Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Single crystals of didysprosium hepta­nickel tritin were synthesized from the constituent elements by arc-melting. Two of the five Ni atoms are at general sites and all other atoms are at sites with either twofold or m symmetry. The structure contains `DyNi5Sn' and `DyNi2Sn2' fragments and represents a new member of the CaCu5 series of inter­metallics.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108009657/iz3047sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108009657/iz3047Isup2.hkl
Contains datablock I

Comment top

Investigation of the Dy–Ni–Sn ternary system revealed the presence of a large number of Ni-enriched compounds (Romaka et al., 2007), including a new stannide with the composition Dy18Ni55Sn27. After the structure of this new stannide had been solved and refined, the crystal chemistry analysis was carried out. Interatomic distances (Table 1) in the structure are in good agreement with the sum of the corresponding atomic radii. No shortening of the interatomic distances between Sn atoms caused by covalent bonding (inherent in compounds with high Sn content) was observed. As most ternary intermetallics are constructed from the fragments of the most stable binary compounds, the structure analysis of already known Ni-enriched stannides shows that all are derived from the DyNi5 binary compound which crystallizes in the CaCu5 structure type (Wernick & Geller, 1959). The crystal structure of Dy2Ni7Sn3 (Fig. 1a) belongs to the CaCu5 family and contains `DyNi5Sn' (denoted I) and `DyNi2Sn2' (denoted II) fragments (Fig. 1b). The `DyNi5Sn' fragment seems to be very similar to that in DyNi5Sn (Skolozdra et al., 1996), but with a different position of one inner Ni atom. In other respects, both fragments are similar. The `DyNi2Sn2' fragment is a hypothetical structure because of the absence of a compound with such a stoichiometry in the Dy–Ni–Sn system. However, this fragment resembles the deformed fragment in the YB2C2 structure (Bauer & Nowotny, 1971). Stacking of the `DyNi5Sn' and `DyNi2Sn2' fragments in the sequence I–II–I'–I–II–I' may produce the structure of Dy2Ni7Sn3 (Fig. 1b). The main feature of this compound is the method of stacking of the `DyNi5Sn' and `DyNi2Sn2' fragments and the fact that there is no possibility of sequentially building fragment I directly from the previous one (I') because the shared sides of these fragments are shifted and stack along the Dy plane.

By analyzing the Ni-enriched DyNi5Sn, Dy2Ni7Sn3 and DyNi3Sn2 (Skolozdra et al., 1988) ternary stannides of the Dy–Ni–Sn system, it was found that all of them were derived from the binary DyNi5 genetic prototype. Structure relations between these compounds are shown in Fig. 2. While advancing from binary DyNi5 to ternary DyNi5Sn, the coordination polyhedron of the Dy atom splits into two different polyhedra. One replicates that of the binary compound and the other is slightly deformed, but still very similar to that in the DyNi5 compound. Passing through DyNi5Sn to Dy2Ni7Sn3, the polyhedra for the Dy atoms become deformed, but the motif of the DyNi5 fragment can be easily recognized. The Dy polyhedra of the last stannide, DyNi3Sn2, are almost analogous to the initial Dy polyhedron in the DyNi5 compound.

Related literature top

For related literature, see: Bauer & Nowotny (1971); Romaka et al. (2007); Skolozdra et al. (1988, 1996); Wernick & Geller (1959).

Experimental top

A sample with nominal Dy18Ni55Sn27 composition was prepared by arc-melting the Dy (99.9 wt.%), Ni (99.99 wt.%) and Sn (99.999 wt.%) metals on a water-cooled copper hearth under a protective Ti-gettered argon atmosphere. The obtained alloy was annealed at 870 K for 720 h in an evacuated silica ampoule and finally quenched in cold water. A crystal of Dy2Ni7Sn3 suitable for single-crystal X-ray diffraction analysis was extracted directly from the annealed sample. The chemical composition of the crystal was determined via EDX analysis on a Carl Zeiss DSM 962 equipped with a Link EDX system, giving 18.2 (1)% Dy, 55.5 (3)% Ni, and 26.3 (2)% Sn. These values are very close to the composition calculated from the structure refinement.

Refinement top

The structure solution and refinement were also performed in the noncentrosymmetric space group C2ce but were less satisfactory and resulted in larger R indices and atomic displacement parameters.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a) The unit cell of the title compound, with displacement ellipsoids drawn at the 95% probability level and (b) the stacked fragments in the Dy2Ni7Sn3 structure. [Symmetry codes: (i) 0.5-x, 0.5-y, -z; (ii) -x, 0.5-y, -1/2+z; (v) 0.5-x, 1+y, 0.5-z; (ix) 0.5-x, 1-y, 1/2+z; (xii) x, 0.5-y, 1/2+z; (xiv) -1/2+x, 1/2+y, z; (xv) 0.5-x, 0.5-y, 1-z]
[Figure 2] Fig. 2. The structure relationships of the Dy polyhedra in the DyNi5–DyNi5Sn–Dy2Ni7Sn3–DyNi3Sn2 series.
didysprosium heptanickel tritin top
Crystal data top
Dy2Ni7Sn3F(000) = 3824
Mr = 1092.04Dx = 9.469 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 1232 reflections
a = 8.5964 (2) Åθ = 3.2–30.5°
b = 23.6415 (6) ŵ = 45.49 mm1
c = 7.5383 (2) ÅT = 298 K
V = 1532.02 (7) Å3Prism, silver
Z = 80.30 × 0.20 × 0.17 mm
Data collection top
Xcalibur Oxford Diffraction with a CCD detector
diffractometer
1232 independent reflections
Radiation source: fine-focus sealed X-ray tube, Xcalibur Oxford Diffraction with CCD detector1033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 30.5°, θmin = 3.2°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 1012
Tmin = 0.040, Tmax = 0.143k = 3327
6228 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.24Δρmax = 2.64 e Å3
1232 reflectionsΔρmin = 3.04 e Å3
65 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000240 (16)
Crystal data top
Dy2Ni7Sn3V = 1532.02 (7) Å3
Mr = 1092.04Z = 8
Orthorhombic, CmcaMo Kα radiation
a = 8.5964 (2) ŵ = 45.49 mm1
b = 23.6415 (6) ÅT = 298 K
c = 7.5383 (2) Å0.30 × 0.20 × 0.17 mm
Data collection top
Xcalibur Oxford Diffraction with a CCD detector
diffractometer
1232 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1033 reflections with I > 2σ(I)
Tmin = 0.040, Tmax = 0.143Rint = 0.034
6228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P]
where P = (Fo2 + 2Fc2)/3
S = 1.24Δρmax = 2.64 e Å3
1232 reflectionsΔρmin = 3.04 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.15159 (14)0.19856 (5)0.07809 (16)0.0110 (2)
Ni20.23855 (14)0.38402 (5)0.09232 (15)0.0100 (2)
Ni30.00000.04715 (8)0.3546 (2)0.0132 (3)
Ni40.00000.10151 (7)0.0567 (2)0.0103 (3)
Dy10.00000.19380 (3)0.42638 (8)0.00883 (14)
Ni50.00000.33455 (7)0.3102 (2)0.0113 (3)
Sn10.00000.43821 (4)0.20612 (12)0.00949 (18)
Sn20.25000.10649 (3)0.25000.00723 (17)
Sn30.25000.28218 (4)0.25000.00952 (18)
Dy20.20681 (6)0.00000.00000.00830 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0111 (5)0.0111 (5)0.0107 (5)0.0010 (4)0.0003 (4)0.0010 (4)
Ni20.0104 (5)0.0098 (5)0.0099 (5)0.0023 (4)0.0021 (4)0.0007 (4)
Ni30.0101 (7)0.0122 (8)0.0173 (8)0.0000.0000.0043 (6)
Ni40.0073 (7)0.0123 (8)0.0112 (8)0.0000.0000.0010 (6)
Dy10.0065 (2)0.0099 (3)0.0100 (3)0.0000.0000.0003 (2)
Ni50.0087 (7)0.0120 (8)0.0134 (8)0.0000.0000.0001 (6)
Sn10.0075 (4)0.0090 (4)0.0119 (4)0.0000.0000.0000 (3)
Sn20.0073 (3)0.0068 (4)0.0076 (4)0.0000.0007 (3)0.000
Sn30.0101 (4)0.0071 (4)0.0114 (4)0.0000.0004 (3)0.000
Dy20.0074 (2)0.0062 (2)0.0114 (3)0.0000.0000.0005 (2)
Geometric parameters (Å, º) top
Ni1—Sn32.5107 (14)Dy1—Sn23.2630 (7)
Ni1—Ni2i2.5207 (17)Dy1—Sn33.2791 (7)
Ni1—Ni5ii2.5277 (19)Ni5—Ni4vii2.396 (2)
Ni1—Ni1iii2.606 (2)Ni5—Sn3viii2.5213 (10)
Ni1—Ni42.6435 (19)Ni5—Sn32.5213 (10)
Ni1—Sn3i2.6533 (12)Ni5—Ni1xii2.5277 (19)
Ni1—Sn22.6707 (14)Ni5—Ni1vii2.5277 (19)
Ni1—Dy12.9332 (13)Ni5—Sn12.5733 (19)
Ni1—Dy1iv2.9974 (12)Ni5—Ni2v2.6381 (15)
Ni1—Dy1ii3.0792 (13)Ni5—Ni2viii2.6381 (15)
Ni2—Ni2v2.385 (2)Ni5—Ni2iii2.8758 (17)
Ni2—Ni1i2.5207 (17)Ni5—Dy1ii2.9698 (19)
Ni2—Ni4i2.5360 (14)Sn1—Ni2iii2.5656 (13)
Ni2—Sn12.5656 (13)Sn1—Ni3xiii2.616 (2)
Ni2—Sn2i2.5921 (12)Sn1—Ni3ii2.672 (2)
Ni2—Ni5iv2.6381 (15)Sn1—Ni4vii2.8050 (19)
Ni2—Sn32.6868 (13)Sn1—Ni2v3.0002 (14)
Ni2—Dy2i2.8676 (12)Sn1—Ni2viii3.0002 (14)
Ni2—Ni52.8758 (17)Sn1—Dy2xiii3.1942 (8)
Ni2—Sn1iv3.0002 (13)Sn1—Dy2vii3.1942 (8)
Ni2—Dy1ii3.0258 (13)Sn1—Dy2xiv3.3016 (7)
Ni3—Ni42.587 (2)Sn1—Dy2i3.3016 (7)
Ni3—Sn1vi2.616 (2)Sn2—Ni2xii2.5921 (12)
Ni3—Sn1vii2.672 (2)Sn2—Ni2i2.5921 (12)
Ni3—Sn22.6849 (11)Sn2—Ni4iv2.5990 (10)
Ni3—Sn2viii2.6849 (11)Sn2—Ni1v2.6707 (14)
Ni3—Dy2viii2.9657 (10)Sn2—Ni3iv2.6849 (11)
Ni3—Dy2ix2.9657 (10)Sn2—Dy23.1667 (6)
Ni3—Dy2x3.3986 (16)Sn2—Dy2ix3.1667 (6)
Ni3—Dy23.3986 (16)Sn2—Dy1iv3.2630 (7)
Ni4—Ni5ii2.396 (2)Sn3—Ni1v2.5107 (14)
Ni4—Ni2xi2.5360 (14)Sn3—Ni5iv2.5213 (10)
Ni4—Ni2i2.5360 (14)Sn3—Ni1xii2.6533 (12)
Ni4—Sn22.5990 (10)Sn3—Ni1i2.6533 (12)
Ni4—Sn2viii2.5990 (10)Sn3—Ni2v2.6868 (13)
Ni4—Ni1iii2.6435 (19)Sn3—Dy1iv3.2791 (7)
Ni4—Sn1ii2.8050 (19)Sn3—Dy1xv3.3004 (5)
Ni4—Dy2x3.0171 (14)Sn3—Dy1ii3.3004 (5)
Ni4—Dy23.0171 (14)Dy2—Ni2i2.8676 (12)
Dy1—Ni1iii2.9332 (13)Dy2—Ni2xvi2.8676 (12)
Dy1—Ni5vii2.9698 (19)Dy2—Ni3iv2.9657 (10)
Dy1—Ni1viii2.9974 (12)Dy2—Ni3xvii2.9657 (10)
Dy1—Ni1v2.9974 (12)Dy2—Ni4x3.0171 (14)
Dy1—Ni2vii3.0258 (13)Dy2—Sn2xvii3.1667 (6)
Dy1—Ni2xii3.0258 (13)Dy2—Sn1ii3.1942 (8)
Dy1—Ni1xii3.0792 (13)Dy2—Sn1vi3.1942 (8)
Dy1—Ni1vii3.0792 (13)Dy2—Sn1xviii3.3016 (7)
Dy1—Sn2viii3.2630 (7)Dy2—Sn1i3.3016 (7)
Sn3—Ni1—Ni2i138.30 (6)Sn3viii—Ni5—Ni2134.81 (7)
Sn3—Ni1—Ni5ii146.09 (7)Sn3—Ni5—Ni259.28 (3)
Ni2i—Ni1—Ni5ii63.01 (5)Ni1xii—Ni5—Ni2102.39 (4)
Sn3—Ni1—Ni1iii109.69 (3)Ni1vii—Ni5—Ni2161.77 (7)
Ni2i—Ni1—Ni1iii112.00 (4)Sn1—Ni5—Ni255.84 (4)
Ni5ii—Ni1—Ni1iii58.97 (3)Ni2v—Ni5—Ni251.04 (5)
Sn3—Ni1—Ni4151.76 (6)Ni2viii—Ni5—Ni2125.89 (8)
Ni2i—Ni1—Ni458.76 (4)Ni2iii—Ni5—Ni290.97 (7)
Ni5ii—Ni1—Ni455.14 (6)Ni4vii—Ni5—Dy1ii153.92 (8)
Ni1iii—Ni1—Ni460.47 (3)Sn3viii—Ni5—Dy1ii73.38 (4)
Sn3—Ni1—Sn3i103.80 (4)Sn3—Ni5—Dy1ii73.38 (4)
Ni2i—Ni1—Sn3i62.51 (4)Ni1xii—Ni5—Dy1ii135.11 (6)
Ni5ii—Ni1—Sn3i58.18 (4)Ni1vii—Ni5—Dy1ii135.11 (6)
Ni1iii—Ni1—Sn3i108.59 (3)Sn1—Ni5—Dy1ii85.29 (5)
Ni4—Ni1—Sn3i104.44 (6)Ni2v—Ni5—Dy1ii111.81 (5)
Sn3—Ni1—Sn2106.53 (5)Ni2viii—Ni5—Dy1ii111.81 (5)
Ni2i—Ni1—Sn259.83 (4)Ni2iii—Ni5—Dy1ii62.32 (4)
Ni5ii—Ni1—Sn2107.38 (6)Ni2—Ni5—Dy1ii62.32 (4)
Ni1iii—Ni1—Sn2108.47 (3)Ni4vii—Ni5—Dy1114.37 (7)
Ni4—Ni1—Sn258.56 (4)Sn3viii—Ni5—Dy164.60 (4)
Sn3i—Ni1—Sn2119.41 (5)Sn3—Ni5—Dy164.60 (4)
Sn3—Ni1—Dy173.61 (3)Ni1xii—Ni5—Dy159.81 (4)
Ni2i—Ni1—Dy1126.37 (5)Ni1vii—Ni5—Dy159.81 (4)
Ni5ii—Ni1—Dy1118.31 (5)Sn1—Ni5—Dy1177.00 (7)
Ni1iii—Ni1—Dy163.62 (2)Ni2v—Ni5—Dy1110.97 (5)
Ni4—Ni1—Dy178.59 (5)Ni2viii—Ni5—Dy1110.97 (5)
Sn3i—Ni1—Dy1169.29 (5)Ni2iii—Ni5—Dy1122.60 (5)
Sn2—Ni1—Dy171.04 (3)Ni2—Ni5—Dy1122.60 (5)
Sn3—Ni1—Dy1iv72.46 (3)Dy1ii—Ni5—Dy191.71 (5)
Ni2i—Ni1—Dy1iv65.85 (4)Ni2iii—Sn1—Ni2106.13 (6)
Ni5ii—Ni1—Dy1iv119.64 (5)Ni2iii—Sn1—Ni568.06 (4)
Ni1iii—Ni1—Dy1iv177.76 (3)Ni2—Sn1—Ni568.06 (4)
Ni4—Ni1—Dy1iv117.34 (5)Ni2iii—Sn1—Ni3xiii115.66 (4)
Sn3i—Ni1—Dy1iv71.18 (3)Ni2—Sn1—Ni3xiii115.66 (4)
Sn2—Ni1—Dy1iv70.02 (3)Ni5—Sn1—Ni3xiii172.34 (7)
Dy1—Ni1—Dy1iv116.91 (4)Ni2iii—Sn1—Ni3ii74.52 (4)
Sn3—Ni1—Dy1ii71.55 (3)Ni2—Sn1—Ni3ii74.52 (4)
Ni2i—Ni1—Dy1ii127.54 (5)Ni5—Sn1—Ni3ii115.19 (6)
Ni5ii—Ni1—Dy1ii74.99 (5)Ni3xiii—Sn1—Ni3ii72.48 (7)
Ni1iii—Ni1—Dy1ii64.96 (2)Ni2iii—Sn1—Ni4vii98.50 (4)
Ni4—Ni1—Dy1ii119.08 (5)Ni2—Sn1—Ni4vii98.50 (4)
Sn3i—Ni1—Dy1ii69.32 (3)Ni5—Sn1—Ni4vii52.69 (6)
Sn2—Ni1—Dy1ii171.04 (5)Ni3xiii—Sn1—Ni4vii119.64 (6)
Dy1—Ni1—Dy1ii100.14 (4)Ni3ii—Sn1—Ni4vii167.88 (6)
Dy1iv—Ni1—Dy1ii116.72 (4)Ni2iii—Sn1—Ni2v123.70 (5)
Ni2v—Ni2—Ni1i118.49 (5)Ni2—Sn1—Ni2v50.01 (4)
Ni2v—Ni2—Ni4i111.62 (8)Ni5—Sn1—Ni2v55.87 (3)
Ni1i—Ni2—Ni4i63.04 (5)Ni3xiii—Sn1—Ni2v120.60 (4)
Ni2v—Ni2—Sn174.50 (5)Ni3ii—Sn1—Ni2v123.88 (3)
Ni1i—Ni2—Sn1148.94 (6)Ni4vii—Sn1—Ni2v51.67 (3)
Ni4i—Ni2—Sn1142.11 (7)Ni2iii—Sn1—Ni2viii50.01 (4)
Ni2v—Ni2—Sn2i171.49 (7)Ni2—Sn1—Ni2viii123.70 (5)
Ni1i—Ni2—Sn2i62.96 (4)Ni5—Sn1—Ni2viii55.87 (3)
Ni4i—Ni2—Sn2i60.89 (4)Ni3xiii—Sn1—Ni2viii120.60 (4)
Sn1—Ni2—Sn2i108.66 (5)Ni3ii—Sn1—Ni2viii123.88 (3)
Ni2v—Ni2—Ni5iv69.64 (6)Ni4vii—Sn1—Ni2viii51.67 (3)
Ni1i—Ni2—Ni5iv58.63 (5)Ni2v—Sn1—Ni2viii97.03 (5)
Ni4i—Ni2—Ni5iv55.12 (5)Ni2iii—Sn1—Dy2xiii154.84 (4)
Sn1—Ni2—Ni5iv144.02 (6)Ni2—Sn1—Dy2xiii90.88 (3)
Sn2i—Ni2—Ni5iv106.46 (6)Ni5—Sn1—Dy2xiii102.95 (4)
Ni2v—Ni2—Sn363.65 (3)Ni3xiii—Sn1—Dy2xiii70.80 (4)
Ni1i—Ni2—Sn361.16 (4)Ni3ii—Sn1—Dy2xiii128.94 (4)
Ni4i—Ni2—Sn3106.52 (6)Ni4vii—Sn1—Dy2xiii59.97 (3)
Sn1—Ni2—Sn3109.20 (5)Ni2v—Sn1—Dy2xiii55.05 (3)
Sn2i—Ni2—Sn3121.10 (5)Ni2viii—Sn1—Dy2xiii105.13 (3)
Ni5iv—Ni2—Sn356.51 (4)Ni2iii—Sn1—Dy2vii90.88 (3)
Ni2v—Ni2—Dy2i103.20 (3)Ni2—Sn1—Dy2vii154.84 (4)
Ni1i—Ni2—Dy2i123.75 (5)Ni5—Sn1—Dy2vii102.95 (4)
Ni4i—Ni2—Dy2i67.56 (5)Ni3xiii—Sn1—Dy2vii70.80 (4)
Sn1—Ni2—Dy2i74.61 (4)Ni3ii—Sn1—Dy2vii128.94 (4)
Sn2i—Ni2—Dy2i70.70 (3)Ni4vii—Sn1—Dy2vii59.97 (3)
Ni5iv—Ni2—Dy2i110.61 (5)Ni2v—Sn1—Dy2vii105.13 (3)
Sn3—Ni2—Dy2i163.37 (5)Ni2viii—Sn1—Dy2vii55.05 (3)
Ni2v—Ni2—Ni559.32 (5)Dy2xiii—Sn1—Dy2vii67.64 (2)
Ni1i—Ni2—Ni5104.07 (6)Ni2iii—Sn1—Dy2xiv56.87 (3)
Ni4i—Ni2—Ni5160.03 (7)Ni2—Sn1—Dy2xiv132.36 (4)
Sn1—Ni2—Ni556.10 (4)Ni5—Sn1—Dy2xiv124.39 (2)
Sn2i—Ni2—Ni5129.11 (6)Ni3xiii—Sn1—Dy2xiv58.80 (2)
Ni5iv—Ni2—Ni5105.55 (6)Ni3ii—Sn1—Dy2xiv58.40 (2)
Sn3—Ni2—Ni553.77 (4)Ni4vii—Sn1—Dy2xiv126.27 (2)
Dy2i—Ni2—Ni5130.11 (5)Ni2v—Sn1—Dy2xiv177.62 (4)
Ni2v—Ni2—Sn1iv55.49 (5)Ni2viii—Sn1—Dy2xiv81.69 (2)
Ni1i—Ni2—Sn1iv107.95 (5)Dy2xiii—Sn1—Dy2xiv123.30 (3)
Ni4i—Ni2—Sn1iv60.19 (5)Dy2vii—Sn1—Dy2xiv72.492 (11)
Sn1—Ni2—Sn1iv102.49 (4)Ni2iii—Sn1—Dy2i132.36 (4)
Sn2i—Ni2—Sn1iv116.03 (5)Ni2—Sn1—Dy2i56.87 (3)
Ni5iv—Ni2—Sn1iv53.84 (4)Ni5—Sn1—Dy2i124.39 (2)
Sn3—Ni2—Sn1iv97.54 (4)Ni3xiii—Sn1—Dy2i58.80 (2)
Dy2i—Ni2—Sn1iv65.92 (3)Ni3ii—Sn1—Dy2i58.40 (2)
Ni5—Ni2—Sn1iv114.75 (5)Ni4vii—Sn1—Dy2i126.27 (2)
Ni2v—Ni2—Dy1ii117.90 (5)Ni2v—Sn1—Dy2i81.69 (2)
Ni1i—Ni2—Dy1ii64.68 (4)Ni2viii—Sn1—Dy2i177.62 (4)
Ni4i—Ni2—Dy1ii119.97 (6)Dy2xiii—Sn1—Dy2i72.492 (11)
Sn1—Ni2—Dy1ii84.27 (4)Dy2vii—Sn1—Dy2i123.29 (3)
Sn2i—Ni2—Dy1ii70.53 (3)Dy2xiv—Sn1—Dy2i99.53 (3)
Ni5iv—Ni2—Dy1ii115.02 (5)Ni2xii—Sn2—Ni2i170.07 (6)
Sn3—Ni2—Dy1ii70.30 (3)Ni2xii—Sn2—Ni4122.04 (4)
Dy2i—Ni2—Dy1ii126.31 (4)Ni2i—Sn2—Ni458.49 (4)
Ni5—Ni2—Dy1ii60.36 (4)Ni2xii—Sn2—Ni4iv58.49 (4)
Sn1iv—Ni2—Dy1ii167.62 (5)Ni2i—Sn2—Ni4iv122.04 (4)
Ni4—Ni3—Sn1vi109.70 (8)Ni4—Sn2—Ni4iv174.81 (8)
Ni4—Ni3—Sn1vii142.78 (9)Ni2xii—Sn2—Ni1v57.21 (4)
Sn1vi—Ni3—Sn1vii107.52 (7)Ni2i—Sn2—Ni1v113.61 (4)
Ni4—Ni3—Sn259.04 (4)Ni4—Sn2—Ni1v124.81 (5)
Sn1vi—Ni3—Sn2117.58 (5)Ni4iv—Sn2—Ni1v60.20 (5)
Sn1vii—Ni3—Sn2102.92 (5)Ni2xii—Sn2—Ni1113.61 (4)
Ni4—Ni3—Sn2viii59.04 (4)Ni2i—Sn2—Ni157.21 (4)
Sn1vi—Ni3—Sn2viii117.58 (5)Ni4—Sn2—Ni160.20 (5)
Sn1vii—Ni3—Sn2viii102.92 (5)Ni4iv—Sn2—Ni1124.81 (5)
Sn2—Ni3—Sn2viii106.34 (6)Ni1v—Sn2—Ni170.83 (6)
Ni4—Ni3—Dy2viii120.49 (3)Ni2xii—Sn2—Ni373.88 (5)
Sn1vi—Ni3—Dy2viii72.22 (4)Ni2i—Sn2—Ni3111.60 (5)
Sn1vii—Ni3—Dy2viii71.48 (4)Ni4—Sn2—Ni358.61 (5)
Sn2—Ni3—Dy2viii170.12 (7)Ni4iv—Sn2—Ni3118.26 (5)
Sn2viii—Ni3—Dy2viii67.959 (13)Ni1v—Sn2—Ni3122.47 (5)
Ni4—Ni3—Dy2ix120.49 (3)Ni1—Sn2—Ni3108.35 (4)
Sn1vi—Ni3—Dy2ix72.22 (4)Ni2xii—Sn2—Ni3iv111.60 (5)
Sn1vii—Ni3—Dy2ix71.48 (4)Ni2i—Sn2—Ni3iv73.88 (5)
Sn2—Ni3—Dy2ix67.959 (13)Ni4—Sn2—Ni3iv118.26 (5)
Sn2viii—Ni3—Dy2ix170.12 (7)Ni4iv—Sn2—Ni3iv58.61 (5)
Dy2viii—Ni3—Dy2ix116.39 (6)Ni1v—Sn2—Ni3iv108.35 (4)
Ni4—Ni3—Dy2x58.68 (5)Ni1—Sn2—Ni3iv122.47 (5)
Sn1vi—Ni3—Dy2x62.57 (4)Ni3—Sn2—Ni3iv117.00 (7)
Sn1vii—Ni3—Dy2x145.33 (3)Ni2xii—Sn2—Dy2131.06 (4)
Sn2—Ni3—Dy2x111.04 (6)Ni2i—Sn2—Dy258.72 (3)
Sn2viii—Ni3—Dy2x61.42 (3)Ni4—Sn2—Dy262.19 (4)
Dy2viii—Ni3—Dy2x73.91 (2)Ni4iv—Sn2—Dy2113.24 (4)
Dy2ix—Ni3—Dy2x127.73 (6)Ni1v—Sn2—Dy2166.87 (3)
Ni4—Ni3—Dy258.68 (5)Ni1—Sn2—Dy2108.79 (3)
Sn1vi—Ni3—Dy262.57 (4)Ni3—Sn2—Dy270.46 (4)
Sn1vii—Ni3—Dy2145.33 (3)Ni3iv—Sn2—Dy260.24 (3)
Sn2—Ni3—Dy261.42 (3)Ni2xii—Sn2—Dy2ix58.72 (3)
Sn2viii—Ni3—Dy2111.04 (6)Ni2i—Sn2—Dy2ix131.06 (4)
Dy2viii—Ni3—Dy2127.73 (6)Ni4—Sn2—Dy2ix113.24 (4)
Dy2ix—Ni3—Dy273.91 (2)Ni4iv—Sn2—Dy2ix62.19 (4)
Dy2x—Ni3—Dy263.08 (4)Ni1v—Sn2—Dy2ix108.79 (3)
Ni5ii—Ni4—Ni2xi64.60 (4)Ni1—Sn2—Dy2ix166.87 (3)
Ni5ii—Ni4—Ni2i64.60 (4)Ni3—Sn2—Dy2ix60.24 (3)
Ni2xi—Ni4—Ni2i124.82 (9)Ni3iv—Sn2—Dy2ix70.46 (4)
Ni5ii—Ni4—Ni3170.66 (10)Dy2—Sn2—Dy2ix74.683 (18)
Ni2xi—Ni4—Ni3116.84 (4)Ni2xii—Sn2—Dy1iv112.08 (3)
Ni2i—Ni4—Ni3116.84 (4)Ni2i—Sn2—Dy1iv60.96 (3)
Ni5ii—Ni4—Sn2113.97 (5)Ni4—Sn2—Dy1iv110.17 (4)
Ni2xi—Ni4—Sn2167.19 (8)Ni4iv—Sn2—Dy1iv73.29 (4)
Ni2i—Ni4—Sn260.62 (3)Ni1v—Sn2—Dy1iv58.23 (3)
Ni3—Ni4—Sn262.35 (4)Ni1—Sn2—Dy1iv59.69 (3)
Ni5ii—Ni4—Sn2viii113.97 (5)Ni3—Sn2—Dy1iv167.80 (4)
Ni2xi—Ni4—Sn2viii60.62 (3)Ni3iv—Sn2—Dy1iv71.56 (4)
Ni2i—Ni4—Sn2viii167.19 (8)Dy2—Sn2—Dy1iv109.734 (13)
Ni3—Ni4—Sn2viii62.35 (4)Dy2ix—Sn2—Dy1iv131.930 (13)
Sn2—Ni4—Sn2viii111.56 (6)Ni2xii—Sn2—Dy160.96 (3)
Ni5ii—Ni4—Ni159.97 (6)Ni2i—Sn2—Dy1112.08 (3)
Ni2xi—Ni4—Ni1110.29 (7)Ni4—Sn2—Dy173.29 (4)
Ni2i—Ni4—Ni158.20 (4)Ni4iv—Sn2—Dy1110.17 (4)
Ni3—Ni4—Ni1112.22 (7)Ni1v—Sn2—Dy159.69 (3)
Sn2—Ni4—Ni161.24 (4)Ni1—Sn2—Dy158.23 (3)
Sn2viii—Ni4—Ni1109.52 (7)Ni3—Sn2—Dy171.56 (4)
Ni5ii—Ni4—Ni1iii59.97 (6)Ni3iv—Sn2—Dy1167.80 (4)
Ni2xi—Ni4—Ni1iii58.20 (4)Dy2—Sn2—Dy1131.930 (13)
Ni2i—Ni4—Ni1iii110.29 (7)Dy2ix—Sn2—Dy1109.734 (13)
Ni3—Ni4—Ni1iii112.22 (7)Dy1iv—Sn2—Dy1101.52 (3)
Sn2—Ni4—Ni1iii109.52 (7)Ni1—Sn3—Ni1v76.11 (6)
Sn2viii—Ni4—Ni1iii61.24 (4)Ni1—Sn3—Ni5iv125.52 (5)
Ni1—Ni4—Ni1iii59.07 (6)Ni1v—Sn3—Ni5iv101.08 (4)
Ni5ii—Ni4—Sn1ii58.68 (6)Ni1—Sn3—Ni5101.08 (4)
Ni2xi—Ni4—Sn1ii68.14 (5)Ni1v—Sn3—Ni5125.52 (5)
Ni2i—Ni4—Sn1ii68.14 (5)Ni5iv—Sn3—Ni5121.19 (8)
Ni3—Ni4—Sn1ii130.66 (8)Ni1—Sn3—Ni1xii120.58 (4)
Sn2—Ni4—Sn1ii122.91 (3)Ni1v—Sn3—Ni1xii76.20 (4)
Sn2viii—Ni4—Sn1ii122.91 (3)Ni5iv—Sn3—Ni1xii110.81 (5)
Ni1—Ni4—Sn1ii110.36 (6)Ni5—Sn3—Ni1xii58.42 (5)
Ni1iii—Ni4—Sn1ii110.36 (6)Ni1—Sn3—Ni1i76.20 (4)
Ni5ii—Ni4—Dy2x113.07 (6)Ni1v—Sn3—Ni1i120.58 (4)
Ni2xi—Ni4—Dy2x61.46 (3)Ni5iv—Sn3—Ni1i58.42 (5)
Ni2i—Ni4—Dy2x124.52 (7)Ni5—Sn3—Ni1i110.81 (5)
Ni3—Ni4—Dy2x74.21 (5)Ni1xii—Sn3—Ni1i160.24 (6)
Sn2—Ni4—Dy2x127.07 (6)Ni1—Sn3—Ni2v161.13 (4)
Sn2viii—Ni4—Dy2x68.18 (3)Ni1v—Sn3—Ni2v117.70 (4)
Ni1—Ni4—Dy2x171.68 (6)Ni5iv—Sn3—Ni2v66.95 (5)
Ni1iii—Ni4—Dy2x114.11 (3)Ni5—Sn3—Ni2v60.77 (5)
Sn1ii—Ni4—Dy2x66.43 (4)Ni1xii—Sn3—Ni2v56.33 (4)
Ni5ii—Ni4—Dy2113.07 (6)Ni1i—Sn3—Ni2v104.30 (4)
Ni2xi—Ni4—Dy2124.52 (7)Ni1—Sn3—Ni2117.70 (4)
Ni2i—Ni4—Dy261.46 (3)Ni1v—Sn3—Ni2161.13 (4)
Ni3—Ni4—Dy274.21 (5)Ni5iv—Sn3—Ni260.77 (5)
Sn2—Ni4—Dy268.18 (3)Ni5—Sn3—Ni266.95 (5)
Sn2viii—Ni4—Dy2127.07 (6)Ni1xii—Sn3—Ni2104.30 (4)
Ni1—Ni4—Dy2114.11 (3)Ni1i—Sn3—Ni256.33 (4)
Ni1iii—Ni4—Dy2171.68 (6)Ni2v—Sn3—Ni252.71 (5)
Sn1ii—Ni4—Dy266.43 (4)Ni1—Sn3—Dy159.11 (3)
Dy2x—Ni4—Dy272.21 (4)Ni1v—Sn3—Dy160.65 (3)
Ni1iii—Dy1—Ni152.75 (5)Ni5iv—Sn3—Dy1160.82 (4)
Ni1iii—Dy1—Ni5vii151.72 (3)Ni5—Sn3—Dy171.41 (4)
Ni1—Dy1—Ni5vii151.72 (3)Ni1xii—Sn3—Dy161.47 (3)
Ni1iii—Dy1—Ni1viii62.91 (4)Ni1i—Sn3—Dy1134.13 (3)
Ni1—Dy1—Ni1viii115.62 (3)Ni2v—Sn3—Dy1114.56 (3)
Ni5vii—Dy1—Ni1viii91.11 (3)Ni2—Sn3—Dy1136.58 (3)
Ni1iii—Dy1—Ni1v115.62 (3)Ni1—Sn3—Dy1iv60.65 (3)
Ni1—Dy1—Ni1v62.91 (4)Ni1v—Sn3—Dy1iv59.11 (3)
Ni5vii—Dy1—Ni1v91.11 (3)Ni5iv—Sn3—Dy1iv71.41 (4)
Ni1viii—Dy1—Ni1v175.51 (5)Ni5—Sn3—Dy1iv160.82 (4)
Ni1iii—Dy1—Ni2vii95.30 (3)Ni1xii—Sn3—Dy1iv134.13 (3)
Ni1—Dy1—Ni2vii133.98 (4)Ni1i—Sn3—Dy1iv61.47 (3)
Ni5vii—Dy1—Ni2vii57.32 (3)Ni2v—Sn3—Dy1iv136.58 (3)
Ni1viii—Dy1—Ni2vii49.48 (3)Ni2—Sn3—Dy1iv114.56 (3)
Ni1v—Dy1—Ni2vii134.80 (4)Dy1—Sn3—Dy1iv100.83 (3)
Ni1iii—Dy1—Ni2xii133.98 (4)Ni1—Sn3—Dy1xv137.42 (4)
Ni1—Dy1—Ni2xii95.30 (3)Ni1v—Sn3—Dy1xv62.26 (3)
Ni5vii—Dy1—Ni2xii57.32 (3)Ni5iv—Sn3—Dy1xv59.57 (4)
Ni1viii—Dy1—Ni2xii134.80 (4)Ni5—Sn3—Dy1xv109.73 (4)
Ni1v—Dy1—Ni2xii49.48 (3)Ni1xii—Sn3—Dy1xv59.28 (3)
Ni2vii—Dy1—Ni2xii85.33 (5)Ni1i—Sn3—Dy1xv116.86 (3)
Ni1iii—Dy1—Ni1xii119.26 (3)Ni2v—Sn3—Dy1xv59.67 (3)
Ni1—Dy1—Ni1xii96.47 (3)Ni2—Sn3—Dy1xv101.35 (3)
Ni5vii—Dy1—Ni1xii79.90 (4)Dy1—Sn3—Dy1xv103.690 (11)
Ni1viii—Dy1—Ni1xii113.33 (3)Dy1iv—Sn3—Dy1xv89.000 (12)
Ni1v—Dy1—Ni1xii63.28 (4)Ni1—Sn3—Dy1ii62.26 (3)
Ni2vii—Dy1—Ni1xii129.48 (4)Ni1v—Sn3—Dy1ii137.42 (4)
Ni2xii—Dy1—Ni1xii93.56 (3)Ni5iv—Sn3—Dy1ii109.73 (4)
Ni1iii—Dy1—Ni1vii96.47 (3)Ni5—Sn3—Dy1ii59.57 (4)
Ni1—Dy1—Ni1vii119.26 (3)Ni1xii—Sn3—Dy1ii116.86 (3)
Ni5vii—Dy1—Ni1vii79.90 (4)Ni1i—Sn3—Dy1ii59.28 (3)
Ni1viii—Dy1—Ni1vii63.28 (4)Ni2v—Sn3—Dy1ii101.35 (3)
Ni1v—Dy1—Ni1vii113.33 (3)Ni2—Sn3—Dy1ii59.67 (3)
Ni2vii—Dy1—Ni1vii93.56 (3)Dy1—Sn3—Dy1ii89.000 (12)
Ni2xii—Dy1—Ni1vii129.48 (4)Dy1iv—Sn3—Dy1ii103.690 (11)
Ni1xii—Dy1—Ni1vii50.07 (5)Dy1xv—Sn3—Dy1ii160.19 (4)
Ni1iii—Dy1—Sn2viii50.72 (3)Ni2i—Dy2—Ni2xvi161.15 (5)
Ni1—Dy1—Sn2viii87.26 (3)Ni2i—Dy2—Ni3iv65.86 (4)
Ni5vii—Dy1—Sn2viii104.73 (3)Ni2xvi—Dy2—Ni3iv97.50 (4)
Ni1viii—Dy1—Sn2viii50.28 (3)Ni2i—Dy2—Ni3xvii97.50 (4)
Ni1v—Dy1—Sn2viii132.63 (3)Ni2xvi—Dy2—Ni3xvii65.86 (4)
Ni2vii—Dy1—Sn2viii48.50 (2)Ni3iv—Dy2—Ni3xvii63.61 (6)
Ni2xii—Dy1—Sn2viii103.31 (3)Ni2i—Dy2—Ni4x145.35 (4)
Ni1xii—Dy1—Sn2viii162.34 (3)Ni2xvi—Dy2—Ni4x50.98 (3)
Ni1vii—Dy1—Sn2viii113.29 (2)Ni3iv—Dy2—Ni4x148.44 (4)
Ni1iii—Dy1—Sn287.26 (3)Ni3xvii—Dy2—Ni4x98.59 (4)
Ni1—Dy1—Sn250.72 (3)Ni2i—Dy2—Ni450.98 (3)
Ni5vii—Dy1—Sn2104.73 (3)Ni2xvi—Dy2—Ni4145.35 (4)
Ni1viii—Dy1—Sn2132.63 (3)Ni3iv—Dy2—Ni498.59 (4)
Ni1v—Dy1—Sn250.28 (3)Ni3xvii—Dy2—Ni4148.44 (4)
Ni2vii—Dy1—Sn2103.31 (3)Ni4x—Dy2—Ni4107.79 (4)
Ni2xii—Dy1—Sn248.50 (2)Ni2i—Dy2—Sn250.58 (2)
Ni1xii—Dy1—Sn2113.29 (2)Ni2xvi—Dy2—Sn2126.62 (3)
Ni1vii—Dy1—Sn2162.34 (3)Ni3iv—Dy2—Sn251.80 (3)
Sn2viii—Dy1—Sn282.39 (2)Ni3xvii—Dy2—Sn2114.78 (3)
Ni1iii—Dy1—Sn384.48 (3)Ni4x—Dy2—Sn2141.80 (3)
Ni1—Dy1—Sn347.27 (3)Ni4—Dy2—Sn249.63 (3)
Ni5vii—Dy1—Sn3122.60 (3)Ni2i—Dy2—Sn2xvii126.62 (3)
Ni1viii—Dy1—Sn3128.79 (3)Ni2xvi—Dy2—Sn2xvii50.58 (2)
Ni1v—Dy1—Sn346.89 (2)Ni3iv—Dy2—Sn2xvii114.78 (3)
Ni2vii—Dy1—Sn3177.85 (3)Ni3xvii—Dy2—Sn2xvii51.80 (3)
Ni2xii—Dy1—Sn396.37 (2)Ni4x—Dy2—Sn2xvii49.63 (3)
Ni1xii—Dy1—Sn349.20 (3)Ni4—Dy2—Sn2xvii141.80 (3)
Ni1vii—Dy1—Sn384.34 (3)Sn2—Dy2—Sn2xvii166.53 (2)
Sn2viii—Dy1—Sn3132.03 (2)Ni2i—Dy2—Sn1ii59.04 (3)
Sn2—Dy1—Sn378.826 (17)Ni2xvi—Dy2—Sn1ii134.17 (3)
Ni4vii—Ni5—Sn3viii116.70 (4)Ni3iv—Dy2—Sn1ii123.87 (4)
Ni4vii—Ni5—Sn3116.70 (4)Ni3xvii—Dy2—Sn1ii112.87 (4)
Sn3viii—Ni5—Sn3116.95 (7)Ni4x—Dy2—Sn1ii86.42 (3)
Ni4vii—Ni5—Ni1xii64.88 (6)Ni4—Dy2—Sn1ii53.60 (3)
Sn3viii—Ni5—Ni1xii115.54 (7)Sn2—Dy2—Sn1ii96.570 (18)
Sn3—Ni5—Ni1xii63.40 (4)Sn2xvii—Dy2—Sn1ii90.922 (17)
Ni4vii—Ni5—Ni1vii64.88 (6)Ni2i—Dy2—Sn1vi134.17 (3)
Sn3viii—Ni5—Ni1vii63.40 (4)Ni2xvi—Dy2—Sn1vi59.04 (3)
Sn3—Ni5—Ni1vii115.54 (7)Ni3iv—Dy2—Sn1vi112.87 (4)
Ni1xii—Ni5—Ni1vii62.06 (7)Ni3xvii—Dy2—Sn1vi123.87 (4)
Ni4vii—Ni5—Sn168.63 (6)Ni4x—Dy2—Sn1vi53.60 (3)
Sn3viii—Ni5—Sn1114.38 (4)Ni4—Dy2—Sn1vi86.42 (3)
Sn3—Ni5—Sn1114.38 (4)Sn2—Dy2—Sn1vi90.922 (17)
Ni1xii—Ni5—Sn1122.58 (7)Sn2xvii—Dy2—Sn1vi96.570 (18)
Ni1vii—Ni5—Sn1122.58 (7)Sn1ii—Dy2—Sn1vi112.36 (2)
Ni4vii—Ni5—Ni2v60.27 (4)Ni2i—Dy2—Sn1xviii114.35 (3)
Sn3viii—Ni5—Ni2v173.72 (8)Ni2xvi—Dy2—Sn1xviii48.52 (3)
Sn3—Ni5—Ni2v62.72 (3)Ni3iv—Dy2—Sn1xviii48.98 (4)
Ni1xii—Ni5—Ni2v58.37 (4)Ni3xvii—Dy2—Sn1xviii50.12 (4)
Ni1vii—Ni5—Ni2v110.72 (7)Ni4x—Dy2—Sn1xviii99.47 (3)
Sn1—Ni5—Ni2v70.29 (5)Ni4—Dy2—Sn1xviii137.31 (3)
Ni4vii—Ni5—Ni2viii60.27 (4)Sn2—Dy2—Sn1xviii88.980 (19)
Sn3viii—Ni5—Ni2viii62.72 (3)Sn2xvii—Dy2—Sn1xviii80.724 (18)
Sn3—Ni5—Ni2viii173.72 (8)Sn1ii—Dy2—Sn1xviii162.49 (3)
Ni1xii—Ni5—Ni2viii110.72 (7)Sn1vi—Dy2—Sn1xviii84.038 (13)
Ni1vii—Ni5—Ni2viii58.37 (4)Ni2i—Dy2—Sn1i48.52 (3)
Sn1—Ni5—Ni2viii70.29 (5)Ni2xvi—Dy2—Sn1i114.35 (3)
Ni2v—Ni5—Ni2viii116.85 (8)Ni3iv—Dy2—Sn1i50.12 (4)
Ni4vii—Ni5—Ni2iii100.74 (6)Ni3xvii—Dy2—Sn1i48.98 (4)
Sn3viii—Ni5—Ni2iii59.28 (3)Ni4x—Dy2—Sn1i137.31 (3)
Sn3—Ni5—Ni2iii134.81 (7)Ni4—Dy2—Sn1i99.47 (3)
Ni1xii—Ni5—Ni2iii161.77 (7)Sn2—Dy2—Sn1i80.724 (18)
Ni1vii—Ni5—Ni2iii102.39 (4)Sn2xvii—Dy2—Sn1i88.980 (19)
Sn1—Ni5—Ni2iii55.84 (4)Sn1ii—Dy2—Sn1i84.038 (13)
Ni2v—Ni5—Ni2iii125.89 (8)Sn1vi—Dy2—Sn1i162.49 (3)
Ni2viii—Ni5—Ni2iii51.04 (5)Sn1xviii—Dy2—Sn1i80.47 (3)
Ni4vii—Ni5—Ni2100.74 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2; (iii) x, y, z; (iv) x+1/2, y, z+1/2; (v) x+1/2, y, z+1/2; (vi) x, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x1/2, y, z+1/2; (ix) x+1/2, y, z+1/2; (x) x, y, z; (xi) x1/2, y+1/2, z; (xii) x, y+1/2, z+1/2; (xiii) x, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+1/2, z+1; (xvi) x+1/2, y1/2, z; (xvii) x+1/2, y, z1/2; (xviii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaDy2Ni7Sn3
Mr1092.04
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)298
a, b, c (Å)8.5964 (2), 23.6415 (6), 7.5383 (2)
V3)1532.02 (7)
Z8
Radiation typeMo Kα
µ (mm1)45.49
Crystal size (mm)0.30 × 0.20 × 0.17
Data collection
DiffractometerXcalibur Oxford Diffraction with a CCD detector
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.040, 0.143
No. of measured, independent and
observed [I > 2σ(I)] reflections
6228, 1232, 1033
Rint0.034
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.24
No. of reflections1232
No. of parameters65
w = 1/[σ2(Fo2) + (0.0184P)2 + 100.8928P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.64, 3.04

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Ni1—Sn32.5107 (14)Ni2—Dy1ii3.0258 (13)
Ni1—Ni2i2.5207 (17)Ni3—Ni42.587 (2)
Ni1—Ni5ii2.5277 (19)Ni3—Sn1vi2.616 (2)
Ni1—Ni1iii2.606 (2)Ni3—Sn1vii2.672 (2)
Ni1—Ni42.6435 (19)Ni3—Sn22.6849 (11)
Ni1—Sn3i2.6533 (12)Ni3—Dy2viii2.9657 (10)
Ni1—Sn22.6707 (14)Ni3—Dy23.3986 (16)
Ni1—Dy12.9332 (13)Ni4—Ni5ii2.396 (2)
Ni1—Dy1iv2.9974 (12)Ni4—Sn22.5990 (10)
Ni1—Dy1ii3.0792 (13)Ni4—Sn1ii2.8050 (19)
Ni2—Ni2v2.385 (2)Ni4—Dy23.0171 (14)
Ni2—Ni4i2.5360 (14)Dy1—Ni5vii2.9698 (19)
Ni2—Sn12.5656 (13)Dy1—Sn23.2630 (7)
Ni2—Sn2i2.5921 (12)Dy1—Sn33.2791 (7)
Ni2—Ni5iv2.6381 (15)Ni5—Sn32.5213 (10)
Ni2—Sn32.6868 (13)Ni5—Sn12.5733 (19)
Ni2—Dy2i2.8676 (12)Sn1—Dy2vii3.1942 (8)
Ni2—Ni52.8758 (17)Sn1—Dy2i3.3016 (7)
Ni2—Sn1iv3.0002 (13)Sn2—Dy23.1667 (6)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2; (iii) x, y, z; (iv) x+1/2, y, z+1/2; (v) x+1/2, y, z+1/2; (vi) x, y1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+1/2, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds