—Br1—Cu2x | 53.05 (9) | Cu1xxi—Se2—Cu2iii | 106.89 (6) |
Cu2i—Br1—Cu2xi | 119.82 (9) | Cu1xxi—Se2—Cu2xx | 106.89 (6) |
Cu2ii—Br1—Cu2 | 171.55 (9) | Cu1xxi—Se2—Cu2xxii | 106.89 (6) |
Cu2ii—Br1—Cu2i | 53.05 (9) | Cu1xxi—Se2—Cu2xxiii | 73.11 (6) |
Cu2ii—Br1—Cu2iii | 119.82 (9) | Cu1xxi—Se2—Cu2xxiv | 73.11 (6) |
Cu2ii—Br1—Cu2iv | 90.31 (8) | Cu1xxi—Se2—Cu2ix | 155.73 (6) |
Cu2ii—Br1—Cu2v | 119.82 (9) | Cu1xxi—Se2—Cu2xxvi | 155.73 (6) |
Cu2ii—Br1—Cu2vi | 66.83 (9) | Cu1ix—Se2—Cu1 | 90 |
Cu2ii—Br1—Cu2vii | 90.31 (8) | Cu1ix—Se2—Cu1xix | 90 |
Cu2ii—Br1—Cu2viii | 119.82 (9) | Cu1ix—Se2—Cu1iii | 90 |
Cu2ii—Br1—Cu2ix | 119.82 (9) | Cu1ix—Se2—Cu1xx | 90 |
Cu2ii—Br1—Cu2x | 53.05 (9) | Cu1ix—Se2—Cu1xxi | 180 |
Cu2ii—Br1—Cu2xi | 66.83 (9) | Cu1ix—Se2—Cu2 | 73.11 (6) |
Cu2iii—Br1—Cu2 | 53.05 (9) | Cu1ix—Se2—Cu2xix | 106.89 (6) |
Cu2iii—Br1—Cu2i | 90.31 (8) | Cu1ix—Se2—Cu2xvi | 106.89 (6) |
Cu2iii—Br1—Cu2ii | 119.82 (9) | Cu1ix—Se2—Cu2iii | 73.11 (6) |
Cu2iii—Br1—Cu2iv | 66.83 (9) | Cu1ix—Se2—Cu2xx | 73.11 (6) |
Cu2iii—Br1—Cu2v | 90.31 (8) | Cu1ix—Se2—Cu2xxii | 73.11 (6) |
Cu2iii—Br1—Cu2vi | 171.55 (9) | Cu1ix—Se2—Cu2xxiii | 106.89 (6) |
Cu2iii—Br1—Cu2vii | 119.82 (9) | Cu1ix—Se2—Cu2xxiv | 106.89 (6) |
Cu2iii—Br1—Cu2viii | 119.82 (9) | Cu1ix—Se2—Cu2xxi | 155.73 (6) |
Cu2iii—Br1—Cu2ix | 53.05 (9) | Cu1ix—Se2—Cu2xxv | 155.73 (6) |
Cu2iii—Br1—Cu2x | 66.83 (9) | Cu2—Se2—Cu2xix | 94.84 (8) |
Cu2iii—Br1—Cu2xi | 119.82 (9) | Cu2—Se2—Cu2xvi | 48.53 (8) |
Cu2iv—Br1—Cu2 | 90.31 (8) | Cu2—Se2—Cu2iii | 52.10 (8) |
Cu2iv—Br1—Cu2i | 119.82 (9) | Cu2—Se2—Cu2xx | 146.21 (8) |
Cu2iv—Br1—Cu2ii | 90.31 (8) | Cu2—Se2—Cu2xxii | 116.45 (8) |
Cu2iv—Br1—Cu2iii | 66.83 (9) | Cu2—Se2—Cu2xxiii | 94.84 (8) |
Cu2iv—Br1—Cu2v | 53.05 (9) | Cu2—Se2—Cu2xxiv | 146.21 (8) |
Cu2iv—Br1—Cu2vi | 119.82 (9) | Cu2—Se2—Cu2xxi | 116.45 (8) |
Cu2iv—Br1—Cu2vii | 171.55 (9) | Cu2—Se2—Cu2ix | 52.10 (8) |
Cu2iv—Br1—Cu2viii | 119.82 (9) | Cu2—Se2—Cu2xxv | 94.84 (8) |
Cu2iv—Br1—Cu2ix | 119.82 (9) | Cu2—Se2—Cu2xxvi | 94.84 (8) |
Cu2iv—Br1—Cu2x | 66.83 (9) | Cu2xix—Se2—Cu2 | 94.84 (8) |
Cu2iv—Br1—Cu2xi | 53.05 (9) | Cu2xix—Se2—Cu2xvi | 52.10 (8) |
Cu2v—Br1—Cu2 | 66.83 (9) | Cu2xix—Se2—Cu2iii | 146.21 (8) |
Cu2v—Br1—Cu2i | 171.55 (9) | Cu2xix—Se2—Cu2xx | 94.84 (8) |
Cu2v—Br1—Cu2ii | 119.82 (9) | Cu2xix—Se2—Cu2xxii | 48.53 (8) |
Cu2v—Br1—Cu2iii | 90.31 (8) | Cu2xix—Se2—Cu2xxiii | 146.21 (8) |
Cu2v—Br1—Cu2iv | 53.05 (9) | Cu2xix—Se2—Cu2xxiv | 116.45 (8) |
Cu2v—Br1—Cu2vi | 90.31 (8) | Cu2xix—Se2—Cu2xxi | 94.84 (8) |
Cu2v—Br1—Cu2vii | 119.82 (9) | Cu2xix—Se2—Cu2ix | 116.45 (8) |
Cu2v—Br1—Cu2viii | 66.83 (9) | Cu2xix—Se2—Cu2xxv | 52.10 (8) |
Cu2v—Br1—Cu2ix | 119.82 (9) | Cu2xix—Se2—Cu2xxvi | 94.84 (8) |
Cu2v—Br1—Cu2x | 119.82 (9) | Cu2xvi—Se2—Cu2 | 48.53 (8) |
Cu2v—Br1—Cu2xi | 53.05 (9) | Cu2xvi—Se2—Cu2xix | 52.10 (8) |
Cu2vi—Br1—Cu2 | 119.82 (9) | Cu2xvi—Se2—Cu2iii | 94.84 (8) |
Cu2vi—Br1—Cu2i | 90.31 (8) | Cu2xvi—Se2—Cu2xx | 146.21 (8) |
Cu2vi—Br1—Cu2ii | 66.83 (9) | Cu2xvi—Se2—Cu2xxii | 94.84 (8) |
Cu2vi—Br1—Cu2iii | 171.55 (9) | Cu2xvi—Se2—Cu2xxiii | 116.45 (8) |
Cu2vi—Br1—Cu2iv | 119.82 (9) | Cu2xvi—Se2—Cu2xxiv | 146.21 (8) |
Cu2vi—Br1—Cu2v | 90.31 (8) | Cu2xvi—Se2—Cu2xxi | 94.84 (8) |
Cu2vi—Br1—Cu2vii | 53.05 (9) | Cu2xvi—Se2—Cu2ix | 94.84 (8) |
Cu2vi—Br1—Cu2viii | 53.05 (9) | Cu2xvi—Se2—Cu2xxv | 52.10 (8) |
Cu2vi—Br1—Cu2ix | 119.82 (9) | Cu2xvi—Se2—Cu2xxvi | 116.45 (8) |
Cu2vi—Br1—Cu2x | 119.82 (9) | Cu2iii—Se2—Cu2 | 52.10 (8) |
Cu2vi—Br1—Cu2xi | 66.83 (9) | Cu2iii—Se2—Cu2xix | 146.21 (8) |
Cu2vii—Br1—Cu2 | 90.31 (8) | Cu2iii—Se2—Cu2xvi | 94.84 (8) |
Cu2vii—Br1—Cu2i | 66.83 (9) | Cu2iii—Se2—Cu2xx | 116.45 (8) |
Cu2vii—Br1—Cu2ii | 90.31 (8) | Cu2iii—Se2—Cu2xxii | 146.21 (8) |
Cu2vii—Br1—Cu2iii | 119.82 (9) | Cu2iii—Se2—Cu2xxiii | 48.53 (8) |
Cu2vii—Br1—Cu2iv | 171.55 (9) | Cu2iii—Se2—Cu2xxiv | 94.84 (8) |
Cu2vii—Br1—Cu2v | 119.82 (9) | Cu2iii—Se2—Cu2xxi | 94.84 (8) |
Cu2vii—Br1—Cu2vi | 53.05 (9) | Cu2iii—Se2—Cu2ix | 52.10 (8) |
Cu2vii—Br1—Cu2viii | 53.05 (9) | Cu2iii—Se2—Cu2xxv | 116.45 (8) |
Cu2vii—Br1—Cu2ix | 66.83 (9) | Cu2iii—Se2—Cu2xxvi | 94.84 (8) |
Cu2vii—Br1—Cu2x | 119.82 (9) | Cu2xx—Se2—Cu2 | 146.21 (8) |
Cu2vii—Br1—Cu2xi | 119.82 (9) | Cu2xx—Se2—Cu2xix | 94.84 (8) |
Cu2viii—Br1—Cu2 | 66.83 (9) | Cu2xx—Se2—Cu2xvi | 146.21 (8) |
Cu2viii—Br1—Cu2i | 119.82 (9) | Cu2xx—Se2—Cu2iii | 116.45 (8) |
Cu2viii—Br1—Cu2ii | 119.82 (9) | Cu2xx—Se2—Cu2xxii | 52.10 (8) |
Cu2viii—Br1—Cu2iii | 119.82 (9) | Cu2xx—Se2—Cu2xxiii | 94.84 (8) |
Cu2viii—Br1—Cu2iv | 119.82 (9) | Cu2xx—Se2—Cu2xxiv | 48.53 (8) |
Cu2viii—Br1—Cu2v | 66.83 (9) | Cu2xx—Se2—Cu2xxi | 94.84 (8) |
Cu2viii—Br1—Cu2vi | 53.05 (9) | Cu2xx—Se2—Cu2ix | 94.84 (8) |
Cu2viii—Br1—Cu2vii | 53.05 (9) | Cu2xx—Se2—Cu2xxv | 116.45 (8) |
Cu2viii—Br1—Cu2ix | 90.31 (8) | Cu2xx—Se2—Cu2xxvi | 52.10 (8) |
Cu2viii—Br1—Cu2x | 171.55 (9) | Cu2xxii—Se2—Cu2 | 116.45 (8) |
Cu2viii—Br1—Cu2xi | 90.31 (8) | Cu2xxii—Se2—Cu2xix | 48.53 (8) |
Cu2ix—Br1—Cu2 | 53.05 (9) | Cu2xxii—Se2—Cu2xvi | 94.84 (8) |
Cu2ix—Br1—Cu2i | 66.83 (9) | Cu2xxii—Se2—Cu2iii | 146.21 (8) |
Cu2ix—Br1—Cu2ii | 119.82 (9) | Cu2xxii—Se2—Cu2xx | 52.10 (8) |
Cu2ix—Br1—Cu2iii | 53.05 (9) | Cu2xxii—Se2—Cu2xxiii | 146.21 (8) |
Cu2ix—Br1—Cu2iv | 119.82 (9) | Cu2xxii—Se2—Cu2xxiv | 94.84 (8) |
Cu2ix—Br1—Cu2v | 119.82 (9) | Cu2xxii—Se2—Cu2xxi | 116.45 (8) |
Cu2ix—Br1—Cu2vi | 119.82 (9) | Cu2xxii—Se2—Cu2ix | 94.84 (8) |
Cu2ix—Br1—Cu2vii | 66.83 (9) | Cu2xxii—Se2—Cu2xxv | 94.84 (8) |
Cu2ix—Br1—Cu2viii | 90.31 (8) | Cu2xxii—Se2—Cu2xxvi | 52.10 (8) |
Cu2ix—Br1—Cu2x | 90.31 (8) | Cu2xxiii—Se2—Cu2 | 94.84 (8) |
Cu2ix—Br1—Cu2xi | 171.55 (9) | Cu2xxiii—Se2—Cu2xix | 146.21 (8) |
Cu2x—Br1—Cu2 | 119.82 (9) | Cu2xxiii—Se2—Cu2xvi | 116.45 (8) |
Cu2x—Br1—Cu2i | 53.05 (9) | Cu2xxiii—Se2—Cu2iii | 48.53 (8) |
Cu2x—Br1—Cu2ii | 53.05 (9) | Cu2xxiii—Se2—Cu2xx | 94.84 (8) |
Cu2x—Br1—Cu2iii | 66.83 (9) | Cu2xxiii—Se2—Cu2xxii | 146.21 (8) |
Cu2x—Br1—Cu2iv | 66.83 (9) | Cu2xxiii—Se2—Cu2xxiv | 52.10 (8) |
Cu2x—Br1—Cu2v | 119.82 (9) | Cu2xxiii—Se2—Cu2xxi | 52.10 (8) |
Cu2x—Br1—Cu2vi | 119.82 (9) | Cu2xxiii—Se2—Cu2ix | 94.84 (8) |
Cu2x—Br1—Cu2vii | 119.82 (9) | Cu2xxiii—Se2—Cu2xxv | 94.84 (8) |
Cu2x—Br1—Cu2viii | 171.55 (9) | Cu2xxiii—Se2—Cu2xxvi | 116.45 (8) |
Cu2x—Br1—Cu2ix | 90.31 (8) | Cu2xxiv—Se2—Cu2 | 146.21 (8) |
Cu2x—Br1—Cu2xi | 90.31 (8) | Cu2xxiv—Se2—Cu2xix | 116.45 (8) |
Cu2xi—Br1—Cu2 | 119.82 (9) | Cu2xxiv—Se2—Cu2xvi | 146.21 (8) |
Cu2xi—Br1—Cu2i | 119.82 (9) | Cu2xxiv—Se2—Cu2iii | 94.84 (8) |
Cu2xi—Br1—Cu2ii | 66.83 (9) | Cu2xxiv—Se2—Cu2xx | 48.53 (8) |
Cu2xi—Br1—Cu2iii | 119.82 (9) | Cu2xxiv—Se2—Cu2xxii | 94.84 (8) |
Cu2xi—Br1—Cu2iv | 53.05 (9) | Cu2xxiv—Se2—Cu2xxiii | 52.10 (8) |
Cu2xi—Br1—Cu2v | 53.05 (9) | Cu2xxiv—Se2—Cu2xxi | 52.10 (8) |
Cu2xi—Br1—Cu2vi | 66.83 (9) | Cu2xxiv—Se2—Cu2ix | 116.45 (8) |
Cu2xi—Br1—Cu2vii | 119.82 (9) | Cu2xxiv—Se2—Cu2xxv | 94.84 (8) |
Cu2xi—Br1—Cu2viii | 90.31 (8) | Cu2xxiv—Se2—Cu2xxvi | 94.84 (8) |
Cu2xi—Br1—Cu2ix | 171.55 (9) | Cu2xxi—Se2—Cu2 | 116.45 (8) |
Cu2xi—Br1—Cu2x | 90.31 (8) | Cu2xxi—Se2—Cu2xix | 94.84 (8) |
S1—P1—S1xii | 109.471 | Cu2xxi—Se2—Cu2xvi | 94.84 (8) |
S1—P1—S1xiii | 109.471 | Cu2xxi—Se2—Cu2iii | 94.84 (8) |
S1—P1—S1xiv | 109.471 | Cu2xxi—Se2—Cu2xx | 94.84 (8) |
S1xii—P1—S1 | 109.471 | Cu2xxi—Se2—Cu2xxii | 116.45 (8) |
S1xii—P1—S1xiii | 109.471 | Cu2xxi—Se2—Cu2xxiii | 52.10 (8) |
S1xii—P1—S1xiv | 109.471 | Cu2xxi—Se2—Cu2xxiv | 52.10 (8) |
S1xiii—P1—S1 | 109.471 | Cu2xxi—Se2—Cu2ix | 146.21 (8) |
S1xiii—P1—S1xii | 109.471 | Cu2xxi—Se2—Cu2xxv | 48.53 (8) |
S1xiii—P1—S1xiv | 109.471 | Cu2xxi—Se2—Cu2xxvi | 146.21 (8) |
S1xiv—P1—S1 | 109.471 | Cu2ix—Se2—Cu2 | 52.10 (8) |
S1xiv—P1—S1xii | 109.471 | Cu2ix—Se2—Cu2xix | 116.45 (8) |
S1xiv—P1—S1xiii | 109.471 | Cu2ix—Se2—Cu2xvi | 94.84 (8) |
P1—Se1—Cu1 | 104.43 (5) | Cu2ix—Se2—Cu2iii | 52.10 (8) |
P1—Se1—Cu1xv | 104.43 (5) | Cu2ix—Se2—Cu2xx | 94.84 (8) |
P1—Se1—Cu1viii | 104.43 (5) | Cu2ix—Se2—Cu2xxii | 94.84 (8) |
P1—Se1—Cu2 | 104.30 (7) | Cu2ix—Se2—Cu2xxiii | 94.84 (8) |
P1—Se1—Cu2xvi | 104.30 (7) | Cu2ix—Se2—Cu2xxiv | 116.45 (8) |
P1—Se1—Cu2xv | 104.30 (7) | Cu2ix—Se2—Cu2xxi | 146.21 (8) |
P1—Se1—Cu2xvii | 104.30 (7) | Cu2ix—Se2—Cu2xxv | 146.21 (8) |
P1—Se1—Cu2viii | 104.30 (7) | Cu2ix—Se2—Cu2xxvi | 48.53 (8) |
P1—Se1—Cu2xviii | 104.30 (7) | Cu2xxv—Se2—Cu2 | 94.84 (8) |
Cu1—Se1—Cu1xv | 114.01 (4) | Cu2xxv—Se2—Cu2xix | 52.10 (8) |
Cu1—Se1—Cu1viii | 114.01 (4) | Cu2xxv—Se2—Cu2xvi | 52.10 (8) |
Cu1—Se1—Cu2xv | 135.36 (7) | Cu2xxv—Se2—Cu2iii | 116.45 (8) |
Cu1—Se1—Cu2xvii | 90.72 (7) | Cu2xxv—Se2—Cu2xx | 116.45 (8) |
Cu1—Se1—Cu2viii | 90.72 (7) | Cu2xxv—Se2—Cu2xxii | 94.84 (8) |
Cu1—Se1—Cu2xviii | 135.36 (7) | Cu2xxv—Se2—Cu2xxiii | 94.84 (8) |
Cu1xv—Se1—Cu1 | 114.01 (4) | Cu2xxv—Se2—Cu2xxiv | 94.84 (8) |
Cu1xv—Se1—Cu1viii | 114.01 (4) | Cu2xxv—Se2—Cu2xxi | 48.53 (8) |
Cu1xv—Se1—Cu2 | 135.36 (7) | Cu2xxv—Se2—Cu2ix | 146.21 (8) |
Cu1xv—Se1—Cu2xvi | 90.72 (7) | Cu2xxv—Se2—Cu2xxvi | 146.21 (8) |
Cu1xv—Se1—Cu2viii | 135.36 (7) | Cu2xxvi—Se2—Cu2 | 94.84 (8) |
Cu1xv—Se1—Cu2xviii | 90.72 (7) | Cu2xxvi—Se2—Cu2xix | 94.84 (8) |
Cu1viii—Se1—Cu1 | 114.01 (4) | Cu2xxvi—Se2—Cu2xvi | 116.45 (8) |
Cu1viii—Se1—Cu1xv | 114.01 (4) | Cu2xxvi—Se2—Cu2iii | 94.84 (8) |
Cu1viii—Se1—Cu2 | 90.72 (7) | Cu2xxvi—Se2—Cu2xx | 52.10 (8) |
Cu1viii—Se1—Cu2xvi | 135.36 (7) | Cu2xxvi—Se2—Cu2xxii | 52.10 (8) |
Cu1viii—Se1—Cu2xv | 90.72 (7) | Cu2xxvi—Se2—Cu2xxiii | 116.45 (8) |
Cu1viii—Se1—Cu2xvii | 135.36 (7) | Cu2xxvi—Se2—Cu2xxiv | 94.84 (8) |
Cu2—Se1—Cu2xvi | 49.26 (9) | Cu2xxvi—Se2—Cu2xxi | 146.21 (8) |
Cu2—Se1—Cu2xv | 150.03 (9) | Cu2xxvi—Se2—Cu2ix | 48.53 (8) |
Cu2—Se1—Cu2xvii | 114.11 (9) | Cu2xxvi—Se2—Cu2xxv | 146.21 (8) |
Cu2—Se1—Cu2viii | 66.63 (9) | S1—Cu1—S1xxvii | 99.39 (9) |
Cu2—Se1—Cu2xviii | 114.11 (9) | S1—Cu1—Se2 | 130.30 (5) |
Cu2xvi—Se1—Cu2 | 49.26 (9) | S1—Cu1—Cu2 | 87.53 (17) |
Cu2xvi—Se1—Cu2xv | 114.11 (9) | S1—Cu1—Cu2xix | 92.50 (5) |
Cu2xvi—Se1—Cu2xvii | 66.63 (9) | S1—Cu1—Cu2xvi | 87.53 (17) |
Cu2xvi—Se1—Cu2viii | 114.11 (9) | S1—Cu1—Cu2iii | 129.68 (5) |
Cu2xvi—Se1—Cu2xviii | 150.03 (9) | S1—Cu1—Cu2ix | 92.50 (5) |
Cu2xv—Se1—Cu2 | 150.03 (9) | S1—Cu1—Cu2xxv | 129.68 (5) |
Cu2xv—Se1—Cu2xvi | 114.11 (9) | S1xxvii—Cu1—S1 | 99.39 (9) |
Cu2xv—Se1—Cu2xvii | 49.26 (9) | S1xxvii—Cu1—Se2 | 130.30 (5) |
Cu2xv—Se1—Cu2viii | 114.11 (9) | S1xxvii—Cu1—Cu2 | 87.53 (17) |
Cu2xv—Se1—Cu2xviii | 66.63 (9) | S1xxvii—Cu1—Cu2xix | 129.68 (5) |
Cu2xvii—Se1—Cu2 | 114.11 (9) | S1xxvii—Cu1—Cu2xvi | 87.53 (17) |
Cu2xvii—Se1—Cu2xvi | 66.63 (9) | S1xxvii—Cu1—Cu2iii | 92.50 (5) |
Cu2xvii—Se1—Cu2xv | 49.26 (9) | S1xxvii—Cu1—Cu2ix | 129.68 (5) |
Cu2xvii—Se1—Cu2viii | 150.03 (9) | S1xxvii—Cu1—Cu2xxv | 92.50 (5) |
Cu2xvii—Se1—Cu2xviii | 114.11 (9) | Se2—Cu1—Cu2 | 93.8 (2) |
Cu2viii—Se1—Cu2 | 66.63 (9) | Se2—Cu1—Cu2xix | 58.18 (7) |
Cu2viii—Se1—Cu2xvi | 114.11 (9) | Se2—Cu1—Cu2xvi | 93.8 (2) |
Cu2viii—Se1—Cu2xv | 114.11 (9) | Se2—Cu1—Cu2iii | 58.18 (7) |
Cu2viii—Se1—Cu2xvii | 150.03 (9) | Se2—Cu1—Cu2ix | 58.18 (7) |
Cu2viii—Se1—Cu2xviii | 49.26 (9) | Se2—Cu1—Cu2xxv | 58.18 (7) |
Cu2xviii—Se1—Cu2 | 114.11 (9) | Cu2—Cu1—Cu2xix | 142.0 (2) |
Cu2xviii—Se1—Cu2xvi | 150.03 (9) | Cu2—Cu1—Cu2xvi | 172.4 (3) |
Cu2xviii—Se1—Cu2xv | 66.63 (9) | Cu2—Cu1—Cu2iii | 44.09 (18) |
Cu2xviii—Se1—Cu2xvii | 114.11 (9) | Cu2—Cu1—Cu2ix | 44.09 (18) |
Cu2xviii—Se1—Cu2viii | 49.26 (9) | Cu2—Cu1—Cu2xxv | 142.0 (2) |
P1—S1—Cu1 | 104.43 (5) | Cu2xix—Cu1—Cu2 | 142.0 (2) |
P1—S1—Cu1xv | 104.43 (5) | Cu2xix—Cu1—Cu2xvi | 44.09 (18) |
P1—S1—Cu1viii | 104.43 (5) | Cu2xix—Cu1—Cu2iii | 116.37 (11) |
P1—S1—Cu2 | 104.30 (6) | Cu2xix—Cu1—Cu2ix | 98.04 (9) |
P1—S1—Cu2xvi | 104.30 (6) | Cu2xix—Cu1—Cu2xxv | 45.91 (8) |
P1—S1—Cu2xv | 104.30 (6) | Cu2xvi—Cu1—Cu2 | 172.4 (3) |
P1—S1—Cu2xvii | 104.30 (6) | Cu2xvi—Cu1—Cu2xix | 44.09 (18) |
P1—S1—Cu2viii | 104.30 (6) | Cu2xvi—Cu1—Cu2iii | 142.0 (2) |
P1—S1—Cu2xviii | 104.30 (6) | Cu2xvi—Cu1—Cu2ix | 142.0 (2) |
Cu1—S1—Cu1xv | 114.01 (3) | Cu2xvi—Cu1—Cu2xxv | 44.09 (18) |
Cu1—S1—Cu1viii | 114.01 (3) | Cu2iii—Cu1—Cu2 | 44.09 (18) |
Cu1—S1—Cu2xv | 135.36 (7) | Cu2iii—Cu1—Cu2xix | 116.37 (11) |
Cu1—S1—Cu2xvii | 90.72 (6) | Cu2iii—Cu1—Cu2xvi | 142.0 (2) |
Cu1—S1—Cu2viii | 90.72 (6) | Cu2iii—Cu1—Cu2ix | 45.91 (8) |
Cu1—S1—Cu2xviii | 135.36 (7) | Cu2iii—Cu1—Cu2xxv | 98.04 (9) |
Cu1xv—S1—Cu1 | 114.01 (3) | Cu2ix—Cu1—Cu2 | 44.09 (18) |
Cu1xv—S1—Cu1viii | 114.01 (3) | Cu2ix—Cu1—Cu2xix | 98.04 (9) |
Cu1xv—S1—Cu2 | 135.36 (7) | Cu2ix—Cu1—Cu2xvi | 142.0 (2) |
Cu1xv—S1—Cu2xvi | 90.72 (6) | Cu2ix—Cu1—Cu2iii | 45.91 (8) |
Cu1xv—S1—Cu2viii | 135.36 (7) | Cu2ix—Cu1—Cu2xxv | 116.37 (11) |
Cu1xv—S1—Cu2xviii | 90.72 (6) | Cu2xxv—Cu1—Cu2 | 142.0 (2) |
Cu1viii—S1—Cu1 | 114.01 (3) | Cu2xxv—Cu1—Cu2xix | 45.91 (8) |
Cu1viii—S1—Cu1xv | 114.01 (3) | Cu2xxv—Cu1—Cu2xvi | 44.09 (18) |
Cu1viii—S1—Cu2 | 90.72 (6) | Cu2xxv—Cu1—Cu2iii | 98.04 (9) |
Cu1viii—S1—Cu2xvi | 135.36 (7) | Cu2xxv—Cu1—Cu2ix | 116.37 (11) |
Cu1viii—S1—Cu2xv | 90.72 (6) | Br1—Cu2—S1 | 111.93 (10) |
Cu1viii—S1—Cu2xvii | 135.36 (7) | Br1—Cu2—S1xxvii | 111.93 (10) |
Cu2—S1—Cu2xvi | 49.26 (8) | Br1—Cu2—Se2 | 118.49 (11) |
Cu2—S1—Cu2xv | 150.03 (9) | Br1—Cu2—Cu1 | 179.6 (3) |
Cu2—S1—Cu2xvii | 114.11 (9) | Br1—Cu2—Cu1iii | 82.52 (8) |
Cu2—S1—Cu2viii | 66.63 (9) | Br1—Cu2—Cu1ix | 82.52 (8) |
Cu2—S1—Cu2xviii | 114.11 (9) | Br1—Cu2—Cu2xvi | 175.78 (16) |
Cu2xvi—S1—Cu2 | 49.26 (8) | Br1—Cu2—Cu2iii | 63.48 (10) |
Cu2xvi—S1—Cu2xv | 114.11 (9) | Br1—Cu2—Cu2v | 56.58 (8) |
Cu2xvi—S1—Cu2xvii | 66.63 (9) | Br1—Cu2—Cu2viii | 56.58 (8) |
Cu2xvi—S1—Cu2viii | 114.11 (9) | Br1—Cu2—Cu2ix | 63.48 (10) |
Cu2xvi—S1—Cu2xviii | 150.03 (9) | S1—Cu2—S1xxvii | 89.94 (9) |
Cu2xv—S1—Cu2 | 150.03 (9) | S1—Cu2—Se2 | 110.48 (10) |
Cu2xv—S1—Cu2xvi | 114.11 (9) | S1—Cu2—Cu1 | 67.80 (16) |
Cu2xv—S1—Cu2xvii | 49.26 (8) | S1—Cu2—Cu1iii | 159.16 (12) |
Cu2xv—S1—Cu2viii | 114.11 (9) | S1—Cu2—Cu1ix | 98.61 (9) |
Cu2xv—S1—Cu2xviii | 66.63 (9) | S1—Cu2—Cu2xvi | 65.37 (10) |
Cu2xvii—S1—Cu2 | 114.11 (9) | S1—Cu2—Cu2iii | 165.01 (14) |
Cu2xvii—S1—Cu2xvi | 66.63 (9) | S1—Cu2—Cu2v | 99.06 (11) |
Cu2xvii—S1—Cu2xv | 49.26 (8) | S1—Cu2—Cu2viii | 56.69 (8) |
Cu2xvii—S1—Cu2viii | 150.03 (9) | S1—Cu2—Cu2ix | 105.03 (12) |
Cu2xvii—S1—Cu2xviii | 114.11 (9) | S1xxvii—Cu2—S1 | 89.94 (9) |
Cu2viii—S1—Cu2 | 66.63 (9) | S1xxvii—Cu2—Se2 | 110.48 (10) |
Cu2viii—S1—Cu2xvi | 114.11 (9) | S1xxvii—Cu2—Cu1 | 67.80 (16) |
Cu2viii—S1—Cu2xv | 114.11 (9) | S1xxvii—Cu2—Cu1iii | 98.61 (9) |
Cu2viii—S1—Cu2xvii | 150.03 (9) | S1xxvii—Cu2—Cu1ix | 159.16 (12) |
Cu2viii—S1—Cu2xviii | 49.26 (8) | S1xxvii—Cu2—Cu2xvi | 65.37 (10) |
Cu2xviii—S1—Cu2 | 114.11 (9) | S1xxvii—Cu2—Cu2iii | 105.03 (12) |
Cu2xviii—S1—Cu2xvi | 150.03 (9) | S1xxvii—Cu2—Cu2v | 56.69 (8) |
Cu2xviii—S1—Cu2xv | 66.63 (9) | S1xxvii—Cu2—Cu2viii | 99.06 (11) |
Cu2xviii—S1—Cu2xvii | 114.11 (9) | S1xxvii—Cu2—Cu2ix | 165.01 (14) |
Cu2xviii—S1—Cu2viii | 49.26 (8) | Se2—Cu2—Cu1 | 61.92 (19) |
Cu1—Se2—Cu1xix | 90 | Se2—Cu2—Cu1iii | 48.71 (6) |
Cu1—Se2—Cu1iii | 90 | Se2—Cu2—Cu1ix | 48.71 (6) |
Cu1—Se2—Cu1xx | 180 | Se2—Cu2—Cu2xvi | 65.73 (11) |
Cu1—Se2—Cu1xxi | 90 | Se2—Cu2—Cu2iii | 63.95 (10) |
Cu1—Se2—Cu1ix | 90 | Se2—Cu2—Cu2v | 148.22 (12) |
Cu1—Se2—Cu2xix | 73.11 (6) | Se2—Cu2—Cu2viii | 148.22 (12) |
Cu1—Se2—Cu2iii | 73.11 (6) | Se2—Cu2—Cu2ix | 63.95 (10) |
Cu1—Se2—Cu2xx | 155.73 (6) | Cu1—Cu2—Cu1iii | 97.8 (2) |
Cu1—Se2—Cu2xxii | 106.89 (6) | Cu1—Cu2—Cu1ix | 97.8 (2) |
Cu1—Se2—Cu2xxiii | 106.89 (6) | Cu1—Cu2—Cu2xvi | 3.81 (17) |
Cu1—Se2—Cu2xxiv | 155.73 (6) | Cu1—Cu2—Cu2iii | 116.9 (2) |
Cu1—Se2—Cu2xxi | 106.89 (6) | Cu1—Cu2—Cu2v | 123.1 (2) |
Cu1—Se2—Cu2ix | 73.11 (6) | Cu1—Cu2—Cu2viii | 123.1 (2) |
Cu1—Se2—Cu2xxv | 73.11 (6) | Cu1—Cu2—Cu2ix | 116.9 (2) |
Cu1—Se2—Cu2xxvi | 106.89 (6) | Cu1iii—Cu2—Cu1 | 97.8 (2) |
Cu1xix—Se2—Cu1 | 90 | Cu1iii—Cu2—Cu1ix | 67.46 (7) |
Cu1xix—Se2—Cu1iii | 180 | Cu1iii—Cu2—Cu2xvi | 100.97 (13) |
Cu1xix—Se2—Cu1xx | 90 | Cu1iii—Cu2—Cu2iii | 19.04 (8) |
Cu1xix—Se2—Cu1xxi | 90 | Cu1iii—Cu2—Cu2v | 101.52 (11) |
Cu1xix—Se2—Cu1ix | 90 | Cu1iii—Cu2—Cu2viii | 139.02 (12) |
Cu1xix—Se2—Cu2 | 106.89 (6) | Cu1iii—Cu2—Cu2ix | 67.05 (10) |
Cu1xix—Se2—Cu2xvi | 73.11 (6) | Cu1ix—Cu2—Cu1 | 97.8 (2) |
Cu1xix—Se2—Cu2iii | 155.73 (6) | Cu1ix—Cu2—Cu1iii | 67.46 (7) |
Cu1xix—Se2—Cu2xx | 73.11 (6) | Cu1ix—Cu2—Cu2xvi | 100.97 (13) |
Cu1xix—Se2—Cu2xxiii | 155.73 (6) | Cu1ix—Cu2—Cu2iii | 67.05 (10) |
Cu1xix—Se2—Cu2xxiv | 106.89 (6) | Cu1ix—Cu2—Cu2v | 139.02 (12) |
Cu1xix—Se2—Cu2xxi | 106.89 (6) | Cu1ix—Cu2—Cu2viii | 101.52 (11) |
Cu1xix—Se2—Cu2ix | 106.89 (6) | Cu1ix—Cu2—Cu2ix | 19.04 (8) |
Cu1xix—Se2—Cu2xxv | 73.11 (6) | Cu2xvi—Cu2—Cu2iii | 120.00 (16) |
Cu1xix—Se2—Cu2xxvi | 73.11 (6) | Cu2xvi—Cu2—Cu2v | 120.00 (15) |
Cu1iii—Se2—Cu1 | 90 | Cu2xvi—Cu2—Cu2viii | 120.00 (15) |
Cu1iii—Se2—Cu1xix | 180 | Cu2xvi—Cu2—Cu2ix | 120.00 (16) |
Cu1iii—Se2—Cu1xx | 90 | Cu2iii—Cu2—Cu2xvi | 120.00 (16) |
Cu1iii—Se2—Cu1xxi | 90 | Cu2iii—Cu2—Cu2v | 90 |
Cu1iii—Se2—Cu1ix | 90 | Cu2iii—Cu2—Cu2viii | 120.00 (14) |
Cu1iii—Se2—Cu2 | 73.11 (6) | Cu2iii—Cu2—Cu2ix | 60.00 (12) |
Cu1iii—Se2—Cu2xix | 155.73 (6) | Cu2v—Cu2—Cu2xvi | 120.00 (15) |
Cu1iii—Se2—Cu2xvi | 106.89 (6) | Cu2v—Cu2—Cu2iii | 90 |
Cu1iii—Se2—Cu2xx | 106.89 (6) | Cu2v—Cu2—Cu2viii | 60.00 (10) |
Cu1iii—Se2—Cu2xxii | 155.73 (6) | Cu2v—Cu2—Cu2ix | 120.00 (14) |
Cu1iii—Se2—Cu2xxiv | 73.11 (6) | Cu2viii—Cu2—Cu2xvi | 120.00 (15) |
Cu1iii—Se2—Cu2xxi | 73.11 (6) | Cu2viii—Cu2—Cu2iii | 120.00 (14) |
Cu1iii—Se2—Cu2ix | 73.11 (6) | Cu2viii—Cu2—Cu2v | 60.00 (10) |
Cu1iii—Se2—Cu2xxv | 106.89 (6) | Cu2viii—Cu2—Cu2ix | 90 |
Cu1iii—Se2—Cu2xxvi | 106.89 (6) | Cu2ix—Cu2—Cu2xvi | 120.00 (16) |
Cu1xx—Se2—Cu1 | 180 | Cu2ix—Cu2—Cu2iii | 60.00 (12) |
Cu1xx—Se2—Cu1xix | 90 | Cu2ix—Cu2—Cu2v | 120.00 (14) |
Cu1xx—Se2—Cu1iii | 90 | Cu2ix—Cu2—Cu2viii | 90 |
Symmetry codes: (i) y, −x, −z; (ii) x, −y, −z; (iii) z, x, y; (iv) −x, −y, z; (v) −y, −x, z; (vi) −y, x, −z; (vii) −x, y, −z; (viii) −z, y, −x; (ix) y, z, x; (x) z, −y, −x; (xi) −y, −z, x; (xii) y−1/2, −x+1/2, −z; (xiii) z, x+1/2, y−1/2; (xiv) −x, −y+1, z; (xv) z−1/2, x+1/2, y; (xvi) x, −y+1/2, −z+1/2; (xvii) −y, x+1/2, −z+1/2; (xviii) z−1/2, −y+1/2, −x; (xix) y, −x+1/2, −z+1/2; (xx) −x+1/2, −y+1/2, z; (xxi) −z+1/2, y, −x+1/2; (xxii) −y+1/2, −x+1/2, z; (xxiii) −y+1/2, x, −z+1/2; (xxiv) −x+1/2, y, −z+1/2; (xxv) z, −y+1/2, −x+1/2; (xxvi) −y+1/2, −z+1/2, x; (xxvii) y−1/2, −x, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Cu6P(Se0.7S0.3)5Br |
Mr | 816.8 |
Crystal system, space group | Cubic, F43m |
Temperature (K) | 298 |
a (Å) | 9.9821 (11) |
V (Å3) | 994.64 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 29.58 |
Crystal size (mm) | 0.31 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Kuma KM-4 with CCD area-detector diffractometer |
Absorption correction | Numerical (X-RED; Stoe & Cie, 1999) |
Tmin, Tmax | 0.028, 0.227 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 4723, 275, 259 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.819 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.042, 1.44 |
No. of reflections | 275 |
No. of parameters | 23 |
Δρmax, Δρmin (e Å−3) | 0.78, −0.70 |
Absolute structure | Flack (1983), 121 Friedel pairs |
Absolute structure parameter | −0.02 (6) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 2008), (Jana2000; Petricek et al., 2000), Diamond (Brandenburg & Putz, 2005), publCIF (Westrip, 2007).
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
The crystal structures of copper and silver argyrodites have recently been studied extensively because of their promising properties for electrochemical devices. Copper- and silver-based argyrodites are efficient ionic conductors. However, the ionic conductivity shows a significant dependence on the composition (Beeken et al., 2003, 2005; Gagor et al., 2006).
As for previously described argyrodites (Nilges & Pfitzner, 2005; Gaudin et al., 2000), the combination of a split-atom model and a nonharmonic [anharmonic?] development of displacement parameters in the structure determination reveals possible diffusion paths for the mobile ions. In the crystal structure of Cu6P(Se0.7S0.3)5Br, 24 Cu atoms are distributed among 72 permissible positions in the unit cell. Cu ions are statistically located on the edge of the (Br)4 tetrahedra and occupy two independent 24 g and 48 h Wyckoff positions. The 24 g position is triangularly coordinated by Se/S, while the 48 h position is tetrahedrally coordinated by Se/S and Br. Both triangular and tetrahedral environments are slightly deformed, because the Cu positions are shifted from the centre towards Se/S and the face of the tetrahedron, respectively. Fig. 1 shows the characteristic coordination and distribution of the Cu atoms in this phase.
At room temperature, Cu atoms show strong anharmonic vibrations along the edge of the (Br)4 tetrahedra. Taking into account both the close proximity of the Cu1 and Cu2 positions and their partial occupation, it is probable that a jump of a Cu ion between them is readily thermally activated and Cu ions are able to overcome the potential barrier to the neighbouring lattice site. The probability density functions (PDFs) of the Cu atoms overlap. The joint function reveals a possible pathway for copper migration [for more details concerning joint PDF analysis, see Bachmann & Shulz (1984)]. Fig. 2 shows the joint PDF of atoms Cu1 and Cu2 along the edge of the (Br)4 tetrahedra. From the shape of the joint PDF, we can categorize Cu6P(Se0.7S0.3)5Br as a Type 1 copper argyrodite, according to the classification introduced by Nilges & Pfitzner (2005). A similar copper substructure is demonstrated in the crystal structures of Cu6PS5I, Cu6PS5Br and Cu6AsS5I. For the Type 1 argyrodites, the most probable path of copper migration leads through a double tetrahedron face and a new 16 e position.