Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006491/jz1392sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006491/jz1392Isup2.hkl |
CCDC reference: 150305
To a suspension of vanadium pentoxide (310 g) in water (900 g), oxalic acid dihydrate (645 g) was added and the mixture stirred at 333–353 K for 12 h, during which a vigorous evolution of CO2 was observed. Large intensely blue single crystals of (I) separated on cooling.
H atoms were refined with individual isotropic displacement parameters. The highest peak (0.59 e Å−3) and the deepest hole (−0.35 e Å−3) in the difference Fourier map were situated less than 0.9 Å from the V atom.
Data collection: local software; cell refinement: local software; data reduction: local software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97.
[VO(C2O4)(H2O)3]·2H2O | F(000) = 500 |
Mr = 245.04 | Dx = 1.854 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
a = 7.152 (2) Å | Cell parameters from 31 reflections |
b = 8.806 (3) Å | θ = 3.7–8.1° |
c = 14.004 (4) Å | µ = 1.16 mm−1 |
β = 95.60 (2)° | T = 293 K |
V = 877.8 (5) Å3 | Block, intense blue |
Z = 4 | 0.5 × 0.3 × 0.3 mm |
Stoe 4-circle diffractometer | Rint = 0.038 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 2.9° |
Graphite monochromator | h = −10→10 |
ω scans | k = −1→12 |
3570 measured reflections | l = −1→19 |
2555 independent reflections | 3 standard reflections every 100 reflections |
2268 reflections with I > 2σ(I) | intensity decay: 0.2% |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.031 | Calculated w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1639P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.59 e Å−3 |
2555 reflections | Δρmin = −0.36 e Å−3 |
159 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.038 (2) |
Primary atom site location: structure-invariant direct methods |
[VO(C2O4)(H2O)3]·2H2O | V = 877.8 (5) Å3 |
Mr = 245.04 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.152 (2) Å | µ = 1.16 mm−1 |
b = 8.806 (3) Å | T = 293 K |
c = 14.004 (4) Å | 0.5 × 0.3 × 0.3 mm |
β = 95.60 (2)° |
Stoe 4-circle diffractometer | Rint = 0.038 |
3570 measured reflections | 3 standard reflections every 100 reflections |
2555 independent reflections | intensity decay: 0.2% |
2268 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.081 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.59 e Å−3 |
2555 reflections | Δρmin = −0.36 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H-atoms were refined unconstrained with individual isotropic displacement parameters. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.69101 (3) | 0.23279 (3) | 1.011215 (18) | 0.01970 (10) | |
O1 | 0.6774 (2) | 0.07947 (16) | 1.06842 (10) | 0.0400 (3) | |
C1 | 0.3489 (2) | 0.24579 (17) | 0.89664 (11) | 0.0204 (3) | |
O11 | 0.41590 (15) | 0.28023 (13) | 0.98177 (8) | 0.0230 (2) | |
O12 | 0.18368 (16) | 0.25336 (14) | 0.86472 (9) | 0.0280 (3) | |
C2 | 0.4959 (2) | 0.18958 (18) | 0.83150 (11) | 0.0220 (3) | |
O21 | 0.65671 (15) | 0.15923 (13) | 0.87479 (8) | 0.0252 (2) | |
O22 | 0.45245 (16) | 0.17608 (17) | 0.74501 (8) | 0.0338 (3) | |
O2 | 0.70923 (18) | 0.37928 (15) | 1.12290 (8) | 0.0286 (3) | |
H21 | 0.635 (4) | 0.366 (3) | 1.1646 (19) | 0.047 (7)* | |
H22 | 0.820 (4) | 0.397 (3) | 1.1502 (17) | 0.047 (7)* | |
O3 | 0.97186 (18) | 0.2378 (2) | 1.01112 (11) | 0.0390 (4) | |
H31 | 1.024 (4) | 0.247 (3) | 0.970 (2) | 0.044 (7)* | |
H32 | 1.039 (4) | 0.204 (3) | 1.051 (2) | 0.057 (8)* | |
O4 | 0.7211 (2) | 0.45260 (15) | 0.93104 (10) | 0.0324 (3) | |
H41 | 0.783 (3) | 0.475 (3) | 0.889 (2) | 0.050 (7)* | |
H42 | 0.698 (3) | 0.528 (3) | 0.9518 (17) | 0.040 (6)* | |
O5 | 0.0442 (2) | 0.0325 (2) | 0.71390 (10) | 0.0349 (3) | |
H51 | 0.001 (4) | −0.033 (4) | 0.738 (2) | 0.076 (11)* | |
H52 | 0.094 (5) | 0.086 (4) | 0.748 (2) | 0.067 (10)* | |
O6 | 0.17664 (19) | 0.37958 (17) | 0.65774 (9) | 0.0313 (3) | |
H61 | 0.258 (4) | 0.318 (3) | 0.6810 (18) | 0.044 (7)* | |
H62 | 0.233 (3) | 0.450 (3) | 0.6434 (18) | 0.049 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01762 (14) | 0.02305 (15) | 0.01830 (14) | 0.00068 (9) | 0.00111 (9) | 0.00011 (9) |
O1 | 0.0448 (8) | 0.0315 (7) | 0.0423 (8) | −0.0022 (6) | −0.0021 (6) | 0.0105 (6) |
C1 | 0.0192 (6) | 0.0225 (7) | 0.0198 (6) | 0.0010 (5) | 0.0038 (5) | 0.0021 (5) |
O11 | 0.0185 (5) | 0.0301 (5) | 0.0207 (5) | 0.0014 (4) | 0.0029 (4) | −0.0051 (4) |
O12 | 0.0187 (5) | 0.0410 (7) | 0.0243 (5) | 0.0039 (5) | 0.0013 (4) | 0.0010 (5) |
C2 | 0.0202 (6) | 0.0254 (7) | 0.0208 (7) | 0.0017 (5) | 0.0037 (5) | −0.0026 (5) |
O21 | 0.0191 (5) | 0.0313 (6) | 0.0251 (5) | 0.0054 (4) | 0.0011 (4) | −0.0076 (4) |
O22 | 0.0254 (6) | 0.0562 (8) | 0.0199 (5) | 0.0057 (5) | 0.0021 (4) | −0.0063 (5) |
O2 | 0.0245 (6) | 0.0413 (7) | 0.0206 (5) | −0.0075 (5) | 0.0057 (4) | −0.0064 (5) |
O3 | 0.0179 (6) | 0.0741 (11) | 0.0253 (6) | 0.0096 (6) | 0.0035 (5) | 0.0104 (7) |
O4 | 0.0436 (7) | 0.0242 (6) | 0.0317 (7) | 0.0005 (5) | 0.0160 (6) | 0.0025 (5) |
O5 | 0.0316 (6) | 0.0433 (8) | 0.0292 (6) | −0.0074 (6) | 0.0006 (5) | 0.0009 (6) |
O6 | 0.0313 (6) | 0.0313 (6) | 0.0302 (6) | −0.0051 (5) | −0.0030 (5) | 0.0033 (5) |
V1—O1 | 1.5778 (14) | O2—H21 | 0.83 (3) |
V1—O2 | 2.0218 (13) | O2—H22 | 0.86 (3) |
V1—O3 | 2.0093 (14) | O3—H31 | 0.72 (3) |
V1—O4 | 2.2585 (14) | O3—H32 | 0.76 (3) |
V1—O11 | 2.0144 (12) | O4—H41 | 0.79 (3) |
V1—O21 | 2.0096 (12) | O4—H42 | 0.75 (3) |
C1—C2 | 1.539 (2) | O5—H51 | 0.75 (4) |
C1—O11 | 1.2771 (19) | O5—H52 | 0.74 (4) |
C1—O12 | 1.2240 (19) | O6—H61 | 0.84 (3) |
C2—O21 | 1.2749 (18) | O6—H62 | 0.77 (3) |
C2—O22 | 1.2265 (19) | ||
O1—V1—O4 | 178.03 (6) | O12—C1—O11 | 126.07 (14) |
O3—V1—O11 | 162.16 (6) | O21—C2—C1 | 114.97 (13) |
O21—V1—O2 | 159.04 (5) | O22—C2—C1 | 119.64 (13) |
O1—V1—O21 | 101.48 (7) | O22—C2—O21 | 125.39 (14) |
O1—V1—O11 | 100.03 (6) | C1—O11—V1 | 114.31 (9) |
O1—V1—O2 | 98.96 (7) | C2—O21—V1 | 113.90 (9) |
O1—V1—O3 | 97.48 (7) | V1—O2—H21 | 117.2 (18) |
O3—V1—O21 | 92.05 (6) | V1—O2—H22 | 116.6 (17) |
O11—V1—O2 | 90.80 (5) | H21—O2—H22 | 109 (2) |
O3—V1—O2 | 89.86 (6) | V1—O3—H31 | 127 (2) |
O11—V1—O4 | 81.89 (5) | V1—O3—H32 | 123 (2) |
O21—V1—O11 | 81.14 (5) | H31—O3—H32 | 107 (3) |
O3—V1—O4 | 80.63 (6) | V1—O4—H41 | 132 (2) |
O2—V1—O4 | 80.54 (6) | V1—O4—H42 | 122.2 (18) |
O21—V1—O4 | 79.18 (5) | H41—O4—H42 | 103 (3) |
O11—C1—C2 | 114.46 (13) | H51—O5—H52 | 113 (3) |
O12—C1—C2 | 119.47 (14) | H61—O6—H62 | 105 (2) |
O11—C1—C2—O21 | 11.9 (2) | O3—V1—O11—C1 | 68.3 (2) |
O12—C1—C2—O21 | −167.83 (14) | O21—V1—O11—C1 | −0.27 (11) |
O11—C1—C2—O22 | −168.72 (15) | O2—V1—O11—C1 | 160.29 (11) |
O12—C1—C2—O22 | 11.6 (2) | O4—V1—O11—C1 | 79.96 (11) |
C1—C2—O21—V1 | −11.86 (17) | O1—V1—O21—C2 | 105.73 (12) |
C2—C1—O11—V1 | −5.53 (16) | O3—V1—O21—C2 | −156.22 (12) |
O12—C1—O11—V1 | 174.16 (13) | O11—V1—O21—C2 | 7.20 (11) |
O22—C2—O21—V1 | 168.79 (14) | O2—V1—O21—C2 | −61.25 (19) |
O1—V1—O11—C1 | −100.47 (12) | O4—V1—O21—C2 | −76.16 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H21···O22i | 0.83 (3) | 1.84 (3) | 2.6735 (18) | 173 (3) |
O2—H22···O5ii | 0.86 (3) | 1.87 (3) | 2.715 (2) | 170 (2) |
O3—H31···O12iii | 0.72 (3) | 1.96 (3) | 2.669 (2) | 174 (3) |
O3—H32···O6ii | 0.76 (3) | 1.86 (3) | 2.616 (2) | 173 (3) |
O4—H41···O5iv | 0.79 (3) | 2.05 (3) | 2.846 (2) | 177 (3) |
O4—H42···O11v | 0.75 (3) | 2.12 (3) | 2.8670 (19) | 169 (2) |
O5—H51···O6vi | 0.75 (4) | 2.16 (3) | 2.845 (2) | 151 (4) |
O5—H52···O12 | 0.74 (4) | 2.25 (4) | 2.971 (2) | 167 (3) |
O6—H61···O22 | 0.84 (3) | 2.02 (3) | 2.851 (2) | 176 (2) |
O6—H62···O21iv | 0.77 (3) | 2.03 (3) | 2.7926 (19) | 167 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+2; (vi) −x, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [VO(C2O4)(H2O)3]·2H2O |
Mr | 245.04 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 7.152 (2), 8.806 (3), 14.004 (4) |
β (°) | 95.60 (2) |
V (Å3) | 877.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.5 × 0.3 × 0.3 |
Data collection | |
Diffractometer | Stoe 4-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3570, 2555, 2268 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.704 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.081, 1.06 |
No. of reflections | 2555 |
No. of parameters | 159 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.59, −0.36 |
Computer programs: local software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1965), SHELXL97.
V1—O1 | 1.5778 (14) | C1—C2 | 1.539 (2) |
V1—O2 | 2.0218 (13) | C1—O11 | 1.2771 (19) |
V1—O3 | 2.0093 (14) | C1—O12 | 1.2240 (19) |
V1—O4 | 2.2585 (14) | C2—O21 | 1.2749 (18) |
V1—O11 | 2.0144 (12) | C2—O22 | 1.2265 (19) |
V1—O21 | 2.0096 (12) | ||
O1—V1—O4 | 178.03 (6) | O3—V1—O4 | 80.63 (6) |
O3—V1—O11 | 162.16 (6) | O2—V1—O4 | 80.54 (6) |
O21—V1—O2 | 159.04 (5) | O21—V1—O4 | 79.18 (5) |
O1—V1—O21 | 101.48 (7) | O11—C1—C2 | 114.46 (13) |
O1—V1—O11 | 100.03 (6) | O12—C1—C2 | 119.47 (14) |
O1—V1—O2 | 98.96 (7) | O12—C1—O11 | 126.07 (14) |
O1—V1—O3 | 97.48 (7) | O21—C2—C1 | 114.97 (13) |
O3—V1—O21 | 92.05 (6) | O22—C2—C1 | 119.64 (13) |
O11—V1—O2 | 90.80 (5) | O22—C2—O21 | 125.39 (14) |
O3—V1—O2 | 89.86 (6) | C1—O11—V1 | 114.31 (9) |
O11—V1—O4 | 81.89 (5) | C2—O21—V1 | 113.90 (9) |
O21—V1—O11 | 81.14 (5) | ||
O11—C1—C2—O21 | 11.9 (2) | C1—C2—O21—V1 | −11.86 (17) |
O12—C1—C2—O21 | −167.83 (14) | C2—C1—O11—V1 | −5.53 (16) |
O11—C1—C2—O22 | −168.72 (15) | O12—C1—O11—V1 | 174.16 (13) |
O12—C1—C2—O22 | 11.6 (2) | O22—C2—O21—V1 | 168.79 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H21···O22i | 0.83 (3) | 1.84 (3) | 2.6735 (18) | 173 (3) |
O2—H22···O5ii | 0.86 (3) | 1.87 (3) | 2.715 (2) | 170 (2) |
O3—H31···O12iii | 0.72 (3) | 1.96 (3) | 2.669 (2) | 174 (3) |
O3—H32···O6ii | 0.76 (3) | 1.86 (3) | 2.616 (2) | 173 (3) |
O4—H41···O5iv | 0.79 (3) | 2.05 (3) | 2.846 (2) | 177 (3) |
O4—H42···O11v | 0.75 (3) | 2.12 (3) | 2.8670 (19) | 169 (2) |
O5—H51···O6vi | 0.75 (4) | 2.16 (3) | 2.845 (2) | 151 (4) |
O5—H52···O12 | 0.74 (4) | 2.25 (4) | 2.971 (2) | 167 (3) |
O6—H61···O22 | 0.84 (3) | 2.02 (3) | 2.851 (2) | 176 (2) |
O6—H62···O21iv | 0.77 (3) | 2.03 (3) | 2.7926 (19) | 167 (3) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z+1/2; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+2; (vi) −x, y−1/2, −z+3/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Several different types of coordination complexes of the oxovanadium(IV) cation with oxalate ligands (and also in some cases water) have been isolated so far. In each of the five structurally characterized compounds found in the Cambridge Crystallographic Database (CCD; Allen & Kennard, 1993) the V atom has a distorted octahedral coordination sphere. This is formed by two oxalate ligands and one water ligand in (NH4)2[VO(C2O4)2H2O]·H2O (Oughtred et al., 1976) and in [(terpy)Cu(C2O4)VO(C2O4)H2O]·H2O (Cortes et al., 1994) (terpy = ?), by two oxalate ligands and one oxalate ligand bridging two VO(C2O4)2 units in K6[(VO)2(C2O4)5]·4H2O (Zhou et al., 1983), or by one bidentate oxalate, one water and a tetradentate oxalate ligand bridging two [VO(C2O4)H2O] units in (Ph4P)2[(VO)2(C2O4)3(H2O)2]·4H2O (Salta et al., 1996) and in (Ph4P)2[(VO)2(C2O4)3(H2O)2]·8H2O (Zheng et al., 1998). In all these compounds, cations neutralize the charge of the anionic complexes. In this context, we have established the crystal structure of the title compound, (I). \sch
In (I), in contrast to the above-mentioned compounds, the five free coordination sites of the V atom of the oxovanadium(IV) cation are occupied by one bidentate oxalate anion and three water ligands, resulting in a neutral complex (Fig. 1). Two further water molecules are not coordinated to the V atoms. The four O1—V1—O angles are distinctly larger than 90°, and this is presumably attributable to repulsion between the π electrons and the σ bonding pairs. The distance between V1 and O4, situated trans to O1, is markedly larger than between V1 and the other four ligands, due to the trans influence. Similar features are observed in the five oxovanadium(IV) oxalates found in the CCD.
The oxalate anion is considerably twisted [11.74 (9)°] around the C—C bond, leading to an elongated C—C bond length of 1.539 (2) Å. A search of the CCD for oxalates resulted in a mean torsion angle of 4.4 (2)° [standard deviation of the sample = 3.8°] and an even larger mean C—C bond length of 1.546 (1) Å.
The hydrogen-bonding system in (I) (Fig. 2) consists of ten different hydrogen bonds involving all ten H atoms of the water molecules. The acceptors of these hydrogen bonds are the O atoms of the two water molecules not coordinated to the V atom and the O atoms of the oxalate ligand (Fig. 2). The O atoms of the three water molecules coordinated to the V atom and atom O1 do not act as acceptor atoms of hydrogen bonds. The metal complexes are not connected amongst themselves but are only mediated via water molecules.