Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110003641/jz3170sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003641/jz3170Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003641/jz3170IIsup3.hkl |
CCDC references: 774084; 774085
2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl fluoride, (I), and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl fluoride, (II), were both obtained as single α-anomers (as judged by1H NMR spectroscopy). They were prepared following known procedures (Juennemann et al., 1993), exposing the peracetylated glucose or maltose to a 70% mixture of hydrogen fluoride in pyridine in a Teflon bottle. The resulting products were purified by crystallization from a mixture of ethyl acetate and hexane [Solvent ratio?]. Crystals suitable for X-ray diffraction were obtained as colourless blocks in both cases by slow recrystallization from the same solvent system.
Since the anomalous scattering does not allow definitive determination of the absolute configurations in either of these compounds, the intensities of Friedel pairs were merged (using the MERG 3 command in SHELXL97; Sheldrick, 2008). The configurations were established since these compounds were prepared from α-D-glucose and α-D-maltose.
All H atoms were included in idealized positions, with C—H = 0.96–0.98 Å and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. The methyl groups were refined as rigid groups rotating about the C—Me bond. In compound (I), three of the methyl groups showed disorder over alternative orientations, all of which were included as idealized methyl groups with two positions rotated by 60° from each other. These were allowed to rotate about the C—Me bond, and the site occupation factors of the two orientations refined to 0.25 (3):0.75 (3), 0.39 (2):0.61 (2) and 0.22 (2):0.78 (2) for the H atoms at C22, C42 and C62, respectively.
For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1976; Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
C14H19FO9 | Z = 2 |
Mr = 350.29 | F(000) = 368 |
Monoclinic, P21 | Dx = 1.357 Mg m−3 |
a = 5.35502 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.96182 (14) Å | µ = 0.12 mm−1 |
c = 20.1151 (5) Å | T = 140 K |
β = 92.061 (2)° | Plate, colourless |
V = 857.06 (3) Å3 | 0.55 × 0.31 × 0.11 mm |
Oxford Xcalibur 3 CCD area-detector diffractometer | 2677 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2325 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 16.0050 pixels mm-1 | θmax = 30.0°, θmin = 3.3° |
thin–slice ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −11→11 |
Tmin = 0.970, Tmax = 1.033 | l = −28→28 |
24426 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0461P)2] where P = (Fo2 + 2Fc2)/3 |
2677 reflections | (Δ/σ)max < 0.001 |
224 parameters | Δρmax = 0.22 e Å−3 |
1 restraint | Δρmin = −0.14 e Å−3 |
C14H19FO9 | V = 857.06 (3) Å3 |
Mr = 350.29 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.35502 (11) Å | µ = 0.12 mm−1 |
b = 7.96182 (14) Å | T = 140 K |
c = 20.1151 (5) Å | 0.55 × 0.31 × 0.11 mm |
β = 92.061 (2)° |
Oxford Xcalibur 3 CCD area-detector diffractometer | 2677 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2325 reflections with I > 2σ(I) |
Tmin = 0.970, Tmax = 1.033 | Rint = 0.037 |
24426 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.22 e Å−3 |
2677 reflections | Δρmin = −0.14 e Å−3 |
224 parameters |
Experimental. CrysAlisPro RED (Oxford Diffraction Ltd., Version 1.171.32.24). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.6033 (3) | 0.0924 (2) | 0.77495 (8) | 0.0328 (4) | |
H1 | 0.6134 | −0.0175 | 0.7969 | 0.039* | |
F1 | 0.35222 (18) | 0.12992 (12) | 0.76037 (5) | 0.0404 (3) | |
C2 | 0.7110 (3) | 0.2240 (2) | 0.82211 (8) | 0.0328 (4) | |
H2 | 0.8718 | 0.1842 | 0.8409 | 0.039* | |
O2 | 0.5423 (2) | 0.2501 (2) | 0.87516 (6) | 0.0439 (3) | |
C21 | 0.5919 (3) | 0.1744 (2) | 0.93372 (8) | 0.0318 (4) | |
O21 | 0.7746 (2) | 0.0915 (2) | 0.94472 (6) | 0.0452 (3) | |
C22 | 0.3888 (4) | 0.2075 (3) | 0.98137 (10) | 0.0472 (5) | |
H22A | 0.2421 | 0.2465 | 0.9573 | 0.071* | 0.25 (3) |
H22B | 0.4436 | 0.2914 | 1.0129 | 0.071* | 0.25 (3) |
H22C | 0.3507 | 0.1057 | 1.0045 | 0.071* | 0.25 (3) |
H22D | 0.4488 | 0.1825 | 1.0258 | 0.071* | 0.75 (3) |
H22E | 0.2473 | 0.1376 | 0.9702 | 0.071* | 0.75 (3) |
H22F | 0.3403 | 0.3234 | 0.9786 | 0.071* | 0.75 (3) |
C3 | 0.7486 (3) | 0.3919 (2) | 0.78877 (8) | 0.0284 (3) | |
H3 | 0.5886 | 0.4499 | 0.7813 | 0.034* | |
O3 | 0.9140 (2) | 0.48888 (16) | 0.83218 (6) | 0.0364 (3) | |
C31 | 0.8463 (3) | 0.6464 (2) | 0.84832 (8) | 0.0306 (3) | |
O31 | 0.6465 (2) | 0.70525 (15) | 0.83370 (7) | 0.0394 (3) | |
C32 | 1.0518 (3) | 0.7312 (3) | 0.88735 (10) | 0.0458 (5) | |
H32A | 0.9960 | 0.8395 | 0.9017 | 0.069* | |
H32B | 1.1937 | 0.7446 | 0.8600 | 0.069* | |
H32C | 1.0980 | 0.6642 | 0.9255 | 0.069* | |
C4 | 0.8793 (3) | 0.36885 (18) | 0.72381 (8) | 0.0246 (3) | |
H4 | 1.0515 | 0.3313 | 0.7327 | 0.029* | |
O4 | 0.8793 (2) | 0.53069 (13) | 0.69203 (6) | 0.0287 (2) | |
C41 | 1.1004 (3) | 0.5908 (2) | 0.67263 (8) | 0.0292 (3) | |
O41 | 1.2878 (2) | 0.51069 (18) | 0.67489 (8) | 0.0493 (4) | |
C42 | 1.0749 (4) | 0.7672 (2) | 0.64776 (10) | 0.0412 (4) | |
H42A | 0.9049 | 0.7874 | 0.6332 | 0.062* | 0.39 (2) |
H42B | 1.1827 | 0.7836 | 0.6112 | 0.062* | 0.39 (2) |
H42C | 1.1209 | 0.8440 | 0.6829 | 0.062* | 0.39 (2) |
H42D | 1.2341 | 0.8226 | 0.6517 | 0.062* | 0.61 (2) |
H42E | 0.9563 | 0.8264 | 0.6737 | 0.062* | 0.61 (2) |
H42F | 1.0181 | 0.7660 | 0.6020 | 0.062* | 0.61 (2) |
C5 | 0.7405 (3) | 0.24153 (19) | 0.68033 (8) | 0.0250 (3) | |
H5 | 0.5703 | 0.2814 | 0.6701 | 0.030* | |
O5 | 0.7315 (2) | 0.08485 (13) | 0.71669 (6) | 0.0297 (2) | |
C6 | 0.8690 (3) | 0.20300 (19) | 0.61687 (7) | 0.0265 (3) | |
H6A | 0.8979 | 0.3053 | 0.5921 | 0.032* | |
H6B | 1.0283 | 0.1485 | 0.6263 | 0.032* | |
O6 | 0.7027 (2) | 0.09256 (14) | 0.57958 (5) | 0.0288 (2) | |
C61 | 0.7852 (3) | 0.0334 (2) | 0.52204 (8) | 0.0276 (3) | |
O61 | 0.9860 (2) | 0.06861 (17) | 0.50114 (7) | 0.0382 (3) | |
C62 | 0.5989 (3) | −0.0825 (2) | 0.48918 (10) | 0.0385 (4) | |
H62A | 0.4429 | −0.0743 | 0.5110 | 0.058* | 0.78 (2) |
H62B | 0.6596 | −0.1958 | 0.4922 | 0.058* | 0.78 (2) |
H62C | 0.5747 | −0.0519 | 0.4432 | 0.058* | 0.78 (2) |
H62D | 0.6752 | −0.1404 | 0.4533 | 0.058* | 0.22 (2) |
H62E | 0.4585 | −0.0188 | 0.4721 | 0.058* | 0.22 (2) |
H62F | 0.5434 | −0.1628 | 0.5211 | 0.058* | 0.22 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0315 (8) | 0.0285 (7) | 0.0386 (9) | 0.0109 (7) | 0.0070 (7) | 0.0106 (7) |
F1 | 0.0291 (5) | 0.0380 (6) | 0.0544 (6) | 0.0062 (4) | 0.0055 (4) | 0.0086 (5) |
C2 | 0.0296 (8) | 0.0422 (9) | 0.0269 (8) | 0.0180 (7) | 0.0070 (6) | 0.0088 (7) |
O2 | 0.0376 (7) | 0.0600 (8) | 0.0348 (6) | 0.0242 (7) | 0.0123 (5) | 0.0101 (6) |
C21 | 0.0328 (8) | 0.0379 (9) | 0.0248 (8) | −0.0023 (7) | 0.0019 (6) | −0.0062 (7) |
O21 | 0.0443 (7) | 0.0622 (9) | 0.0293 (6) | 0.0149 (7) | 0.0041 (5) | 0.0091 (6) |
C22 | 0.0421 (10) | 0.0666 (14) | 0.0337 (9) | 0.0012 (10) | 0.0106 (8) | −0.0074 (9) |
C3 | 0.0265 (8) | 0.0309 (8) | 0.0276 (8) | 0.0115 (6) | −0.0032 (6) | −0.0016 (6) |
O3 | 0.0327 (6) | 0.0418 (7) | 0.0341 (7) | 0.0161 (5) | −0.0090 (5) | −0.0094 (5) |
C31 | 0.0312 (8) | 0.0341 (8) | 0.0271 (7) | 0.0057 (7) | 0.0091 (6) | −0.0011 (6) |
O31 | 0.0320 (7) | 0.0313 (6) | 0.0548 (8) | 0.0084 (5) | 0.0026 (6) | −0.0022 (6) |
C32 | 0.0370 (10) | 0.0552 (12) | 0.0453 (11) | 0.0017 (9) | 0.0042 (8) | −0.0140 (10) |
C4 | 0.0229 (7) | 0.0229 (7) | 0.0277 (8) | 0.0089 (6) | −0.0009 (6) | 0.0031 (6) |
O4 | 0.0280 (6) | 0.0220 (5) | 0.0360 (6) | 0.0089 (4) | 0.0012 (5) | 0.0046 (5) |
C41 | 0.0321 (8) | 0.0234 (7) | 0.0319 (8) | 0.0033 (7) | −0.0012 (6) | −0.0018 (6) |
O41 | 0.0285 (7) | 0.0420 (8) | 0.0778 (10) | 0.0092 (6) | 0.0066 (6) | 0.0190 (7) |
C42 | 0.0498 (11) | 0.0242 (8) | 0.0502 (11) | 0.0055 (8) | 0.0086 (8) | 0.0030 (7) |
C5 | 0.0259 (7) | 0.0209 (6) | 0.0280 (7) | 0.0061 (6) | −0.0002 (6) | 0.0047 (6) |
O5 | 0.0340 (6) | 0.0216 (5) | 0.0340 (6) | 0.0078 (5) | 0.0069 (4) | 0.0058 (5) |
C6 | 0.0266 (7) | 0.0236 (7) | 0.0293 (8) | 0.0014 (6) | −0.0001 (6) | −0.0008 (6) |
O6 | 0.0259 (5) | 0.0302 (5) | 0.0302 (6) | 0.0003 (5) | 0.0016 (4) | −0.0039 (5) |
C61 | 0.0277 (8) | 0.0251 (7) | 0.0300 (8) | 0.0052 (6) | −0.0008 (6) | −0.0004 (6) |
O61 | 0.0314 (6) | 0.0462 (7) | 0.0375 (6) | −0.0051 (5) | 0.0073 (5) | −0.0074 (5) |
C62 | 0.0311 (9) | 0.0428 (10) | 0.0416 (10) | −0.0030 (8) | 0.0021 (7) | −0.0122 (8) |
C1—O5 | 1.381 (2) | C4—C5 | 1.516 (2) |
C1—F1 | 1.3981 (19) | C4—H4 | 0.9800 |
C1—C2 | 1.514 (3) | O4—C41 | 1.348 (2) |
C1—H1 | 0.9800 | C41—O41 | 1.188 (2) |
C2—O2 | 1.4378 (19) | C41—C42 | 1.496 (2) |
C2—C3 | 1.512 (2) | C42—H42A | 0.9600 |
C2—H2 | 0.9800 | C42—H42B | 0.9600 |
O2—C21 | 1.341 (2) | C42—H42C | 0.9600 |
C21—O21 | 1.194 (2) | C42—H42D | 0.9600 |
C21—C22 | 1.499 (2) | C42—H42E | 0.9600 |
C22—H22A | 0.9600 | C42—H42F | 0.9600 |
C22—H22B | 0.9600 | C5—O5 | 1.4477 (18) |
C22—H22C | 0.9600 | C5—C6 | 1.503 (2) |
C22—H22D | 0.9600 | C5—H5 | 0.9800 |
C22—H22E | 0.9600 | C6—O6 | 1.4424 (18) |
C22—H22F | 0.9600 | C6—H6A | 0.9700 |
C3—O3 | 1.445 (2) | C6—H6B | 0.9700 |
C3—C4 | 1.515 (2) | O6—C61 | 1.339 (2) |
C3—H3 | 0.9800 | C61—O61 | 1.202 (2) |
O3—C31 | 1.348 (2) | C61—C62 | 1.495 (2) |
C31—O31 | 1.195 (2) | C62—H62A | 0.9600 |
C31—C32 | 1.490 (3) | C62—H62B | 0.9600 |
C32—H32A | 0.9600 | C62—H62C | 0.9600 |
C32—H32B | 0.9600 | C62—H62D | 0.9600 |
C32—H32C | 0.9600 | C62—H62E | 0.9600 |
C4—O4 | 1.4384 (18) | C62—H62F | 0.9600 |
O5—C1—F1 | 109.58 (13) | O41—C41—C42 | 125.72 (17) |
O5—C1—C2 | 111.84 (14) | O4—C41—C42 | 111.08 (14) |
F1—C1—C2 | 108.98 (13) | C41—C42—H42A | 109.5 |
O5—C1—H1 | 108.8 | C41—C42—H42B | 109.5 |
F1—C1—H1 | 108.8 | H42A—C42—H42B | 109.5 |
C2—C1—H1 | 108.8 | C41—C42—H42C | 109.5 |
O2—C2—C3 | 107.38 (14) | H42A—C42—H42C | 109.5 |
O2—C2—C1 | 109.25 (15) | H42B—C42—H42C | 109.5 |
C3—C2—C1 | 112.83 (13) | C41—C42—H42D | 109.5 |
O2—C2—H2 | 109.1 | H42A—C42—H42D | 141.1 |
C3—C2—H2 | 109.1 | H42B—C42—H42D | 56.3 |
C1—C2—H2 | 109.1 | H42C—C42—H42D | 56.3 |
C21—O2—C2 | 118.48 (13) | C41—C42—H42E | 109.5 |
O21—C21—O2 | 123.11 (15) | H42A—C42—H42E | 56.3 |
O21—C21—C22 | 125.95 (17) | H42B—C42—H42E | 141.1 |
O2—C21—C22 | 110.93 (16) | H42C—C42—H42E | 56.3 |
C21—C22—H22A | 109.5 | H42D—C42—H42E | 109.5 |
C21—C22—H22B | 109.5 | C41—C42—H42F | 109.5 |
H22A—C22—H22B | 109.5 | H42A—C42—H42F | 56.3 |
C21—C22—H22C | 109.5 | H42B—C42—H42F | 56.3 |
H22A—C22—H22C | 109.5 | H42C—C42—H42F | 141.1 |
H22B—C22—H22C | 109.5 | H42D—C42—H42F | 109.5 |
C21—C22—H22D | 109.5 | H42E—C42—H42F | 109.5 |
H22A—C22—H22D | 141.1 | O5—C5—C6 | 106.12 (12) |
H22B—C22—H22D | 56.3 | O5—C5—C4 | 108.02 (11) |
H22C—C22—H22D | 56.3 | C6—C5—C4 | 113.36 (13) |
C21—C22—H22E | 109.5 | O5—C5—H5 | 109.7 |
H22A—C22—H22E | 56.3 | C6—C5—H5 | 109.7 |
H22B—C22—H22E | 141.1 | C4—C5—H5 | 109.7 |
H22C—C22—H22E | 56.3 | C1—O5—C5 | 114.70 (12) |
H22D—C22—H22E | 109.5 | O6—C6—C5 | 105.85 (12) |
C21—C22—H22F | 109.5 | O6—C6—H6A | 110.6 |
H22A—C22—H22F | 56.3 | C5—C6—H6A | 110.6 |
H22B—C22—H22F | 56.3 | O6—C6—H6B | 110.6 |
H22C—C22—H22F | 141.1 | C5—C6—H6B | 110.6 |
H22D—C22—H22F | 109.5 | H6A—C6—H6B | 108.7 |
H22E—C22—H22F | 109.5 | C61—O6—C6 | 116.57 (12) |
O3—C3—C2 | 107.03 (13) | O61—C61—O6 | 123.18 (15) |
O3—C3—C4 | 107.09 (13) | O61—C61—C62 | 125.47 (16) |
C2—C3—C4 | 110.39 (13) | O6—C61—C62 | 111.33 (14) |
O3—C3—H3 | 110.7 | C61—C62—H62A | 109.5 |
C2—C3—H3 | 110.7 | C61—C62—H62B | 109.5 |
C4—C3—H3 | 110.7 | H62A—C62—H62B | 109.5 |
C31—O3—C3 | 118.57 (13) | C61—C62—H62C | 109.5 |
O31—C31—O3 | 123.49 (16) | H62A—C62—H62C | 109.5 |
O31—C31—C32 | 126.11 (17) | H62B—C62—H62C | 109.5 |
O3—C31—C32 | 110.39 (15) | C61—C62—H62D | 109.5 |
C31—C32—H32A | 109.5 | H62A—C62—H62D | 141.1 |
C31—C32—H32B | 109.5 | H62B—C62—H62D | 56.3 |
H32A—C32—H32B | 109.5 | H62C—C62—H62D | 56.3 |
C31—C32—H32C | 109.5 | C61—C62—H62E | 109.5 |
H32A—C32—H32C | 109.5 | H62A—C62—H62E | 56.3 |
H32B—C32—H32C | 109.5 | H62B—C62—H62E | 141.1 |
O4—C4—C3 | 106.38 (12) | H62C—C62—H62E | 56.3 |
O4—C4—C5 | 110.52 (11) | H62D—C62—H62E | 109.5 |
C3—C4—C5 | 110.27 (13) | C61—C62—H62F | 109.5 |
O4—C4—H4 | 109.9 | H62A—C62—H62F | 56.3 |
C3—C4—H4 | 109.9 | H62B—C62—H62F | 56.3 |
C5—C4—H4 | 109.9 | H62C—C62—H62F | 141.1 |
C41—O4—C4 | 117.43 (12) | H62D—C62—H62F | 109.5 |
O41—C41—O4 | 123.20 (15) | H62E—C62—H62F | 109.5 |
O5—C1—C2—O2 | 168.42 (12) | C2—C3—C4—C5 | 53.23 (16) |
F1—C1—C2—O2 | 47.11 (17) | C3—C4—O4—C41 | 127.16 (14) |
O5—C1—C2—C3 | 49.06 (17) | C5—C4—O4—C41 | −113.13 (14) |
F1—C1—C2—C3 | −72.25 (16) | C4—O4—C41—O41 | 7.2 (2) |
C3—C2—O2—C21 | −137.54 (16) | C4—O4—C41—C42 | −173.47 (14) |
C1—C2—O2—C21 | 99.78 (17) | O4—C4—C5—O5 | −176.06 (12) |
C2—O2—C21—O21 | 3.0 (3) | C3—C4—C5—O5 | −58.72 (15) |
C2—O2—C21—C22 | −176.58 (17) | O4—C4—C5—C6 | 66.65 (15) |
O2—C2—C3—O3 | 75.69 (16) | C3—C4—C5—C6 | −176.01 (13) |
C1—C2—C3—O3 | −163.87 (13) | F1—C1—O5—C5 | 63.56 (18) |
O2—C2—C3—C4 | −168.09 (13) | C2—C1—O5—C5 | −57.40 (16) |
C1—C2—C3—C4 | −47.66 (18) | C6—C5—O5—C1 | −175.67 (13) |
C2—C3—O3—C31 | −129.48 (15) | C4—C5—O5—C1 | 62.46 (16) |
C4—C3—O3—C31 | 112.13 (15) | O5—C5—C6—O6 | 66.43 (14) |
C3—O3—C31—O31 | 7.1 (2) | C4—C5—C6—O6 | −175.17 (11) |
C3—O3—C31—C32 | −174.11 (15) | C5—C6—O6—C61 | −176.41 (12) |
O3—C3—C4—O4 | −70.72 (14) | C6—O6—C61—O61 | −0.2 (2) |
C2—C3—C4—O4 | 173.10 (13) | C6—O6—C61—C62 | 178.56 (13) |
O3—C3—C4—C5 | 169.42 (11) |
C26H35FO17 | Z = 2 |
Mr = 638.54 | F(000) = 672 |
Monoclinic, P21 | Dx = 1.392 Mg m−3 |
a = 5.63832 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 18.2908 (3) Å | µ = 0.12 mm−1 |
c = 14.8144 (2) Å | T = 140 K |
β = 94.4966 (15)° | Prism, colourless |
V = 1523.09 (4) Å3 | 0.42 × 0.37 × 0.14 mm |
Oxford Xcalibur 3 CCD area-detector diffractometer | 4545 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3785 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 16.0050 pixels mm-1 | θmax = 30.0°, θmin = 3.6° |
thin slice ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −25→25 |
Tmin = 0.923, Tmax = 1.070 | l = −20→20 |
40401 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0679P)2 + 0.1222P] where P = (Fo2 + 2Fc2)/3 |
4545 reflections | (Δ/σ)max < 0.001 |
404 parameters | Δρmax = 0.70 e Å−3 |
1 restraint | Δρmin = −0.46 e Å−3 |
C26H35FO17 | V = 1523.09 (4) Å3 |
Mr = 638.54 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.63832 (9) Å | µ = 0.12 mm−1 |
b = 18.2908 (3) Å | T = 140 K |
c = 14.8144 (2) Å | 0.42 × 0.37 × 0.14 mm |
β = 94.4966 (15)° |
Oxford Xcalibur 3 CCD area-detector diffractometer | 4545 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 3785 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 1.070 | Rint = 0.052 |
40401 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 1 restraint |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.70 e Å−3 |
4545 reflections | Δρmin = −0.46 e Å−3 |
404 parameters |
Experimental. CrysAlisPro RED (Oxford Diffraction Ltd., Version 1.171.32.24). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8543 (5) | 0.75932 (16) | 0.47776 (19) | 0.0281 (6) | |
H1 | 0.8815 | 0.8013 | 0.5184 | 0.034* | |
F1 | 1.0726 (3) | 0.72718 (10) | 0.46416 (12) | 0.0326 (4) | |
C2 | 0.7013 (5) | 0.70408 (16) | 0.52227 (17) | 0.0258 (5) | |
H2 | 0.5584 | 0.7282 | 0.5414 | 0.031* | |
O2 | 0.8410 (4) | 0.67711 (14) | 0.60025 (12) | 0.0344 (5) | |
C21 | 0.7528 (6) | 0.6813 (2) | 0.68088 (19) | 0.0359 (7) | |
O21 | 0.5548 (6) | 0.6998 (3) | 0.69031 (19) | 0.0815 (12) | |
C22 | 0.9284 (6) | 0.6531 (2) | 0.7536 (2) | 0.0443 (8) | |
H22A | 0.9142 | 0.6009 | 0.7577 | 0.066* | |
H22B | 0.8970 | 0.6748 | 0.8105 | 0.066* | |
H22C | 1.0865 | 0.6656 | 0.7394 | 0.066* | |
C3 | 0.6293 (4) | 0.64091 (14) | 0.45845 (16) | 0.0202 (5) | |
H3 | 0.7656 | 0.6088 | 0.4509 | 0.024* | |
O3 | 0.4392 (3) | 0.60079 (11) | 0.49598 (12) | 0.0253 (4) | |
C31 | 0.4958 (5) | 0.54205 (19) | 0.5482 (2) | 0.0341 (7) | |
O31 | 0.6948 (4) | 0.51879 (16) | 0.5608 (2) | 0.0550 (8) | |
C32 | 0.2820 (6) | 0.5108 (2) | 0.5865 (3) | 0.0489 (9) | |
H32A | 0.2053 | 0.5479 | 0.6196 | 0.073* | |
H32B | 0.3289 | 0.4711 | 0.6264 | 0.073* | |
H32C | 0.1736 | 0.4931 | 0.5381 | 0.073* | |
C4 | 0.5274 (4) | 0.67022 (14) | 0.36663 (16) | 0.0202 (5) | |
H4 | 0.3700 | 0.6917 | 0.3722 | 0.024* | |
O4 | 0.5111 (3) | 0.61181 (10) | 0.30199 (11) | 0.0204 (3) | |
C5 | 0.6943 (5) | 0.72693 (14) | 0.32998 (17) | 0.0238 (5) | |
H5 | 0.8418 | 0.7028 | 0.3154 | 0.029* | |
O5 | 0.7499 (4) | 0.78380 (10) | 0.39587 (13) | 0.0292 (4) | |
C6 | 0.5868 (5) | 0.76593 (16) | 0.24753 (19) | 0.0296 (6) | |
H6A | 0.7000 | 0.8004 | 0.2259 | 0.035* | |
H6B | 0.5443 | 0.7311 | 0.1996 | 0.035* | |
O6 | 0.3775 (4) | 0.80396 (12) | 0.27250 (15) | 0.0355 (5) | |
C61 | 0.3229 (6) | 0.86492 (18) | 0.2293 (3) | 0.0429 (8) | |
O61 | 0.4214 (7) | 0.8825 (2) | 0.1631 (3) | 0.1068 (17) | |
C62 | 0.1211 (6) | 0.90479 (18) | 0.2675 (2) | 0.0392 (7) | |
H62A | 0.0221 | 0.9265 | 0.2190 | 0.059* | |
H62B | 0.1832 | 0.9424 | 0.3080 | 0.059* | |
H62C | 0.0287 | 0.8710 | 0.2999 | 0.059* | |
C41 | 0.2934 (4) | 0.57372 (15) | 0.29205 (17) | 0.0218 (5) | |
H41 | 0.2211 | 0.5732 | 0.3501 | 0.026* | |
C42 | 0.3466 (4) | 0.49612 (14) | 0.26440 (17) | 0.0217 (5) | |
H42 | 0.2009 | 0.4667 | 0.2615 | 0.026* | |
O42 | 0.5249 (3) | 0.46378 (11) | 0.32721 (13) | 0.0287 (4) | |
C421 | 0.4574 (5) | 0.41221 (18) | 0.3840 (2) | 0.0372 (7) | |
O421 | 0.2547 (5) | 0.3998 (2) | 0.3934 (3) | 0.0928 (15) | |
C422 | 0.6667 (6) | 0.3744 (2) | 0.4311 (3) | 0.0450 (9) | |
H42A | 0.7975 | 0.4080 | 0.4392 | 0.067* | |
H42B | 0.7115 | 0.3337 | 0.3951 | 0.067* | |
H42C | 0.6258 | 0.3571 | 0.4890 | 0.067* | |
C43 | 0.4525 (4) | 0.49523 (13) | 0.17340 (18) | 0.0210 (5) | |
H43 | 0.6088 | 0.5190 | 0.1786 | 0.025* | |
O43 | 0.4777 (3) | 0.41974 (10) | 0.14757 (14) | 0.0264 (4) | |
C431 | 0.7009 (5) | 0.39281 (16) | 0.1475 (2) | 0.0267 (6) | |
O431 | 0.8748 (3) | 0.42949 (12) | 0.15643 (17) | 0.0374 (5) | |
C432 | 0.6975 (6) | 0.31181 (19) | 0.1342 (4) | 0.0558 (11) | |
H43A | 0.6128 | 0.2893 | 0.1806 | 0.084* | |
H43B | 0.8577 | 0.2937 | 0.1376 | 0.084* | |
H43C | 0.6198 | 0.3004 | 0.0759 | 0.084* | |
C44 | 0.2902 (4) | 0.53365 (14) | 0.10220 (17) | 0.0210 (5) | |
H44 | 0.1508 | 0.5036 | 0.0840 | 0.025* | |
O44 | 0.4317 (3) | 0.54654 (11) | 0.02680 (12) | 0.0259 (4) | |
C441 | 0.3355 (5) | 0.53338 (15) | −0.05887 (18) | 0.0265 (5) | |
O441 | 0.1375 (4) | 0.51048 (12) | −0.07524 (14) | 0.0335 (5) | |
C442 | 0.5070 (6) | 0.55528 (18) | −0.1255 (2) | 0.0359 (7) | |
H44A | 0.6585 | 0.5329 | −0.1095 | 0.054* | |
H44B | 0.5246 | 0.6075 | −0.1249 | 0.054* | |
H44C | 0.4485 | 0.5396 | −0.1849 | 0.054* | |
C45 | 0.2157 (5) | 0.60876 (15) | 0.13594 (17) | 0.0220 (5) | |
H45 | 0.3523 | 0.6419 | 0.1368 | 0.026* | |
O45 | 0.1328 (3) | 0.60589 (11) | 0.22489 (12) | 0.0243 (4) | |
C46 | 0.0165 (5) | 0.63951 (14) | 0.07376 (19) | 0.0277 (6) | |
H46A | 0.0434 | 0.6285 | 0.0113 | 0.033* | |
H46B | −0.1335 | 0.6177 | 0.0872 | 0.033* | |
O46 | 0.0076 (4) | 0.71792 (10) | 0.08672 (13) | 0.0304 (4) | |
C461 | −0.1296 (6) | 0.75321 (17) | 0.02403 (19) | 0.0357 (7) | |
O461 | −0.2391 (7) | 0.72173 (15) | −0.0365 (2) | 0.0771 (11) | |
C462 | −0.1235 (8) | 0.83421 (17) | 0.0351 (2) | 0.0427 (8) | |
H46C | −0.2457 | 0.8490 | 0.0728 | 0.064* | |
H46D | −0.1498 | 0.8571 | −0.0232 | 0.064* | |
H46E | 0.0290 | 0.8487 | 0.0627 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0276 (14) | 0.0277 (14) | 0.0291 (13) | 0.0017 (11) | 0.0043 (11) | −0.0114 (11) |
F1 | 0.0252 (8) | 0.0353 (9) | 0.0379 (9) | 0.0000 (7) | 0.0064 (7) | −0.0088 (8) |
C2 | 0.0250 (13) | 0.0333 (14) | 0.0194 (11) | 0.0047 (11) | 0.0045 (10) | −0.0066 (10) |
O2 | 0.0320 (10) | 0.0530 (13) | 0.0183 (8) | 0.0091 (10) | 0.0020 (7) | −0.0066 (9) |
C21 | 0.0380 (16) | 0.0502 (19) | 0.0206 (12) | −0.0040 (14) | 0.0102 (11) | −0.0032 (13) |
O21 | 0.0615 (18) | 0.151 (4) | 0.0347 (13) | 0.028 (2) | 0.0206 (13) | 0.0108 (18) |
C22 | 0.0487 (19) | 0.060 (2) | 0.0231 (14) | −0.0130 (17) | −0.0022 (13) | 0.0018 (14) |
C3 | 0.0187 (11) | 0.0259 (12) | 0.0164 (10) | 0.0011 (9) | 0.0031 (9) | 0.0005 (9) |
O3 | 0.0186 (8) | 0.0363 (11) | 0.0214 (8) | −0.0003 (8) | 0.0035 (7) | 0.0042 (8) |
C31 | 0.0278 (14) | 0.0475 (18) | 0.0266 (13) | −0.0048 (13) | −0.0005 (11) | 0.0146 (13) |
O31 | 0.0283 (12) | 0.0648 (18) | 0.0713 (17) | 0.0044 (11) | −0.0002 (11) | 0.0437 (15) |
C32 | 0.0353 (17) | 0.068 (3) | 0.0439 (18) | −0.0107 (17) | 0.0060 (14) | 0.0234 (18) |
C4 | 0.0194 (11) | 0.0235 (12) | 0.0182 (11) | 0.0035 (9) | 0.0041 (9) | −0.0016 (9) |
O4 | 0.0196 (8) | 0.0236 (9) | 0.0182 (8) | −0.0037 (7) | 0.0033 (6) | −0.0019 (7) |
C5 | 0.0282 (13) | 0.0206 (12) | 0.0236 (12) | −0.0003 (10) | 0.0085 (10) | −0.0035 (10) |
O5 | 0.0385 (11) | 0.0223 (9) | 0.0269 (9) | −0.0004 (8) | 0.0046 (8) | −0.0065 (8) |
C6 | 0.0413 (16) | 0.0239 (13) | 0.0246 (13) | −0.0029 (11) | 0.0090 (12) | 0.0005 (11) |
O6 | 0.0418 (12) | 0.0288 (11) | 0.0368 (11) | 0.0029 (9) | 0.0086 (9) | 0.0100 (9) |
C61 | 0.0418 (18) | 0.0295 (16) | 0.058 (2) | −0.0048 (13) | 0.0052 (16) | 0.0131 (15) |
O61 | 0.100 (3) | 0.085 (3) | 0.146 (4) | 0.042 (2) | 0.072 (3) | 0.080 (3) |
C62 | 0.0417 (17) | 0.0272 (15) | 0.0471 (18) | −0.0009 (13) | −0.0063 (14) | −0.0010 (14) |
C41 | 0.0169 (11) | 0.0285 (13) | 0.0198 (11) | −0.0044 (9) | 0.0007 (9) | 0.0073 (10) |
C42 | 0.0172 (11) | 0.0217 (12) | 0.0251 (12) | −0.0037 (9) | −0.0049 (9) | 0.0088 (10) |
O42 | 0.0242 (9) | 0.0289 (10) | 0.0314 (10) | −0.0056 (8) | −0.0074 (8) | 0.0153 (8) |
C421 | 0.0281 (15) | 0.0391 (17) | 0.0438 (17) | −0.0019 (12) | −0.0002 (12) | 0.0253 (14) |
O421 | 0.0295 (13) | 0.139 (3) | 0.109 (3) | −0.0079 (16) | 0.0017 (15) | 0.102 (3) |
C422 | 0.0337 (16) | 0.0413 (18) | 0.058 (2) | 0.0005 (14) | −0.0107 (15) | 0.0300 (16) |
C43 | 0.0167 (11) | 0.0160 (11) | 0.0299 (13) | −0.0022 (9) | −0.0010 (9) | 0.0042 (9) |
O43 | 0.0186 (8) | 0.0199 (9) | 0.0399 (11) | −0.0027 (7) | −0.0028 (8) | −0.0003 (8) |
C431 | 0.0226 (13) | 0.0241 (13) | 0.0335 (14) | −0.0009 (10) | 0.0022 (11) | 0.0024 (11) |
O431 | 0.0202 (10) | 0.0368 (12) | 0.0553 (14) | −0.0052 (9) | 0.0050 (9) | −0.0040 (10) |
C432 | 0.0328 (17) | 0.0274 (16) | 0.109 (4) | 0.0034 (13) | 0.017 (2) | 0.000 (2) |
C44 | 0.0202 (11) | 0.0210 (11) | 0.0214 (11) | −0.0040 (9) | −0.0017 (9) | 0.0053 (10) |
O44 | 0.0254 (9) | 0.0299 (10) | 0.0223 (9) | −0.0083 (8) | 0.0011 (7) | 0.0016 (8) |
C441 | 0.0331 (14) | 0.0218 (13) | 0.0239 (12) | 0.0012 (11) | −0.0012 (11) | 0.0026 (10) |
O441 | 0.0347 (11) | 0.0353 (11) | 0.0291 (10) | −0.0050 (9) | −0.0057 (8) | −0.0027 (9) |
C442 | 0.0465 (18) | 0.0359 (17) | 0.0258 (14) | −0.0043 (14) | 0.0057 (12) | 0.0027 (12) |
C45 | 0.0239 (11) | 0.0199 (11) | 0.0214 (11) | −0.0034 (10) | −0.0036 (9) | 0.0051 (9) |
O45 | 0.0183 (8) | 0.0274 (10) | 0.0268 (9) | 0.0007 (7) | −0.0004 (7) | 0.0041 (8) |
C46 | 0.0323 (14) | 0.0178 (12) | 0.0309 (14) | 0.0007 (10) | −0.0113 (11) | 0.0016 (10) |
O46 | 0.0460 (12) | 0.0184 (9) | 0.0253 (9) | 0.0029 (8) | −0.0080 (8) | 0.0014 (7) |
C461 | 0.059 (2) | 0.0237 (14) | 0.0227 (13) | 0.0088 (13) | −0.0065 (13) | 0.0033 (11) |
O461 | 0.122 (3) | 0.0328 (14) | 0.0649 (18) | 0.0213 (16) | −0.0638 (19) | −0.0080 (13) |
C462 | 0.079 (3) | 0.0221 (14) | 0.0269 (14) | 0.0086 (15) | 0.0037 (15) | 0.0032 (12) |
C1—O5 | 1.381 (3) | C41—H41 | 0.9800 |
C1—F1 | 1.393 (3) | C42—O42 | 1.442 (3) |
C1—C2 | 1.513 (4) | C42—C43 | 1.517 (4) |
C1—H1 | 0.9800 | C42—H42 | 0.9800 |
C2—O2 | 1.434 (3) | O42—C421 | 1.339 (3) |
C2—C3 | 1.527 (4) | C421—O421 | 1.184 (4) |
C2—H2 | 0.9800 | C421—C422 | 1.493 (4) |
O2—C21 | 1.332 (3) | C422—H42A | 0.9600 |
C21—O21 | 1.185 (4) | C422—H42B | 0.9600 |
C21—C22 | 1.496 (5) | C422—H42C | 0.9600 |
C22—H22A | 0.9600 | C43—O43 | 1.443 (3) |
C22—H22B | 0.9600 | C43—C44 | 1.514 (3) |
C22—H22C | 0.9600 | C43—H43 | 0.9800 |
C3—O3 | 1.446 (3) | O43—C431 | 1.352 (3) |
C3—C4 | 1.532 (3) | C431—O431 | 1.187 (3) |
C3—H3 | 0.9800 | C431—C432 | 1.495 (4) |
O3—C31 | 1.348 (4) | C432—H43A | 0.9600 |
C31—O31 | 1.201 (4) | C432—H43B | 0.9600 |
C31—C32 | 1.486 (4) | C432—H43C | 0.9600 |
C32—H32A | 0.9600 | C44—O44 | 1.442 (3) |
C32—H32B | 0.9600 | C44—C45 | 1.532 (4) |
C32—H32C | 0.9600 | C44—H44 | 0.9800 |
C4—O4 | 1.433 (3) | O44—C441 | 1.362 (3) |
C4—C5 | 1.529 (4) | C441—O441 | 1.200 (3) |
C4—H4 | 0.9800 | C441—C442 | 1.489 (4) |
O4—C41 | 1.409 (3) | C442—H44A | 0.9600 |
C5—O5 | 1.444 (3) | C442—H44B | 0.9600 |
C5—C6 | 1.501 (4) | C442—H44C | 0.9600 |
C5—H5 | 0.9800 | C45—O45 | 1.433 (3) |
C6—O6 | 1.443 (4) | C45—C46 | 1.505 (4) |
C6—H6A | 0.9700 | C45—H45 | 0.9800 |
C6—H6B | 0.9700 | C46—O46 | 1.448 (3) |
O6—C61 | 1.310 (4) | C46—H46A | 0.9700 |
C61—O61 | 1.209 (5) | C46—H46B | 0.9700 |
C61—C62 | 1.499 (5) | O46—C461 | 1.329 (3) |
C62—H62A | 0.9600 | C461—O461 | 1.196 (4) |
C62—H62B | 0.9600 | C461—C462 | 1.491 (4) |
C62—H62C | 0.9600 | C462—H46C | 0.9600 |
C41—O45 | 1.420 (3) | C462—H46D | 0.9600 |
C41—C42 | 1.514 (4) | C462—H46E | 0.9600 |
O5—C1—F1 | 109.3 (2) | C42—C41—H41 | 109.4 |
O5—C1—C2 | 112.4 (2) | O42—C42—C41 | 110.7 (2) |
F1—C1—C2 | 108.8 (2) | O42—C42—C43 | 105.4 (2) |
O5—C1—H1 | 108.8 | C41—C42—C43 | 110.5 (2) |
F1—C1—H1 | 108.8 | O42—C42—H42 | 110.0 |
C2—C1—H1 | 108.8 | C41—C42—H42 | 110.0 |
O2—C2—C1 | 106.6 (2) | C43—C42—H42 | 110.0 |
O2—C2—C3 | 109.9 (2) | C421—O42—C42 | 118.5 (2) |
C1—C2—C3 | 111.6 (2) | O421—C421—O42 | 122.2 (3) |
O2—C2—H2 | 109.6 | O421—C421—C422 | 126.2 (3) |
C1—C2—H2 | 109.6 | O42—C421—C422 | 111.5 (3) |
C3—C2—H2 | 109.6 | C421—C422—H42A | 109.5 |
C21—O2—C2 | 118.9 (2) | C421—C422—H42B | 109.5 |
O21—C21—O2 | 122.9 (3) | H42A—C422—H42B | 109.5 |
O21—C21—C22 | 126.1 (3) | C421—C422—H42C | 109.5 |
O2—C21—C22 | 110.7 (3) | H42A—C422—H42C | 109.5 |
C21—C22—H22A | 109.5 | H42B—C422—H42C | 109.5 |
C21—C22—H22B | 109.5 | O43—C43—C44 | 109.0 (2) |
H22A—C22—H22B | 109.5 | O43—C43—C42 | 107.4 (2) |
C21—C22—H22C | 109.5 | C44—C43—C42 | 110.8 (2) |
H22A—C22—H22C | 109.5 | O43—C43—H43 | 109.8 |
H22B—C22—H22C | 109.5 | C44—C43—H43 | 109.8 |
O3—C3—C2 | 108.4 (2) | C42—C43—H43 | 109.8 |
O3—C3—C4 | 106.32 (19) | C431—O43—C43 | 117.4 (2) |
C2—C3—C4 | 110.4 (2) | O431—C431—O43 | 123.7 (3) |
O3—C3—H3 | 110.6 | O431—C431—C432 | 125.2 (3) |
C2—C3—H3 | 110.6 | O43—C431—C432 | 111.0 (2) |
C4—C3—H3 | 110.6 | C431—C432—H43A | 109.5 |
C31—O3—C3 | 118.4 (2) | C431—C432—H43B | 109.5 |
O31—C31—O3 | 123.2 (3) | H43A—C432—H43B | 109.5 |
O31—C31—C32 | 125.5 (3) | C431—C432—H43C | 109.5 |
O3—C31—C32 | 111.3 (3) | H43A—C432—H43C | 109.5 |
C31—C32—H32A | 109.5 | H43B—C432—H43C | 109.5 |
C31—C32—H32B | 109.5 | O44—C44—C43 | 105.93 (19) |
H32A—C32—H32B | 109.5 | O44—C44—C45 | 106.77 (19) |
C31—C32—H32C | 109.5 | C43—C44—C45 | 110.8 (2) |
H32A—C32—H32C | 109.5 | O44—C44—H44 | 111.1 |
H32B—C32—H32C | 109.5 | C43—C44—H44 | 111.1 |
O4—C4—C5 | 106.10 (18) | C45—C44—H44 | 111.1 |
O4—C4—C3 | 109.4 (2) | C441—O44—C44 | 119.3 (2) |
C5—C4—C3 | 110.7 (2) | O441—C441—O44 | 123.1 (3) |
O4—C4—H4 | 110.2 | O441—C441—C442 | 127.0 (3) |
C5—C4—H4 | 110.2 | O44—C441—C442 | 109.8 (2) |
C3—C4—H4 | 110.2 | C441—C442—H44A | 109.5 |
C41—O4—C4 | 116.61 (19) | C441—C442—H44B | 109.5 |
O5—C5—C6 | 105.1 (2) | H44A—C442—H44B | 109.5 |
O5—C5—C4 | 110.84 (19) | C441—C442—H44C | 109.5 |
C6—C5—C4 | 113.0 (2) | H44A—C442—H44C | 109.5 |
O5—C5—H5 | 109.3 | H44B—C442—H44C | 109.5 |
C6—C5—H5 | 109.3 | O45—C45—C46 | 107.1 (2) |
C4—C5—H5 | 109.3 | O45—C45—C44 | 112.6 (2) |
C1—O5—C5 | 114.5 (2) | C46—C45—C44 | 110.2 (2) |
O6—C6—C5 | 107.9 (2) | O45—C45—H45 | 108.9 |
O6—C6—H6A | 110.1 | C46—C45—H45 | 108.9 |
C5—C6—H6A | 110.1 | C44—C45—H45 | 108.9 |
O6—C6—H6B | 110.1 | C41—O45—C45 | 115.04 (19) |
C5—C6—H6B | 110.1 | O46—C46—C45 | 108.7 (2) |
H6A—C6—H6B | 108.4 | O46—C46—H46A | 109.9 |
C61—O6—C6 | 116.8 (2) | C45—C46—H46A | 109.9 |
O61—C61—O6 | 121.1 (3) | O46—C46—H46B | 109.9 |
O61—C61—C62 | 126.0 (3) | C45—C46—H46B | 109.9 |
O6—C61—C62 | 112.7 (3) | H46A—C46—H46B | 108.3 |
C61—C62—H62A | 109.5 | C461—O46—C46 | 114.4 (2) |
C61—C62—H62B | 109.5 | O461—C461—O46 | 121.9 (3) |
H62A—C62—H62B | 109.5 | O461—C461—C462 | 124.6 (3) |
C61—C62—H62C | 109.5 | O46—C461—C462 | 113.5 (3) |
H62A—C62—H62C | 109.5 | C461—C462—H46C | 109.5 |
H62B—C62—H62C | 109.5 | C461—C462—H46D | 109.5 |
O4—C41—O45 | 111.8 (2) | H46C—C462—H46D | 109.5 |
O4—C41—C42 | 107.6 (2) | C461—C462—H46E | 109.5 |
O45—C41—C42 | 109.1 (2) | H46C—C462—H46E | 109.5 |
O4—C41—H41 | 109.4 | H46D—C462—H46E | 109.5 |
O45—C41—H41 | 109.4 | ||
O5—C1—C2—O2 | 173.4 (2) | O4—C41—C42—O42 | 53.6 (3) |
F1—C1—C2—O2 | 52.2 (3) | O45—C41—C42—O42 | 175.12 (19) |
O5—C1—C2—C3 | 53.4 (3) | O4—C41—C42—C43 | −62.8 (2) |
F1—C1—C2—C3 | −67.8 (3) | O45—C41—C42—C43 | 58.7 (2) |
C1—C2—O2—C21 | 125.0 (3) | C41—C42—O42—C421 | 107.7 (3) |
C3—C2—O2—C21 | −113.9 (3) | C43—C42—O42—C421 | −132.8 (3) |
C2—O2—C21—O21 | 7.5 (5) | C42—O42—C421—O421 | −11.0 (6) |
C2—O2—C21—C22 | −177.8 (3) | C42—O42—C421—C422 | 168.8 (3) |
O2—C2—C3—O3 | 76.1 (2) | O42—C42—C43—O43 | 65.7 (2) |
C1—C2—C3—O3 | −165.9 (2) | C41—C42—C43—O43 | −174.72 (18) |
O2—C2—C3—C4 | −167.9 (2) | O42—C42—C43—C44 | −175.3 (2) |
C1—C2—C3—C4 | −49.9 (3) | C41—C42—C43—C44 | −55.7 (3) |
C2—C3—O3—C31 | −94.0 (3) | C44—C43—O43—C431 | 129.2 (2) |
C4—C3—O3—C31 | 147.4 (2) | C42—C43—O43—C431 | −110.6 (2) |
C3—O3—C31—O31 | −4.5 (5) | C43—O43—C431—O431 | −9.6 (4) |
C3—O3—C31—C32 | 175.8 (3) | C43—O43—C431—C432 | 170.8 (3) |
O3—C3—C4—O4 | −75.6 (2) | O43—C43—C44—O44 | −76.6 (2) |
C2—C3—C4—O4 | 167.10 (19) | C42—C43—C44—O44 | 165.32 (19) |
O3—C3—C4—C5 | 167.8 (2) | O43—C43—C44—C45 | 167.94 (19) |
C2—C3—C4—C5 | 50.5 (3) | C42—C43—C44—C45 | 49.9 (3) |
C5—C4—O4—C41 | −148.2 (2) | C43—C44—O44—C441 | 136.4 (2) |
C3—C4—O4—C41 | 92.3 (2) | C45—C44—O44—C441 | −105.4 (2) |
O4—C4—C5—O5 | −172.08 (19) | C44—O44—C441—O441 | −0.9 (4) |
C3—C4—C5—O5 | −53.4 (3) | C44—O44—C441—C442 | 176.1 (2) |
O4—C4—C5—C6 | 70.3 (3) | O44—C44—C45—O45 | −163.48 (18) |
C3—C4—C5—C6 | −171.1 (2) | C43—C44—C45—O45 | −48.6 (3) |
F1—C1—O5—C5 | 62.8 (3) | O44—C44—C45—C46 | 76.9 (3) |
C2—C1—O5—C5 | −58.0 (3) | C43—C44—C45—C46 | −168.2 (2) |
C6—C5—O5—C1 | −179.4 (2) | O4—C41—O45—C45 | 59.8 (3) |
C4—C5—O5—C1 | 58.2 (3) | C42—C41—O45—C45 | −59.1 (3) |
O5—C5—C6—O6 | −59.8 (3) | C46—C45—O45—C41 | 176.2 (2) |
C4—C5—C6—O6 | 61.2 (3) | C44—C45—O45—C41 | 54.8 (3) |
C5—C6—O6—C61 | 149.0 (3) | O45—C45—C46—O46 | 77.4 (3) |
C6—O6—C61—O61 | 10.7 (6) | C44—C45—C46—O46 | −159.7 (2) |
C6—O6—C61—C62 | −173.1 (3) | C45—C46—O46—C461 | 167.7 (3) |
C4—O4—C41—O45 | 89.8 (2) | C46—O46—C461—O461 | 1.4 (5) |
C4—O4—C41—C42 | −150.4 (2) | C46—O46—C461—C462 | −176.1 (3) |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C14H19FO9 | C26H35FO17 |
Mr | 350.29 | 638.54 |
Crystal system, space group | Monoclinic, P21 | Monoclinic, P21 |
Temperature (K) | 140 | 140 |
a, b, c (Å) | 5.35502 (11), 7.96182 (14), 20.1151 (5) | 5.63832 (9), 18.2908 (3), 14.8144 (2) |
β (°) | 92.061 (2) | 94.4966 (15) |
V (Å3) | 857.06 (3) | 1523.09 (4) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.12 |
Crystal size (mm) | 0.55 × 0.31 × 0.11 | 0.42 × 0.37 × 0.14 |
Data collection | ||
Diffractometer | Oxford Xcalibur 3 CCD area-detector diffractometer | Oxford Xcalibur 3 CCD area-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.970, 1.033 | 0.923, 1.070 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24426, 2677, 2325 | 40401, 4545, 3785 |
Rint | 0.037 | 0.052 |
(sin θ/λ)max (Å−1) | 0.703 | 0.703 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.073, 1.02 | 0.048, 0.117, 1.07 |
No. of reflections | 2677 | 4545 |
No. of parameters | 224 | 404 |
No. of restraints | 1 | 1 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.14 | 0.70, −0.46 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Johnson, 1976; Farrugia, 1997).
X | R | C5—O5 | O5—C1 | C1—X | C1—C2 | C2—C3 | C3—C4 | C4—C5 |
Bra | Ac | 1.458 (14) | 1.347 (15) | 2.002f | 1.572 (16)g | 1.531 (16)g | 1.600 (16)g | 1.500 (16)g |
Clb | Ac | 1.445f | 1.383f | 1.777f | ||||
Fc | Ac | 1.4477 (18) | 1.381 (2) | 1.3981 (19) | 1.514 (3) | 1.512 (2) | 1.515 (2) | 1.516 (2) |
Fd | (Ac)4Glc | 1.444 (3) | 1.381 (3) | 1.393 (3) | 1.513 (4) | 1.527 (4) | 1.532 (3) | 1.529 (4) |
OGlyd | (Ac)4Glc | 1.433 (3) | 1.420 (3) | 1.409 (3) | 1.514 (4) | 1.517 (4) | 1.514 (3) | 1.532 (4) |
OAce | Ac | 1.422 (4) | 1.403 (4) | 1.431 (4) | 1.507 (4) | 1.524 (4) | 1.504 (4) | 1.534 (4) |
Notes: (a) Takai et al. (1976); (b) James & Hall (1969); (c) this work, compound (I); (d) this work, compound (II); (e) Jones et al. (1982); (f) s.u. values are not available; (g) s.u. values are taken from a mean value. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Glycosyl fluorides are widely used in carbohydrate chemistry and biochemistry. The F atom is comparable in size with a hydroxyl group, hence the steric demand upon introduction of this group is quite small (O'Hagan 2008; Howard et al., 1996). The popularity of glycosyl fluorides in chemical synthesis is due to their remarkable stability yet ease of chemospecific activation in performing glycosylation reactions. One notable advantage in using glycosyl fluorides as glycosyl donor is their high thermal stability compared with those of the glycosyl chlorides, bromides or iodides. The utilization of carbohydrate fluorides as glycosyl donors originates from the work by Mukaiyama et al. (1981) on the synthesis of simple glucosides and disaccharides. Progress made in the utilization of glycosyl fluorides as donors in the synthesis of O- and C-glycosides has been reported by Toshima (2000) and updated in the more recent review by Carmona et al. (2008). Interest in glycosyl fluorides has increased since Hayashi et al. (1984) developed a reliable and safe method to prepare these compounds by exposing suitably protected sugars to a 50–70% mixture of hydrogen fluoride in pyridine. The stability of glycosyl fluorides in their deprotected form also makes them important compounds for use as mechanistic probes in the elucidation of enzyme mechanisms and as reagents for enzymatic synthesis (reviewed by Williams & Withers, 2000). Extending our interest in the impact of fluorine substitution on carbohydrate biotransformations (Errey et al., 2009) and the generation of amylose mimetics (Marmuse et al., 2005; Nepogodiev et al., 2007; Clé et al., 2008), we had cause to investigate glucosyl fluorides. In this paper we report the crystal structures of the 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl fluoride, (I), and the corresponding maltose derivative 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl fluoride, (II). The crystal structures obtained integrate with the published series of α-glycosyl halide derivatives; X-ray structures of the peracetylated α-glucosyl chloride (James & Hall, 1969) and bromide (Takai et al., 1976) have been reported previously and the members of this series show most clearly the anomeric effect, where the preference for the axial orientation of the halogen atom renders synthesis of the equatorial counterpart a synthetic challenge. Results from X-ray analyses typically allow direct evaluation of the impact of the anomeric effect on sugar structure.
The glucosyl unit in (I) (Fig. 1) adopts a 4C1 chair conformation. All the bond lengths and angles conform with the values found in acetylated glucose. Values for the bond lengths which are affected by the anomeric effect, with the results from X-ray crystal structures of other acetylated glucosyl halides, are summarized in Table 1. The conformational properties of pyranosyl halides have been explored by a number of theoretical studies using model compounds such as 2-fluorotetrahydropyran or 2-chlorotetrahydropyran. The theoretical approaches to generate three-dimensional structures rely on experimental data to generate the necessary set of parameters. In this context, good agreement was obtained by Tvaroska & Carver (1994) by comparison of their theoretical results with experimental ones obtained for the acetyl and benzoyl D-xylopyranose fluorides. To our knowledge, no crystal structure of anomeric aldohexosyl fluorides has been reported to date. The structural data reported herein are in agreement with the theoretical data obtained by Tvaroska & Carver (1994), supporting the theoretical methodology reported in their study.
Influences on the bond lengths in a series of X-ray crystal structures of glycopyranosides have been examined by Briggs et al. (1984). They concluded that there is no correlation between the electronegativity of the substituent at the anomeric position and the C5–O5 bond length. Comparison of C5—O5 bond lengths in the series of halo-derivatives given in Table 1 shows a similar lack of correlation. The C1—O5 bonds in the fluoro- and chloro-glucosides have similar values [1.381 (2) Å in the fluoride, 1.383 Å in the chloride and 1.381 (3) Å in the maltosyl fluoride]; the same bond is shorter in the glucosyl bromide (1.346 Å). Comparing the sugar-ring bond lengths in these halides with those in pentaacetyl-α-D-glucopyranose (Jones et al., 1982), it seems that the shortening of the C1—O5 bond is accompanied by a proportional lengthening of the C1—C2 and C3—C4 bonds. In contrast, the C2—C3, C4—C5 and C5—O5 bond lengths change little, with no apparent correlation with the C1—O5 bond lengths.
In the maltosyl fluoride structure, (II), both pyranose rings adopt a 4C1 chair conformation (Fig. 2). It is interesting to observe in (II) the orientation of the contiguous pyranose rings, which is described by the torsion angles around the glycosidic bonds, C4—O4 and O4—C41, denoted as conformational angles Ψ and Φ (in (II), Ψ = H4—C4—O4—C41 = -29° and Φ = C4—O4—C41—H41 = -32°), and by the valence angle τ = C4—O4—C41, which is 116.66 (14)° in (II). All these values are in good agreement with those in β-maltose-octaacetate (Brisse et al., 1982) and -octapropanoate (Johnson et al., 2007) and conform closely with those in other maltose derivatives discussed by Johnson et al. (2007) in respect of having short chains containing an α-(1→4) inter-sugar glycosidic linkage, and are therefore useful as models to study starch structure. The twist of the non-reducing sugar ring is defined by the virtual torsion angle O44—C44···C41—O4; this, in compound (II), is -4.8° and, as such, if inserted in an amylose chain of starch (see, for example Takahashi & Nishikawa, 2003), would add to the bias of successive residues, forming a left-handed helix (French & Johnson, 2007).
Intermolecular interactions in crystals of both (I) and (II) are principally through weak hydrogen bonds. In (I), there are five contacts (four C—H···O and one C—H···F) in which the H···F/O distance is less than 2.55 Å. In (II), there are six interactions (five C—H···O and one C—H···F). In all these contacts, the angles subtended at the H atoms (in calculated sites) are greater than 137° and most are greater than 150°.