Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of 5-nitro-3-thio­morpholino-1H-indazole, C11H12N4O2S, (IIa), and 3-(4-methyl­piperazino)-5-nitro-1H-indazole–methanol–water (2/1/1), 2C12H15N5O2·CH3OH·H2O, (IIIa), are described. In the crystal lattice of (IIa), the mol­ecules are linked into dimers by N—H...N hydrogen bonds. The asymmetric unit of (IIIa) contains two independent mol­ecules of the indazole moiety, one mol­ecule of methanol and one of water. The three components of (IIIa) are linked by hydrogen bonds to form double chains running along the x axis. π-Stacking involving the indazole moieties occurs in both compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101011027/jz1467sup1.cif
Contains datablocks IIa, IIIa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011027/jz1467IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011027/jz1467IIIasup3.hkl
Contains datablock IIIa

CCDC references: 174833; 174834

Comment top

Die Titelverbindungen, (IIa) und (IIIa), entstehen bei der Einwirkung von Thiomorpholin bzw. N-Methylpiperazin auf 2,5-Dinitroindazol, (I), infolge einer nucleophilen cine-Substitution der N2-Nitrogruppe. Als Nebenprodukte werden dabei die aus 3,5-Dinitroindazol [Isomerisierungsprodukt von (I)] und den erwähnten cyclischen Aminen zusammengesetzten Molekularverbindungen (IIb) und (IIIb) isoliert (Schema). Letztere wurden von uns bereits röntgenographisch untersucht (Gzella & Wrzeciono, 1991; Gzella et al., 1994). In dieser Mitteilung soll über die röntgenographische Analyse der 3-Amino-5-nitroindazole (IIa) und (IIIa) berichtet werden. \sch

In der unabhängigen Einheit der Elementarzelle von (IIa) befindet sich ein Molekül (Abb. 1), von (IIIa) zwei Moleküle A und B des 3-Amino-5-nitroindazols und je ein Molekül Methanol und Wasser (Abb. 2). Die Indazol-Moleküle A und B von (IIIa) unterscheiden sich voneinander nur geringfügig. Mit Hilfe der kleinsten Quadrate-Anpassung (Spek, 1990) wurde eine gewichtete Wurzel aus der mittleren quadratischen Abweichung von 0.193 Å gefunden. Die maximalen Abweichungen beziehen sich auf die Atome C12 und C15 der Methylpiperazingruppe und betragen 0.377 und 0.332 Å. Die Geometrie des 5-Nitroindazolfragmentes in (IIa) ist mit dem von (IIIa) vergleichbar.

Im Kristall von (IIa) sind die Moleküle über Wasserstoffbrückenbindungen N1—H1A···N2i [Symmetrieoperator: (i) -x, 1 - y, -z; Tabelle 1] zu Dimeren verbunden. Im Kristallgitter von (IIIa) sind die Methanol- und Wasser-Moleküle mit den Indazol-Molekülen A und B über Wasserstoffbrückenbindungen in zur z-Achse parallelen Doppel-Ketten gebunden, wobei sich das Methanol-Molekül an der Bildung der Wasserstoffbrücken sowohl als Protonen-Donor (O21—H21A···N13B) als auch als Akzeptor (N1A—H1A···O21) beteiligt und das O20 Atom des Wasser-Moleküls einmal als Protonen-Akzeptor [N1B—H1B···O20ii; Symmetrieoperator: (ii) 1 - x, -y, 2 - z] und zweimal als Protonen-Donor [O20—H20A···N2B und O20—H20B···N13Aiii; Symmetrieoperator: (iii) 1 - x, -y, 1 - z] auftritt (Tabelle 2). Die Wasser-Moleküle binden die einzelnen Ketten über die O20—H20A···N2B Wasserstoffbrückenbindungen in die oben erwähnten Doppel-Ketten. Die durch Wasserstoffbrücken verbundenen Atome N1B, N2B, N1Bii, N2Bii, O20 und O20ii bilden einen sechsgliedrigen gefalteten Ring (gewichtete Wurzel aus der mittleren quadratischen Abweichung: 0.1080 Å), der auf dem Symmetrie-Zentrum liegt.

Die Indazolsysteme in (IIa) und (IIIa) sind erwartungsgemä\&s annähernd flach. Die grö\&sten Abweichungen von den Indazolebenen weisen die Atome C9 in (IIa) [-0.0150 (19) Å], C3A und C9B in (IIIa) [0.0249 (11) und -0.0091 (12) Å] auf.

In (IIa) und (IIIa) weicht die Nitrogruppe aus der Ebene des Indazolsystems nur geringfügig ab. Für die Interplanarwinkel wurden Werte von 4.49 (18)° in (IIa), 2.41 (6) und 5.95 (8)° in (IIIa) (Molekül A und B) ermittelt.

Der mit dem C3-Atom verbundene Thiomorpholin- bzw. N-Methylpiperazinring liegt in (IIa) bzw. (IIIa) in der Sesselform vor. Der Interplanarwinkel zwischen der Thiomorpholin- bzw. Piperazin-Mittelebene und der Indazolebene beträgt in (IIa) 37.51 (6)°, in (IIIa) 10.51 (4) und 26.26 (5)° (Molekül A und B). Die Indazolebenen A und B in (IIIa) bilden einen Interplanarwinkel von 32.34 (3)°.

Im Kristallgitter von (IIa) und (IIIa) liegen die Indazolsysteme parallel zueinander. In (IIa) und in den Molekülen A von (IIIa) überlagern sich diese teilweize und bilden auf diese Weize Säulen, die sich in Richtung der x-Achse entwickeln. Die Abstände zwischen den Indazolebenen betragen in (IIa) 3.510 (4) Å [Ind···Indiv; Symmetrieoperator: (iv) 1 + x, y, z], in (IIIa) zwischen den Indazolebenen A abwechselnd 3.598 (5) Å [Ind···Indv; Symetrieoperator: (v) 1 - x, -y, 1 - z] und 3.387 (5) Å [Ind···Indvi; Symetrieoperator: (vi) 2 - x, -y, 1 - z]. Die Indazolsysteme in den Molekülen B von (IIIa) bilden Paare [Ind···Indvii 3.474 (8) Å; Symetrieoperator: (vii) -x, 1 - y, 2 - z]. Die gefundenen Abstände zwischen den einzelnen Indazolebenen weisen auf gegenseitige π-Elektronen-Wechselwirkungen hin.

Experimental top

Verbindungen (IIa) und (IIIa) wurden bei der Einwirkung von Thiomorpholin bzw. N-Methylpiperazin auf 2,5-Dinitroindazol synthetisiert. Die Einkristalle von (IIa) und (IIIa) wurden aus Methanol erhalten. Die Verbindung (IIIa) kristallisiert unter Einschlu\&s von Lösungsmitteln. Query.

Refinement top

Alle H-Atome wurden in (IIa) und (IIIa) aus Differenz-Fourier-Synthesen ermittelt. Die N1—H Atome in (IIa) und (IIIa) und diese von Lösungsmitteln in (IIIa) wurden frei verfeinert. Die übrigen H-Atome wurden mit Hilfe des Reitermodells verfeinert; C—H = 0.93–0.97 Å query und U(H) = 1,2Uäq(C). Die Rotation der Methylgruppen in (IIIa) um ihre lokale dreizählige Achse wurde als zusätzlicher Parameter verfeinert. Please provide C—H data in CIF format for (IIIa).

Computing details top

For both compounds, data collection: KM-4 Software (Kuma Diffraction, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: WinGX (Farrugia, 1999) und SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: WinGX und SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX und ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX und SHELXL97.

Figures top
[Figure 1] Fig. 1. Abb. 1. Molekülstruktur von (IIa); Wahrscheinlichkeitsniveau der Ellipsoide 30%.
[Figure 2] Fig. 2. Abb. 2. Molekülstruktur von (IIIa); Wahrscheinlichkeitsniveau der Ellipsoide 30%; die Wasserstoffbrückenbindungen sind durch gestrichelte Linien gekennzeichnet.
(IIa) 5-Nitro-3-thiomorpholino-1H-indazole top
Crystal data top
C11H12N4O2SF(000) = 552
Mr = 264.31Dx = 1.488 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.3897 (8) ÅCell parameters from 37 reflections
b = 10.4102 (10) Åθ = 14.7–25.1°
c = 25.829 (3) ŵ = 2.46 mm1
β = 91.166 (12)°T = 293 K
V = 1180.1 (3) Å3Needle, yellow
Z = 40.43 × 0.18 × 0.08 mm
Data collection top
Kuma KM-4
diffractometer
1769 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 70.1°, θmin = 3.4°
ω/2θ scansh = 05
Absorption correction: ψ-scan
(North et al., 1968)
k = 012
Tmin = 0.528, Tmax = 0.821l = 3131
2499 measured reflections2 standard reflections every 100 reflections
2192 independent reflections intensity decay: 3.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.5353P]
where P = (Fo2 + 2Fc2)/3
2192 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H12N4O2SV = 1180.1 (3) Å3
Mr = 264.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.3897 (8) ŵ = 2.46 mm1
b = 10.4102 (10) ÅT = 293 K
c = 25.829 (3) Å0.43 × 0.18 × 0.08 mm
β = 91.166 (12)°
Data collection top
Kuma KM-4
diffractometer
1769 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.528, Tmax = 0.8212 standard reflections every 100 reflections
2499 measured reflections intensity decay: 3.6%
2192 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
2192 reflectionsΔρmin = 0.23 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2350 (5)0.39993 (19)0.01773 (8)0.0452 (5)
H1A0.144 (7)0.416 (3)0.0115 (11)0.060 (8)*
N20.1906 (4)0.49003 (18)0.05557 (7)0.0421 (4)
C30.3505 (5)0.4511 (2)0.09667 (8)0.0362 (5)
C40.6950 (5)0.2481 (2)0.11285 (8)0.0379 (5)
H40.75520.26350.14700.045*
C50.7940 (5)0.1419 (2)0.08615 (8)0.0409 (5)
C60.7094 (5)0.1156 (2)0.03465 (9)0.0452 (5)
H60.78350.04230.01860.054*
C70.5206 (6)0.1960 (2)0.00787 (8)0.0444 (5)
H70.46350.17970.02640.053*
C80.4159 (5)0.3043 (2)0.03411 (8)0.0384 (5)
C90.4997 (5)0.33121 (19)0.08587 (8)0.0348 (4)
N100.3739 (4)0.52494 (17)0.14136 (7)0.0381 (4)
C110.2603 (6)0.4597 (2)0.18796 (8)0.0438 (5)
H11A0.33490.37200.18870.053*
H11B0.03950.45670.18610.053*
C120.3607 (6)0.5271 (2)0.23732 (9)0.0508 (6)
H12A0.58150.52930.23930.061*
H12B0.28970.47880.26680.061*
S130.21585 (15)0.68925 (6)0.24065 (2)0.0528 (2)
C140.3614 (6)0.7410 (2)0.17972 (10)0.0523 (6)
H14A0.29480.82840.17300.063*
H14B0.58220.74110.18170.063*
C150.2576 (6)0.6564 (2)0.13526 (9)0.0481 (6)
H15A0.03670.65460.13360.058*
H15B0.32910.69220.10300.058*
N160.9967 (5)0.0516 (2)0.11267 (8)0.0544 (5)
O171.0914 (5)0.0766 (2)0.15609 (8)0.0709 (6)
O181.0684 (7)0.0459 (2)0.08947 (9)0.0947 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0451 (12)0.0511 (11)0.0391 (10)0.0083 (9)0.0064 (8)0.0038 (8)
N20.0374 (11)0.0473 (10)0.0415 (10)0.0078 (8)0.0026 (8)0.0028 (8)
C30.0280 (11)0.0407 (11)0.0399 (10)0.0028 (8)0.0017 (8)0.0005 (8)
C40.0318 (12)0.0422 (11)0.0397 (10)0.0011 (8)0.0014 (8)0.0020 (8)
C50.0343 (12)0.0400 (11)0.0485 (12)0.0048 (9)0.0045 (9)0.0008 (9)
C60.0428 (14)0.0416 (12)0.0515 (13)0.0044 (9)0.0092 (10)0.0077 (9)
C70.0452 (14)0.0485 (12)0.0395 (11)0.0001 (10)0.0018 (9)0.0079 (9)
C80.0306 (12)0.0435 (11)0.0410 (11)0.0010 (8)0.0003 (8)0.0016 (8)
C90.0264 (10)0.0388 (10)0.0394 (10)0.0007 (8)0.0036 (8)0.0032 (8)
N100.0370 (10)0.0384 (9)0.0391 (9)0.0059 (7)0.0014 (7)0.0021 (7)
C110.0454 (14)0.0442 (12)0.0419 (11)0.0028 (10)0.0060 (9)0.0000 (9)
C120.0577 (17)0.0538 (13)0.0410 (12)0.0110 (11)0.0007 (10)0.0011 (10)
S130.0537 (4)0.0569 (4)0.0479 (4)0.0097 (3)0.0017 (3)0.0127 (3)
C140.0563 (16)0.0439 (12)0.0566 (14)0.0075 (10)0.0011 (11)0.0063 (10)
C150.0574 (16)0.0432 (12)0.0437 (12)0.0128 (10)0.0005 (10)0.0009 (9)
N160.0559 (14)0.0524 (12)0.0552 (12)0.0179 (10)0.0063 (10)0.0015 (9)
O170.0765 (15)0.0763 (13)0.0594 (12)0.0331 (11)0.0106 (10)0.0007 (10)
O180.134 (2)0.0702 (14)0.0790 (14)0.0584 (15)0.0100 (14)0.0143 (11)
Geometric parameters (Å, º) top
N1—C81.337 (3)N10—C151.469 (3)
N1—N21.371 (3)N10—C111.477 (3)
N1—H1A0.86 (3)C11—C121.513 (3)
N2—C31.324 (3)C11—H11A0.9700
C3—N101.389 (3)C11—H11B0.9700
C3—C91.440 (3)C12—S131.806 (3)
C4—C51.378 (3)C12—H12A0.9700
C4—C91.395 (3)C12—H12B0.9700
C4—H40.9300S13—C141.793 (3)
C5—C61.400 (3)C14—C151.510 (3)
C5—N161.456 (3)C14—H14A0.9700
C6—C71.357 (3)C14—H14B0.9700
C6—H60.9300C15—H15A0.9700
C7—C81.398 (3)C15—H15B0.9700
C7—H70.9300N16—O171.216 (3)
C8—C91.408 (3)N16—O181.223 (3)
C8—N1—N2112.08 (18)N10—C11—C12112.06 (19)
C8—N1—H1A133 (2)N10—C11—H11A109.2
N2—N1—H1A115.1 (19)C12—C11—H11A109.2
C3—N2—N1106.35 (17)N10—C11—H11B109.2
N2—C3—N10121.76 (18)C12—C11—H11B109.2
N2—C3—C9110.22 (18)H11A—C11—H11B107.9
N10—C3—C9127.91 (19)C11—C12—S13112.15 (17)
C5—C4—C9116.40 (19)C11—C12—H12A109.2
C5—C4—H4121.8S13—C12—H12A109.2
C9—C4—H4121.8C11—C12—H12B109.2
C4—C5—C6123.5 (2)S13—C12—H12B109.2
C4—C5—N16118.6 (2)H12A—C12—H12B107.9
C6—C5—N16117.9 (2)C14—S13—C1296.15 (11)
C7—C6—C5120.7 (2)C15—C14—S13112.63 (19)
C7—C6—H6119.6C15—C14—H14A109.1
C5—C6—H6119.6S13—C14—H14A109.1
C6—C7—C8117.0 (2)C15—C14—H14B109.1
C6—C7—H7121.5S13—C14—H14B109.1
C8—C7—H7121.5H14A—C14—H14B107.8
N1—C8—C7130.3 (2)N10—C15—C14111.29 (19)
N1—C8—C9107.12 (19)N10—C15—H15A109.4
C7—C8—C9122.6 (2)C14—C15—H15A109.4
C4—C9—C8119.81 (19)N10—C15—H15B109.4
C4—C9—C3135.95 (19)C14—C15—H15B109.4
C8—C9—C3104.21 (18)H15A—C15—H15B108.0
C3—N10—C15114.00 (17)O17—N16—O18122.9 (2)
C3—N10—C11113.72 (17)O17—N16—C5119.3 (2)
C15—N10—C11113.20 (17)O18—N16—C5117.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.86 (3)2.09 (3)2.871 (3)151 (3)
Symmetry code: (i) x, y+1, z.
(IIIa) 3-(4-methylpiperazino)-5-nitro-1H-indazole methanol hemisolvate water hemisolvate top
Crystal data top
C12H15N5O2·0.5CH4O·0.5H2OZ = 4
Mr = 286.32F(000) = 608
Triclinic, P1Dx = 1.348 Mg m3
a = 7.3742 (11) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.1765 (13) ÅCell parameters from 25 reflections
c = 16.6356 (16) Åθ = 14.6–29.8°
α = 78.650 (9)°µ = 0.83 mm1
β = 84.958 (10)°T = 293 K
γ = 74.596 (11)°Prism, yellow
V = 1410.9 (3) Å30.50 × 0.20 × 0.15 mm
Data collection top
Kuma KM-4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 75.0°, θmin = 2.7°
Graphite monochromatorh = 09
ω/2θ scansk = 1415
5919 measured reflectionsl = 1919
5457 independent reflections2 standard reflections every 100 reflections
4475 reflections with I > 2σ(I) intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.2199P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5457 reflectionsΔρmax = 0.29 e Å3
394 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (5)
Crystal data top
C12H15N5O2·0.5CH4O·0.5H2Oγ = 74.596 (11)°
Mr = 286.32V = 1410.9 (3) Å3
Triclinic, P1Z = 4
a = 7.3742 (11) ÅCu Kα radiation
b = 12.1765 (13) ŵ = 0.83 mm1
c = 16.6356 (16) ÅT = 293 K
α = 78.650 (9)°0.50 × 0.20 × 0.15 mm
β = 84.958 (10)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.019
5919 measured reflections2 standard reflections every 100 reflections
5457 independent reflections intensity decay: 2.8%
4475 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
5457 reflectionsΔρmin = 0.22 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.5873 (2)0.17644 (12)0.50232 (8)0.0531 (3)
H1A0.513 (3)0.2400 (19)0.5258 (13)0.072 (6)*
N2A0.59407 (19)0.18026 (11)0.41905 (8)0.0498 (3)
C3A0.6985 (2)0.07817 (12)0.40660 (8)0.0415 (3)
C4A0.8610 (2)0.11015 (12)0.51045 (9)0.0440 (3)
H4A0.91340.15920.47350.053*
C5A0.8842 (2)0.14677 (13)0.59343 (9)0.0488 (3)
C6A0.8116 (2)0.07567 (16)0.65169 (9)0.0534 (4)
H6A0.83340.10420.70700.064*
C7A0.7092 (2)0.03498 (15)0.62709 (9)0.0525 (4)
H7A0.66020.08350.66470.063*
C8A0.6801 (2)0.07336 (13)0.54268 (9)0.0453 (3)
C9A0.75645 (19)0.00291 (12)0.48361 (8)0.0405 (3)
N10A0.74905 (18)0.05867 (10)0.32749 (7)0.0443 (3)
C11A0.7865 (3)0.05855 (12)0.31170 (9)0.0542 (4)
H11A0.66880.08040.31330.065*
H11B0.86440.11170.35410.065*
C12A0.8854 (2)0.06742 (14)0.22882 (10)0.0542 (4)
H12A1.00900.05370.22920.065*
H12B0.90210.14500.21790.065*
N13A0.77749 (19)0.01646 (11)0.16416 (7)0.0478 (3)
C14A0.7565 (2)0.13285 (13)0.18035 (9)0.0519 (4)
H14A0.68730.18940.13680.062*
H14B0.87980.14690.18100.062*
C15A0.6532 (2)0.14686 (12)0.26165 (9)0.0496 (4)
H15A0.64660.22310.27270.060*
H15B0.52560.14040.25920.060*
C16A0.8717 (3)0.00421 (18)0.08408 (10)0.0694 (5)
H16A0.80090.06120.04220.083*
H16B0.88010.07180.07370.083*
H16C0.99600.01520.08380.083*
N17A0.9904 (2)0.26529 (13)0.62187 (9)0.0620 (4)
O18A1.0605 (3)0.32644 (12)0.57141 (9)0.0860 (5)
O19A1.0069 (2)0.29991 (14)0.69602 (8)0.0895 (5)
N1B0.37863 (19)0.20137 (11)1.01678 (8)0.0486 (3)
H1B0.388 (3)0.1300 (18)1.0453 (12)0.060 (5)*
N2B0.46019 (18)0.21700 (10)0.93936 (7)0.0449 (3)
C3B0.43370 (19)0.33004 (11)0.91500 (8)0.0390 (3)
C4B0.26769 (19)0.50621 (11)0.98791 (8)0.0397 (3)
H4B0.28780.56660.94720.048*
C5B0.1737 (2)0.52695 (12)1.06061 (8)0.0418 (3)
C6B0.1428 (2)0.43887 (14)1.12457 (9)0.0479 (3)
H6B0.07940.45761.17280.057*
C7B0.2062 (2)0.32564 (13)1.11570 (9)0.0494 (3)
H7B0.18730.26601.15730.059*
C8B0.3010 (2)0.30239 (12)1.04151 (8)0.0424 (3)
C9B0.33190 (19)0.39118 (11)0.97748 (8)0.0384 (3)
N10B0.50691 (17)0.37635 (9)0.84001 (7)0.0416 (3)
C11B0.3736 (2)0.47104 (13)0.78940 (9)0.0492 (4)
H11C0.31030.52880.82220.059*
H11D0.27900.44090.77040.059*
C12B0.4756 (2)0.52626 (12)0.71677 (9)0.0511 (4)
H12C0.38590.58740.68340.061*
H12D0.56470.56060.73580.061*
N13B0.57576 (18)0.44036 (10)0.66718 (7)0.0459 (3)
C14B0.7102 (2)0.34840 (13)0.71804 (9)0.0493 (3)
H14C0.80230.38080.73670.059*
H14D0.77650.29100.68550.059*
C15B0.6121 (2)0.29096 (12)0.79118 (9)0.0462 (3)
H15C0.52660.25360.77270.055*
H15D0.70440.23200.82480.055*
C16B0.6694 (3)0.49476 (17)0.59518 (11)0.0664 (5)
H16D0.57700.55200.56170.080*
H16E0.73640.43690.56410.080*
H16F0.75630.53110.61250.080*
N17B0.09981 (18)0.64694 (11)1.07158 (8)0.0491 (3)
O18B0.1380 (2)0.72332 (10)1.01893 (8)0.0708 (4)
O19B0.00189 (17)0.66605 (11)1.13346 (8)0.0639 (3)
O200.5799 (2)0.00435 (10)0.87007 (8)0.0599 (3)
H20A0.547 (3)0.069 (2)0.8893 (15)0.090 (7)*
H20B0.475 (4)0.006 (2)0.8518 (16)0.087 (8)*
O210.37362 (18)0.32482 (11)0.60064 (8)0.0641 (3)
H21A0.423 (3)0.370 (2)0.6273 (15)0.089 (7)*
C220.1798 (3)0.37059 (17)0.60628 (14)0.0696 (5)
H22A0.13320.34470.66050.083*
H22B0.12040.34500.56690.083*
H22C0.15190.45360.59540.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0621 (8)0.0497 (7)0.0462 (7)0.0061 (6)0.0040 (6)0.0194 (6)
N2A0.0594 (8)0.0433 (6)0.0442 (6)0.0054 (5)0.0021 (5)0.0140 (5)
C3A0.0458 (7)0.0393 (6)0.0399 (7)0.0104 (5)0.0020 (5)0.0106 (5)
C4A0.0468 (8)0.0435 (7)0.0420 (7)0.0134 (6)0.0016 (6)0.0072 (5)
C5A0.0498 (8)0.0513 (8)0.0450 (8)0.0176 (7)0.0029 (6)0.0012 (6)
C6A0.0543 (9)0.0718 (10)0.0374 (7)0.0253 (8)0.0011 (6)0.0053 (7)
C7A0.0552 (9)0.0673 (10)0.0407 (7)0.0207 (8)0.0047 (6)0.0186 (7)
C8A0.0449 (8)0.0508 (8)0.0433 (7)0.0148 (6)0.0038 (6)0.0147 (6)
C9A0.0420 (7)0.0437 (7)0.0378 (7)0.0142 (6)0.0031 (5)0.0099 (5)
N10A0.0564 (7)0.0365 (6)0.0368 (6)0.0058 (5)0.0009 (5)0.0085 (4)
C11A0.0802 (11)0.0366 (7)0.0396 (7)0.0053 (7)0.0035 (7)0.0080 (6)
C12A0.0637 (10)0.0474 (8)0.0450 (8)0.0002 (7)0.0020 (7)0.0145 (6)
N13A0.0595 (8)0.0458 (6)0.0364 (6)0.0101 (5)0.0039 (5)0.0103 (5)
C14A0.0690 (10)0.0446 (8)0.0419 (7)0.0174 (7)0.0008 (7)0.0044 (6)
C15A0.0645 (9)0.0367 (7)0.0424 (7)0.0042 (6)0.0017 (6)0.0072 (6)
C16A0.0866 (13)0.0729 (11)0.0430 (9)0.0119 (10)0.0135 (8)0.0156 (8)
N17A0.0694 (9)0.0578 (8)0.0531 (8)0.0164 (7)0.0073 (7)0.0058 (6)
O18A0.1203 (13)0.0528 (7)0.0712 (9)0.0005 (7)0.0162 (8)0.0044 (6)
O19A0.1045 (12)0.0877 (10)0.0535 (8)0.0077 (8)0.0066 (7)0.0195 (7)
N1B0.0625 (8)0.0353 (6)0.0440 (6)0.0110 (5)0.0016 (5)0.0010 (5)
N2B0.0527 (7)0.0366 (6)0.0432 (6)0.0089 (5)0.0010 (5)0.0057 (5)
C3B0.0418 (7)0.0357 (6)0.0383 (6)0.0081 (5)0.0023 (5)0.0060 (5)
C4B0.0419 (7)0.0372 (6)0.0401 (7)0.0111 (5)0.0019 (5)0.0059 (5)
C5B0.0418 (7)0.0421 (7)0.0428 (7)0.0091 (6)0.0039 (5)0.0120 (5)
C6B0.0493 (8)0.0553 (8)0.0381 (7)0.0118 (7)0.0029 (6)0.0098 (6)
C7B0.0579 (9)0.0487 (8)0.0388 (7)0.0155 (7)0.0017 (6)0.0003 (6)
C8B0.0463 (7)0.0388 (7)0.0405 (7)0.0106 (6)0.0032 (5)0.0032 (5)
C9B0.0400 (7)0.0379 (6)0.0368 (6)0.0098 (5)0.0029 (5)0.0053 (5)
N10B0.0464 (6)0.0349 (5)0.0382 (6)0.0034 (5)0.0022 (5)0.0053 (4)
C11B0.0537 (8)0.0434 (7)0.0398 (7)0.0031 (6)0.0016 (6)0.0050 (6)
C12B0.0635 (9)0.0393 (7)0.0442 (8)0.0060 (6)0.0005 (6)0.0034 (6)
N13B0.0484 (7)0.0469 (6)0.0382 (6)0.0088 (5)0.0028 (5)0.0046 (5)
C14B0.0449 (8)0.0494 (8)0.0479 (8)0.0044 (6)0.0039 (6)0.0080 (6)
C15B0.0502 (8)0.0372 (6)0.0456 (7)0.0025 (6)0.0034 (6)0.0083 (5)
C16B0.0685 (11)0.0710 (11)0.0510 (9)0.0165 (9)0.0109 (8)0.0020 (8)
N17B0.0499 (7)0.0475 (7)0.0517 (7)0.0088 (5)0.0035 (5)0.0176 (6)
O18B0.0946 (10)0.0427 (6)0.0717 (8)0.0142 (6)0.0115 (7)0.0136 (6)
O19B0.0633 (7)0.0664 (7)0.0623 (7)0.0068 (6)0.0082 (6)0.0305 (6)
O200.0729 (9)0.0408 (6)0.0640 (7)0.0134 (5)0.0050 (6)0.0053 (5)
O210.0585 (7)0.0674 (7)0.0706 (8)0.0071 (6)0.0033 (6)0.0368 (6)
C220.0585 (10)0.0598 (10)0.0929 (14)0.0137 (8)0.0019 (9)0.0238 (10)
Geometric parameters (Å, º) top
N1A—C8A1.337 (2)C3B—N10B1.3900 (17)
N1A—N2A1.3739 (18)C3B—C9B1.4382 (18)
N1A—H1A0.95 (2)C4B—C5B1.3736 (19)
N2A—C3A1.3212 (18)C4B—C9B1.3947 (18)
C3A—N10A1.3845 (17)C4B—H4B0.9300
C3A—C9A1.4457 (19)C5B—C6B1.404 (2)
C4A—C5A1.376 (2)C5B—N17B1.4592 (18)
C4A—C9A1.394 (2)C6B—C7B1.366 (2)
C4A—H4A0.9300C6B—H6B0.9300
C5A—C6A1.403 (2)C7B—C8B1.404 (2)
C5A—N17A1.455 (2)C7B—H7B0.9300
C6A—C7A1.360 (2)C8B—C9B1.4108 (19)
C6A—H6A0.9300N10B—C15B1.4615 (17)
C7A—C8A1.406 (2)N10B—C11B1.4718 (17)
C7A—H7A0.9300C11B—C12B1.506 (2)
C8A—C9A1.4131 (19)C11B—H11C0.9700
N10A—C11A1.4520 (18)C11B—H11D0.9700
N10A—C15A1.4570 (18)C12B—N13B1.4635 (19)
C11A—C12A1.511 (2)C12B—H12C0.9700
C11A—H11A0.9700C12B—H12D0.9700
C11A—H11B0.9700N13B—C16B1.461 (2)
C12A—N13A1.456 (2)N13B—C14B1.4621 (19)
C12A—H12A0.9700C14B—C15B1.508 (2)
C12A—H12B0.9700C14B—H14C0.9700
N13A—C14A1.4599 (19)C14B—H14D0.9700
N13A—C16A1.463 (2)C15B—H15C0.9700
C14A—C15A1.510 (2)C15B—H15D0.9700
C14A—H14A0.9700C16B—H16D0.9600
C14A—H14B0.9700C16B—H16E0.9600
C15A—H15A0.9700C16B—H16F0.9600
C15A—H15B0.9700N17B—O18B1.2193 (18)
C16A—H16A0.9600N17B—O19B1.2287 (17)
C16A—H16B0.9600O20—H20A0.88 (3)
C16A—H16C0.9600O20—H20B0.85 (3)
N17A—O18A1.221 (2)O21—C221.392 (2)
N17A—O19A1.2282 (19)O21—H21A0.93 (3)
N1B—C8B1.3394 (19)C22—H22A0.9600
N1B—N2B1.3729 (17)C22—H22B0.9600
N1B—H1B0.89 (2)C22—H22C0.9600
N2B—C3B1.3223 (17)
C8A—N1A—N2A112.22 (12)N2B—C3B—N10B121.61 (12)
C8A—N1A—H1A126.8 (13)N2B—C3B—C9B110.57 (12)
N2A—N1A—H1A120.7 (13)N10B—C3B—C9B127.74 (12)
C3A—N2A—N1A106.08 (12)C5B—C4B—C9B117.45 (12)
N2A—C3A—N10A120.16 (13)C5B—C4B—H4B121.3
N2A—C3A—C9A110.77 (12)C9B—C4B—H4B121.3
N10A—C3A—C9A128.89 (12)C4B—C5B—C6B123.50 (13)
C5A—C4A—C9A117.83 (13)C4B—C5B—N17B118.27 (13)
C5A—C4A—H4A121.1C6B—C5B—N17B118.23 (13)
C9A—C4A—H4A121.1C7B—C6B—C5B119.83 (13)
C4A—C5A—C6A123.41 (15)C7B—C6B—H6B120.1
C4A—C5A—N17A118.05 (14)C5B—C6B—H6B120.1
C6A—C5A—N17A118.54 (14)C6B—C7B—C8B117.69 (13)
C7A—C6A—C5A119.90 (14)C6B—C7B—H7B121.2
C7A—C6A—H6A120.0C8B—C7B—H7B121.2
C5A—C6A—H6A120.0N1B—C8B—C7B130.40 (13)
C6A—C7A—C8A117.62 (14)N1B—C8B—C9B107.32 (12)
C6A—C7A—H7A121.2C7B—C8B—C9B122.27 (13)
C8A—C7A—H7A121.2C4B—C9B—C8B119.25 (12)
N1A—C8A—C7A129.99 (14)C4B—C9B—C3B136.82 (13)
N1A—C8A—C9A107.31 (13)C8B—C9B—C3B103.91 (11)
C7A—C8A—C9A122.67 (14)C3B—N10B—C15B114.88 (11)
C4A—C9A—C8A118.54 (13)C3B—N10B—C11B115.45 (11)
C4A—C9A—C3A137.89 (13)C15B—N10B—C11B110.91 (11)
C8A—C9A—C3A103.57 (12)N10B—C11B—C12B110.35 (12)
C3A—N10A—C11A118.86 (12)N10B—C11B—H11C109.6
C3A—N10A—C15A116.26 (11)C12B—C11B—H11C109.6
C11A—N10A—C15A113.73 (11)N10B—C11B—H11D109.6
N10A—C11A—C12A110.71 (13)C12B—C11B—H11D109.6
N10A—C11A—H11A109.5H11C—C11B—H11D108.1
C12A—C11A—H11A109.5N13B—C12B—C11B110.68 (12)
N10A—C11A—H11B109.5N13B—C12B—H12C109.5
C12A—C11A—H11B109.5C11B—C12B—H12C109.5
H11A—C11A—H11B108.1N13B—C12B—H12D109.5
N13A—C12A—C11A110.93 (12)C11B—C12B—H12D109.5
N13A—C12A—H12A109.5H12C—C12B—H12D108.1
C11A—C12A—H12A109.5C16B—N13B—C14B111.41 (13)
N13A—C12A—H12B109.5C16B—N13B—C12B110.65 (13)
C11A—C12A—H12B109.5C14B—N13B—C12B109.12 (11)
H12A—C12A—H12B108.0N13B—C14B—C15B111.10 (12)
C12A—N13A—C14A108.93 (12)N13B—C14B—H14C109.4
C12A—N13A—C16A110.30 (13)C15B—C14B—H14C109.4
C14A—N13A—C16A110.70 (13)N13B—C14B—H14D109.4
N13A—C14A—C15A110.73 (12)C15B—C14B—H14D109.4
N13A—C14A—H14A109.5H14C—C14B—H14D108.0
C15A—C14A—H14A109.5N10B—C15B—C14B110.44 (12)
N13A—C14A—H14B109.5N10B—C15B—H15C109.6
C15A—C14A—H14B109.5C14B—C15B—H15C109.6
H14A—C14A—H14B108.1N10B—C15B—H15D109.6
N10A—C15A—C14A110.50 (12)C14B—C15B—H15D109.6
N10A—C15A—H15A109.5H15C—C15B—H15D108.1
C14A—C15A—H15A109.5N13B—C16B—H16D109.5
N10A—C15A—H15B109.5N13B—C16B—H16E109.5
C14A—C15A—H15B109.5H16D—C16B—H16E109.5
H15A—C15A—H15B108.1N13B—C16B—H16F109.5
N13A—C16A—H16A109.5H16D—C16B—H16F109.5
N13A—C16A—H16B109.5H16E—C16B—H16F109.5
H16A—C16A—H16B109.5O18B—N17B—O19B123.20 (13)
N13A—C16A—H16C109.5O18B—N17B—C5B118.48 (13)
H16A—C16A—H16C109.5O19B—N17B—C5B118.32 (13)
H16B—C16A—H16C109.5H20A—O20—H20B99 (2)
O18A—N17A—O19A122.45 (16)C22—O21—H21A104.5 (15)
O18A—N17A—C5A119.02 (14)O21—C22—H22A109.5
O19A—N17A—C5A118.52 (16)O21—C22—H22B109.5
C8B—N1B—N2B111.78 (12)H22A—C22—H22B109.5
C8B—N1B—H1B128.0 (12)O21—C22—H22C109.5
N2B—N1B—H1B120.0 (12)H22A—C22—H22C109.5
C3B—N2B—N1B106.41 (11)H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O210.95 (2)1.84 (2)2.7606 (17)161.2 (19)
N1B—H1B···O20i0.89 (2)1.91 (2)2.7838 (17)164.6 (17)
O20—H20A···N2B0.88 (3)2.05 (3)2.9315 (18)177 (2)
O20—H20B···N13Aii0.85 (3)2.00 (3)2.830 (2)166 (2)
O21—H21A···N13B0.93 (3)1.82 (3)2.7282 (19)165 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.

Experimental details

(IIa)(IIIa)
Crystal data
Chemical formulaC11H12N4O2SC12H15N5O2·0.5CH4O·0.5H2O
Mr264.31286.32
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)4.3897 (8), 10.4102 (10), 25.829 (3)7.3742 (11), 12.1765 (13), 16.6356 (16)
α, β, γ (°)90, 91.166 (12), 9078.650 (9), 84.958 (10), 74.596 (11)
V3)1180.1 (3)1410.9 (3)
Z44
Radiation typeCu KαCu Kα
µ (mm1)2.460.83
Crystal size (mm)0.43 × 0.18 × 0.080.50 × 0.20 × 0.15
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.528, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
2499, 2192, 1769 5919, 5457, 4475
Rint0.0340.019
(sin θ/λ)max1)0.6100.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.04 0.042, 0.124, 1.04
No. of reflections21925457
No. of parameters167394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.230.29, 0.22

Computer programs: KM-4 Software (Kuma Diffraction, 1991), KM-4 Software, WinGX (Farrugia, 1999) und SHELXS97 (Sheldrick, 1990), WinGX und SHELXL97 (Sheldrick, 1997), WinGX und ORTEP-3 (Farrugia, 1997), WinGX und SHELXL97.

Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.86 (3)2.09 (3)2.871 (3)151 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O210.95 (2)1.84 (2)2.7606 (17)161.2 (19)
N1B—H1B···O20i0.89 (2)1.91 (2)2.7838 (17)164.6 (17)
O20—H20A···N2B0.88 (3)2.05 (3)2.9315 (18)177 (2)
O20—H20B···N13Aii0.85 (3)2.00 (3)2.830 (2)166 (2)
O21—H21A···N13B0.93 (3)1.82 (3)2.7282 (19)165 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds