Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In this work, we demonstrate a simple approach for growing 1D (one-dimensional) inorganic chains of K(C6H16N)3Mo8O26·H2O polyoxometalates (POMs) from its colloidal soft-oxometalate (SOM) phase through the variation of pH. The structure is composed mainly of a 1D inorganic chain with a β-Mo8O264− binding node linked using K+ via Mo—O—K linkages, which results in a cubocta­hedral geometry for the K+ ions. Crystal structure and Hirshfeld surface studies reveal the role of tri­ethyl­ammonium cations in restricting the growth of the 1D chain into 2D/3D (two-/three-dimensional) structures. During the nucleation process from the heterogeneous SOM phase, some of the inter­molecular inter­actions in the dispersion phase are retained in the crystal structure, which was evidenced from residual O...O inter­actions. The crystallization of the species from its colloidal form as a function of pH was studied by the use of Raman spectroscopy and it was found that the increase in volume fraction of the β-Mo8O264− species in the crystallizing colloidal mixture with the decrease in pH is responsible for the nucleation. This was monitored by time-dependent DLS (dynamic light scattering) measurement and zeta-potential studies, revealing the co-existence of both the crystal and the colloidal forms at pH 3–2. This brings us to the conclusion that in the crystallization of POMs, the colloidal SOM phase precedes the crystalline POM phase which occurs via a phase transition. This work could open up avenues for the study of POM formation from the stand-point of colloidal chemistry and SOMs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618007143/jr3006sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618007143/jr3006Isup2.hkl
Contains datablock I

CCDC reference: 1575935

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tris(triethylaminium) hemi(dopentacontaoxidopotassiohexadecamolybdate) monohydrate top
Crystal data top
(C6H16N)3[K2Mo16O52]0.5·H2OF(000) = 3000
Mr = 1547.23Dx = 2.413 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.1247 (8) ÅCell parameters from 8571 reflections
b = 10.7583 (3) Åθ = 2.1–26.8°
c = 18.5442 (5) ŵ = 2.46 mm1
β = 121.835 (3)°T = 100 K
V = 4258.5 (2) Å3Rod, clear colourless
Z = 40.3 × 0.1 × 0.05 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
3886 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3582 reflections with I > 2σ(I)
Detector resolution: 7.9580 pixels mm-1Rint = 0.034
ω scansθmax = 25.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3028
Tmin = 0.062, Tmax = 0.093k = 1212
12607 measured reflectionsl = 2221
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0247P)2 + 6.8377P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.59 e Å3
3886 reflectionsΔρmin = 0.52 e Å3
304 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
43 restraintsExtinction coefficient: 0.00020 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.60807 (2)0.46762 (2)0.48657 (2)0.01373 (8)
Mo20.45907 (2)0.42819 (2)0.39963 (2)0.01256 (8)
Mo30.43750 (2)0.72147 (2)0.40889 (2)0.01356 (8)
Mo40.58769 (2)0.76365 (2)0.49649 (2)0.01453 (8)
K10.5000000.63056 (8)0.2500000.0175 (2)
O60.40089 (9)0.55146 (18)0.39590 (13)0.0139 (4)
O50.53989 (9)0.34477 (17)0.45968 (13)0.0141 (4)
O70.50838 (9)0.82562 (18)0.47312 (13)0.0160 (4)
O80.64366 (9)0.62419 (18)0.53556 (13)0.0161 (4)
O20.41322 (9)0.29802 (18)0.38701 (13)0.0168 (4)
O40.63703 (9)0.88406 (19)0.55100 (14)0.0201 (5)
O130.52072 (9)0.58220 (18)0.46285 (13)0.0148 (4)
O30.37813 (9)0.81053 (19)0.39867 (13)0.0190 (5)
O110.42950 (10)0.72627 (18)0.31153 (14)0.0183 (5)
O100.44962 (9)0.44827 (19)0.30301 (13)0.0179 (4)
O10.67186 (9)0.37354 (19)0.53047 (14)0.0194 (5)
O120.57329 (10)0.77401 (19)0.39577 (14)0.0193 (5)
O90.58913 (10)0.48992 (19)0.38481 (13)0.0183 (4)
N20.25130 (12)0.4973 (2)0.15917 (17)0.0210 (6)
H10.2104620.5426760.1274370.025*
C10.24871 (15)0.3974 (3)0.1006 (2)0.0248 (7)
H1A0.2423170.4368050.0483270.030*
H1B0.2121680.3432210.0840830.030*
C50.30166 (15)0.5926 (3)0.1824 (2)0.0296 (8)
H5A0.3423890.5496300.2060010.036*
H5B0.3045990.6474570.2272370.036*
C30.25554 (16)0.4433 (3)0.2373 (2)0.0270 (7)
H3A0.2318600.3642570.2221240.032*
H3B0.2998960.4247550.2803030.032*
C60.28980 (17)0.6717 (4)0.1076 (3)0.0389 (9)
H6A0.2882020.6183370.0637120.058*
H6B0.3237240.7323920.1264790.058*
H6C0.2498210.7155300.0844110.058*
C20.30707 (16)0.3182 (3)0.1394 (2)0.0299 (8)
H2A0.3005430.2490810.1011720.045*
H2B0.3160620.2853090.1940340.045*
H2C0.3424640.3688150.1482740.045*
C40.2298 (2)0.5311 (5)0.2747 (3)0.0530 (12)
H4A0.1866050.5533310.2313460.079*
H4B0.2555640.6064800.2946390.079*
H4C0.2304230.4907850.3225510.079*
N10.4996 (5)0.0915 (3)0.2512 (9)0.0196 (7)0.5
H0AA0.5207490.0507470.2244010.024*0.5
C90.4493 (8)0.1725 (11)0.1849 (8)0.023 (3)0.5
H0AB0.4700380.2387830.1714010.027*0.5
H0AC0.4281000.2135140.2108130.027*0.5
C120.4383 (5)0.0462 (12)0.3166 (6)0.033 (3)0.5
H3AA0.4152180.0187590.3258020.050*0.5
H3AB0.4092970.1118350.2808170.050*0.5
H3AC0.4703710.0814530.3713120.050*0.5
C100.3986 (8)0.1162 (16)0.1011 (9)0.027 (3)0.5
H1AA0.3744710.1828480.0609660.041*0.5
H1AB0.3705960.0650290.1106900.041*0.5
H1AC0.4180440.0643410.0777820.041*0.5
C110.4696 (3)0.0096 (5)0.2727 (4)0.0197 (12)0.5
H2AA0.5017050.0708230.3106570.024*0.5
H2AB0.4380430.0531940.2203120.024*0.5
C70.5474 (9)0.1723 (12)0.3207 (8)0.026 (3)0.5
H7A0.5283060.2186100.3476440.031*0.5
H7B0.5643620.2330250.2978070.031*0.5
C80.5995 (9)0.0882 (17)0.3854 (10)0.044 (5)0.5
H8A0.6140890.0346070.3566080.066*0.5
H8B0.5835100.0366300.4135400.066*0.5
H8C0.6343560.1391580.4278740.066*0.5
O140.4539 (4)0.0437 (8)0.3555 (4)0.0306 (16)0.5
H13A0.4474910.1045270.3791400.046*0.5
H13B0.4720120.0105920.3944790.046*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01187 (14)0.01594 (14)0.01319 (15)0.00013 (9)0.00648 (12)0.00076 (10)
Mo20.01135 (14)0.01429 (14)0.01045 (15)0.00077 (9)0.00466 (12)0.00192 (10)
Mo30.01196 (14)0.01438 (14)0.01315 (15)0.00001 (9)0.00580 (12)0.00035 (10)
Mo40.01237 (14)0.01536 (14)0.01447 (15)0.00235 (9)0.00612 (12)0.00155 (10)
K10.0190 (5)0.0189 (4)0.0159 (5)0.0000.0100 (4)0.000
O60.0118 (10)0.0164 (10)0.0122 (11)0.0009 (8)0.0055 (9)0.0017 (8)
O50.0118 (10)0.0153 (10)0.0143 (11)0.0008 (8)0.0063 (9)0.0028 (8)
O70.0159 (10)0.0149 (10)0.0170 (11)0.0017 (8)0.0084 (10)0.0022 (9)
O80.0115 (10)0.0191 (10)0.0158 (11)0.0023 (8)0.0060 (9)0.0013 (9)
O20.0148 (10)0.0181 (10)0.0150 (11)0.0021 (8)0.0062 (10)0.0035 (9)
O40.0166 (11)0.0198 (11)0.0212 (12)0.0036 (8)0.0081 (10)0.0033 (9)
O130.0131 (10)0.0160 (10)0.0142 (11)0.0022 (8)0.0063 (9)0.0023 (8)
O30.0168 (11)0.0200 (10)0.0208 (12)0.0016 (9)0.0105 (10)0.0020 (9)
O110.0189 (11)0.0203 (11)0.0163 (12)0.0033 (8)0.0096 (10)0.0018 (9)
O100.0171 (11)0.0212 (11)0.0146 (11)0.0017 (8)0.0078 (10)0.0015 (9)
O10.0141 (10)0.0231 (11)0.0203 (12)0.0008 (8)0.0086 (10)0.0013 (9)
O120.0186 (11)0.0213 (11)0.0194 (12)0.0018 (9)0.0109 (10)0.0001 (9)
O90.0180 (11)0.0216 (11)0.0168 (12)0.0005 (9)0.0102 (10)0.0002 (9)
N20.0139 (13)0.0219 (13)0.0187 (15)0.0026 (11)0.0029 (12)0.0001 (11)
C10.0245 (17)0.0241 (16)0.0240 (19)0.0056 (13)0.0116 (16)0.0066 (14)
C50.0182 (17)0.0227 (16)0.032 (2)0.0012 (13)0.0026 (17)0.0004 (15)
C30.0192 (17)0.0347 (18)0.0180 (18)0.0003 (14)0.0035 (15)0.0003 (15)
C60.0263 (19)0.035 (2)0.048 (3)0.0012 (16)0.015 (2)0.0095 (19)
C20.0299 (19)0.0255 (17)0.041 (2)0.0010 (15)0.0232 (18)0.0001 (16)
C40.047 (3)0.077 (3)0.027 (2)0.023 (2)0.014 (2)0.003 (2)
N10.0233 (16)0.0191 (16)0.0202 (17)0.004 (3)0.0141 (14)0.000 (3)
C90.022 (3)0.023 (4)0.022 (3)0.001 (3)0.011 (2)0.002 (3)
C120.046 (7)0.028 (4)0.042 (7)0.009 (5)0.035 (6)0.012 (5)
C100.028 (4)0.017 (6)0.028 (3)0.002 (5)0.008 (2)0.001 (4)
C110.019 (3)0.022 (2)0.015 (3)0.003 (2)0.006 (3)0.003 (2)
C70.032 (4)0.031 (4)0.015 (3)0.004 (3)0.013 (2)0.002 (3)
C80.034 (4)0.030 (8)0.038 (6)0.013 (5)0.002 (4)0.007 (5)
O140.037 (4)0.020 (3)0.041 (5)0.001 (3)0.025 (4)0.003 (4)
Geometric parameters (Å, º) top
Mo1—O6i2.315 (2)N2—C51.504 (4)
Mo1—O52.0071 (19)N2—C31.512 (4)
Mo1—O81.899 (2)C1—H1A0.9900
Mo1—O132.3477 (19)C1—H1B0.9900
Mo1—O11.697 (2)C1—C21.510 (4)
Mo1—O91.702 (2)C5—H5A0.9900
Mo2—O61.9477 (19)C5—H5B0.9900
Mo2—O51.9452 (19)C5—C61.516 (5)
Mo2—O21.749 (2)C3—H3A0.9900
Mo2—O132.1455 (19)C3—H3B0.9900
Mo2—O13i2.325 (2)C3—C41.506 (5)
Mo2—O101.693 (2)C6—H6A0.9800
Mo3—O62.0040 (19)C6—H6B0.9800
Mo3—O5i2.304 (2)C6—H6C0.9800
Mo3—O71.899 (2)C2—H2A0.9800
Mo3—O132.3261 (19)C2—H2B0.9800
Mo3—O31.697 (2)C2—H2C0.9800
Mo3—O111.709 (2)C4—H4A0.9800
Mo4—O71.9216 (19)C4—H4B0.9800
Mo4—O81.918 (2)C4—H4C0.9800
Mo4—O2i2.272 (2)N1—H0AA1.0000
Mo4—O41.707 (2)N1—C91.493 (4)
Mo4—O132.4340 (19)N1—C111.493 (4)
Mo4—O121.708 (2)N1—C71.493 (4)
K1—Mo2ii4.0630 (5)C9—H0AB0.9900
K1—Mo3ii4.1214 (3)C9—H0AC0.9900
K1—K1ii0.0000 (1)C9—C101.521 (6)
K1—O112.763 (2)C12—H3AA0.9800
K1—O11ii2.763 (2)C12—H3AB0.9800
K1—O102.780 (2)C12—H3AC0.9800
K1—O10ii2.780 (2)C12—C111.521 (6)
K1—O122.798 (2)C10—H1AA0.9800
K1—O12ii2.798 (2)C10—H1AB0.9800
K1—O9ii2.765 (2)C10—H1AC0.9800
K1—O92.766 (2)C11—H2AA0.9900
O6—Mo1i2.315 (2)C11—H2AB0.9900
O5—Mo3i2.304 (2)C7—H7A0.9900
O2—Mo4i2.272 (2)C7—H7B0.9900
O13—Mo2i2.325 (2)C7—C81.521 (6)
O11—K1ii2.763 (2)C8—H8A0.9800
O10—K1ii2.780 (2)C8—H8B0.9800
O12—K1ii2.798 (2)C8—H8C0.9800
O9—K1ii2.766 (2)O14—H13A0.8493
N2—H11.0000O14—H13B0.8504
N2—C11.505 (4)
O6i—Mo1—O1371.18 (7)Mo2—O6—Mo3109.20 (9)
O5—Mo1—O6i71.43 (7)Mo3—O6—Mo1i103.54 (8)
O5—Mo1—O1373.03 (7)Mo1—O5—Mo3i103.82 (8)
O8—Mo1—O6i83.30 (8)Mo2—O5—Mo1109.57 (9)
O8—Mo1—O5145.88 (8)Mo2—O5—Mo3i110.40 (8)
O8—Mo1—O1377.39 (7)Mo3—O7—Mo4117.04 (10)
O1—Mo1—O6i91.81 (9)Mo1—O8—Mo4116.54 (10)
O1—Mo1—O5101.11 (9)Mo2—O2—Mo4i116.29 (10)
O1—Mo1—O8102.26 (9)Mo1—O13—Mo485.49 (6)
O1—Mo1—O13162.96 (9)Mo2—O13—Mo191.78 (7)
O1—Mo1—O9104.89 (10)Mo2i—O13—Mo197.32 (7)
O9—Mo1—O6i161.24 (8)Mo2—O13—Mo2i103.84 (8)
O9—Mo1—O596.57 (9)Mo2i—O13—Mo397.44 (7)
O9—Mo1—O8101.02 (9)Mo2—O13—Mo392.08 (7)
O9—Mo1—O1391.79 (9)Mo2i—O13—Mo492.06 (7)
O6—Mo2—O13i78.31 (8)Mo2—O13—Mo4164.09 (10)
O6—Mo2—O1378.79 (8)Mo3—O13—Mo1163.37 (10)
O5—Mo2—O6150.67 (8)Mo3—O13—Mo486.37 (6)
O5—Mo2—O1378.97 (8)Mo3—O11—K1132.96 (11)
O5—Mo2—O13i77.99 (7)Mo3—O11—K1ii132.96 (11)
O2—Mo2—O696.40 (9)K1ii—O11—K10.00 (3)
O2—Mo2—O597.02 (9)Mo2—O10—K1128.95 (10)
O2—Mo2—O13i81.70 (8)Mo2—O10—K1ii128.95 (10)
O2—Mo2—O13157.86 (9)K1ii—O10—K10.00 (3)
O13—Mo2—O13i76.16 (8)Mo4—O12—K1132.24 (10)
O10—Mo2—O6101.06 (9)Mo4—O12—K1ii132.24 (10)
O10—Mo2—O5100.72 (9)K1ii—O12—K10.00 (3)
O10—Mo2—O2104.24 (10)Mo1—O9—K1ii134.34 (10)
O10—Mo2—O13i174.05 (8)Mo1—O9—K1134.34 (10)
O10—Mo2—O1397.91 (9)K1ii—O9—K10.0
O6—Mo3—O5i71.72 (7)C1—N2—H1106.5
O6—Mo3—O1373.45 (7)C1—N2—C3111.8 (2)
O5i—Mo3—O1371.43 (7)C5—N2—H1106.5
O7—Mo3—O6146.39 (8)C5—N2—C1113.8 (3)
O7—Mo3—O5i83.84 (8)C5—N2—C3111.4 (3)
O7—Mo3—O1377.15 (8)C3—N2—H1106.5
O3—Mo3—O6100.44 (9)N2—C1—H1A108.9
O3—Mo3—O5i90.26 (8)N2—C1—H1B108.9
O3—Mo3—O7102.43 (9)N2—C1—C2113.4 (3)
O3—Mo3—O13161.67 (9)H1A—C1—H1B107.7
O3—Mo3—O11104.97 (10)C2—C1—H1A108.9
O11—Mo3—O696.31 (9)C2—C1—H1B108.9
O11—Mo3—O5i162.33 (8)N2—C5—H5A109.0
O11—Mo3—O7101.16 (9)N2—C5—H5B109.0
O11—Mo3—O1392.98 (9)N2—C5—C6113.0 (3)
O7—Mo4—O2i77.66 (8)H5A—C5—H5B107.8
O7—Mo4—O1374.09 (7)C6—C5—H5A109.0
O8—Mo4—O7145.39 (8)C6—C5—H5B109.0
O8—Mo4—O2i77.61 (8)N2—C3—H3A109.3
O8—Mo4—O1374.90 (7)N2—C3—H3B109.3
O2i—Mo4—O1369.94 (7)H3A—C3—H3B107.9
O4—Mo4—O7102.30 (9)C4—C3—N2111.7 (3)
O4—Mo4—O8102.19 (9)C4—C3—H3A109.3
O4—Mo4—O2i91.54 (9)C4—C3—H3B109.3
O4—Mo4—O13161.48 (9)C5—C6—H6A109.5
O4—Mo4—O12105.47 (10)C5—C6—H6B109.5
O12—Mo4—O797.72 (9)C5—C6—H6C109.5
O12—Mo4—O898.88 (9)H6A—C6—H6B109.5
O12—Mo4—O2i162.98 (9)H6A—C6—H6C109.5
O12—Mo4—O1393.04 (8)H6B—C6—H6C109.5
Mo2ii—K1—Mo3ii46.350 (5)C1—C2—H2A109.5
K1ii—K1—Mo2ii0 (8)C1—C2—H2B109.5
K1ii—K1—Mo3ii0 (7)C1—C2—H2C109.5
K1ii—K1—O110 (10)H2A—C2—H2B109.5
K1ii—K1—O11ii0 (10)H2A—C2—H2C109.5
K1ii—K1—O100 (10)H2B—C2—H2C109.5
K1ii—K1—O10ii0 (10)C3—C4—H4A109.5
K1ii—K1—O12ii0 (10)C3—C4—H4B109.5
K1ii—K1—O120 (10)C3—C4—H4C109.5
K1ii—K1—O9ii0 (10)H4A—C4—H4B109.5
K1ii—K1—O90 (10)H4A—C4—H4C109.5
O11ii—K1—Mo2ii57.94 (4)H4B—C4—H4C109.5
O11—K1—Mo2ii158.47 (5)C9—N1—H0AA106.7
O11—K1—Mo3ii140.89 (5)C11—N1—H0AA106.7
O11ii—K1—Mo3ii17.66 (4)C11—N1—C9108.6 (4)
O11—K1—O11ii136.23 (9)C11—N1—C7118.9 (16)
O11—K1—O1066.80 (6)C7—N1—H0AA106.7
O11—K1—O10ii156.90 (7)C7—N1—C9108.5 (4)
O11ii—K1—O10156.90 (7)N1—C9—H0AB107.4
O11ii—K1—O10ii66.80 (6)N1—C9—H0AC107.4
O11—K1—O1268.53 (6)N1—C9—C10119.8 (13)
O11ii—K1—O1287.41 (6)H0AB—C9—H0AC106.9
O11ii—K1—O12ii68.53 (6)C10—C9—H0AB107.4
O11—K1—O12ii87.41 (6)C10—C9—H0AC107.4
O11—K1—O9102.73 (6)H3AA—C12—H3AB109.5
O11ii—K1—O9100.81 (6)H3AA—C12—H3AC109.5
O11—K1—O9ii100.81 (6)H3AB—C12—H3AC109.5
O11ii—K1—O9ii102.73 (6)C11—C12—H3AA109.5
O10ii—K1—Mo2ii18.90 (4)C11—C12—H3AB109.5
O10—K1—Mo2ii100.95 (5)C11—C12—H3AC109.5
O10ii—K1—Mo3ii59.89 (4)C9—C10—H1AA109.5
O10—K1—Mo3ii146.78 (5)C9—C10—H1AB109.5
O10ii—K1—O1090.26 (9)C9—C10—H1AC109.5
O10ii—K1—O12ii103.76 (6)H1AA—C10—H1AB109.5
O10—K1—O12103.76 (6)H1AA—C10—H1AC109.5
O10ii—K1—O12122.71 (6)H1AB—C10—H1AC109.5
O10—K1—O12ii122.71 (6)N1—C11—C12109.3 (8)
O12ii—K1—Mo2ii84.86 (4)N1—C11—H2AA109.8
O12—K1—Mo2ii132.90 (4)N1—C11—H2AB109.8
O12—K1—Mo3ii104.78 (4)C12—C11—H2AA109.8
O12ii—K1—Mo3ii58.88 (4)C12—C11—H2AB109.8
O12ii—K1—O12113.05 (9)H2AA—C11—H2AB108.3
O9—K1—Mo2ii87.03 (5)N1—C7—H7A110.2
O9ii—K1—Mo2ii57.68 (4)N1—C7—H7B110.2
O9ii—K1—Mo3ii85.16 (4)N1—C7—C8107.5 (11)
O9—K1—Mo3ii110.12 (4)H7A—C7—H7B108.5
O9—K1—O10ii68.35 (6)C8—C7—H7A110.2
O9ii—K1—O1068.35 (6)C8—C7—H7B110.2
O9—K1—O1066.23 (6)C7—C8—H8A109.5
O9ii—K1—O10ii66.23 (6)C7—C8—H8B109.5
O9ii—K1—O12ii67.79 (6)C7—C8—H8C109.5
O9ii—K1—O12168.99 (6)H8A—C8—H8B109.5
O9—K1—O12ii168.99 (6)H8A—C8—H8C109.5
O9—K1—O1267.79 (6)H8B—C8—H8C109.5
O9ii—K1—O9113.66 (9)H13A—O14—H13B104.6
Mo2—O6—Mo1i110.49 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2iii—H1iii···O4iii1.001.812.796 (4)168
N1iv—H0AAiv···O14iv1.001.902.826 (17)153
O14—H13B···O70.852.162.998 (8)169
Symmetry codes: (iii) x+1/2, y+1/2, z1/2; (iv) x, y, z+1/2.
Bond-valence sum data top
Mo=O-terminalBVS valueµ2-O (Mo-O-Mo)BVS value
O11.764O21.906
O31.764O71.982
O41.717O81.993
µ2-O (Mo-O-K)BVS valueµ3-O (Mo3-O)BVS value
O101.956O52.007
O91.920O61.996
O121.877µ5-O (Mo5-O)BVS value
O111.890O131.915
MicroRaman spectroscopic data analysis of the reaction at varying pH 2 to 6 top
pHMo8O264-Mo7O246-SOM
2241, 292, 498, 545, 620, 732, 829, 851, 895, 917, 973952, 415, 963
3241, 292, 498, 545, 620, 732, 829, 851, 895, 917, 973952, 415, 963
4725, 849, 917215, 365, 561, 903953, 416
5725, 851216, 365, 568, 641, 866, 903, 946416
6442, 547, 614, 811, 900, 945
MicroRaman spectroscopic data analysis of reaction at varying pH from 2 to 6 top
pHMo8O264-Mo7O246-SOM
2241, 292, 498, 545, 620, 732, 829, 851, 895, 917, 973-952, 415, 963
3241, 292, 498, 545, 620, 732, 829, 851, 895, 917, 973-952, 415, 963
4725, 849, 917215, 365, 561, 903953, 416
5725, 851216, 365, 568, 641, 866, 903, 946416
6-442, 547, 614, 811, 900, 945-

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds