Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The X-ray analyses of 2,3,4,6-tetra-O-acetyl-α-D-glucopyran­osyl fluoride, C14H19FO9, (I), and the corresponding maltose derivative 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-acetyl-α-D-glucopyran­osyl fluoride, C26H35FO17, (II), are reported. These add to the series of published α-glyco­syl halide structures; those of the peracetyl­ated α-glucosyl chloride [James & Hall (1969). Acta Cryst. A25, S196] and bromide [Takai, Watanabe, Hayashi & Watanabe (1976). Bull. Fac. Eng. Hokkaido Univ. 79, 101–109] have been reported already. In our structures, which have been determined at 140 K, the glycopyranosyl ring appears in a regular 4C1 chair conformation with all the substituents, except for the anomeric fluoride (which adopts an axial orientation), in equatorial positions. The observed bond lengths are consistent with a strong anomeric effect, viz. the C1—O5 (carbohydrate numbering) bond lengths are 1.381 (2) and 1.381 (3) Å in (I) and (II), respectively, both significantly shorter than the C5—O5 bond lengths, viz. 1.448 (2) Å in (I) and 1.444 (3) Å in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110003641/jz3170sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003641/jz3170Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003641/jz3170IIsup3.hkl
Contains datablock II

CCDC references: 774084; 774085

Comment top

Glycosyl fluorides are widely used in carbohydrate chemistry and biochemistry. The F atom is comparable in size with a hydroxyl group, hence the steric demand upon introduction of this group is quite small (O'Hagan 2008; Howard et al., 1996). The popularity of glycosyl fluorides in chemical synthesis is due to their remarkable stability yet ease of chemospecific activation in performing glycosylation reactions. One notable advantage in using glycosyl fluorides as glycosyl donor is their high thermal stability compared with those of the glycosyl chlorides, bromides or iodides. The utilization of carbohydrate fluorides as glycosyl donors originates from the work by Mukaiyama et al. (1981) on the synthesis of simple glucosides and disaccharides. Progress made in the utilization of glycosyl fluorides as donors in the synthesis of O- and C-glycosides has been reported by Toshima (2000) and updated in the more recent review by Carmona et al. (2008). Interest in glycosyl fluorides has increased since Hayashi et al. (1984) developed a reliable and safe method to prepare these compounds by exposing suitably protected sugars to a 50–70% mixture of hydrogen fluoride in pyridine. The stability of glycosyl fluorides in their deprotected form also makes them important compounds for use as mechanistic probes in the elucidation of enzyme mechanisms and as reagents for enzymatic synthesis (reviewed by Williams & Withers, 2000). Extending our interest in the impact of fluorine substitution on carbohydrate biotransformations (Errey et al., 2009) and the generation of amylose mimetics (Marmuse et al., 2005; Nepogodiev et al., 2007; Clé et al., 2008), we had cause to investigate glucosyl fluorides. In this paper we report the crystal structures of the 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl fluoride, (I), and the corresponding maltose derivative 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(14)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl fluoride, (II). The crystal structures obtained integrate with the published series of α-glycosyl halide derivatives; X-ray structures of the peracetylated α-glucosyl chloride (James & Hall, 1969) and bromide (Takai et al., 1976) have been reported previously and the members of this series show most clearly the anomeric effect, where the preference for the axial orientation of the halogen atom renders synthesis of the equatorial counterpart a synthetic challenge. Results from X-ray analyses typically allow direct evaluation of the impact of the anomeric effect on sugar structure.

The glucosyl unit in (I) (Fig. 1) adopts a 4C1 chair conformation. All the bond lengths and angles conform with the values found in acetylated glucose. Values for the bond lengths which are affected by the anomeric effect, with the results from X-ray crystal structures of other acetylated glucosyl halides, are summarized in Table 1. The conformational properties of pyranosyl halides have been explored by a number of theoretical studies using model compounds such as 2-fluorotetrahydropyran or 2-chlorotetrahydropyran. The theoretical approaches to generate three-dimensional structures rely on experimental data to generate the necessary set of parameters. In this context, good agreement was obtained by Tvaroska & Carver (1994) by comparison of their theoretical results with experimental ones obtained for the acetyl and benzoyl D-xylopyranose fluorides. To our knowledge, no crystal structure of anomeric aldohexosyl fluorides has been reported to date. The structural data reported herein are in agreement with the theoretical data obtained by Tvaroska & Carver (1994), supporting the theoretical methodology reported in their study.

Influences on the bond lengths in a series of X-ray crystal structures of glycopyranosides have been examined by Briggs et al. (1984). They concluded that there is no correlation between the electronegativity of the substituent at the anomeric position and the C5–O5 bond length. Comparison of C5—O5 bond lengths in the series of halo-derivatives given in Table 1 shows a similar lack of correlation. The C1—O5 bonds in the fluoro- and chloro-glucosides have similar values [1.381 (2) Å in the fluoride, 1.383 Å in the chloride and 1.381 (3) Å in the maltosyl fluoride]; the same bond is shorter in the glucosyl bromide (1.346 Å). Comparing the sugar-ring bond lengths in these halides with those in pentaacetyl-α-D-glucopyranose (Jones et al., 1982), it seems that the shortening of the C1—O5 bond is accompanied by a proportional lengthening of the C1—C2 and C3—C4 bonds. In contrast, the C2—C3, C4—C5 and C5—O5 bond lengths change little, with no apparent correlation with the C1—O5 bond lengths.

In the maltosyl fluoride structure, (II), both pyranose rings adopt a 4C1 chair conformation (Fig. 2). It is interesting to observe in (II) the orientation of the contiguous pyranose rings, which is described by the torsion angles around the glycosidic bonds, C4—O4 and O4—C41, denoted as conformational angles Ψ and Φ (in (II), Ψ = H4—C4—O4—C41 = -29° and Φ = C4—O4—C41—H41 = -32°), and by the valence angle τ = C4—O4—C41, which is 116.66 (14)° in (II). All these values are in good agreement with those in β-maltose-octaacetate (Brisse et al., 1982) and -octapropanoate (Johnson et al., 2007) and conform closely with those in other maltose derivatives discussed by Johnson et al. (2007) in respect of having short chains containing an α-(14) inter-sugar glycosidic linkage, and are therefore useful as models to study starch structure. The twist of the non-reducing sugar ring is defined by the virtual torsion angle O44—C44···C41—O4; this, in compound (II), is -4.8° and, as such, if inserted in an amylose chain of starch (see, for example Takahashi & Nishikawa, 2003), would add to the bias of successive residues, forming a left-handed helix (French & Johnson, 2007).

Intermolecular interactions in crystals of both (I) and (II) are principally through weak hydrogen bonds. In (I), there are five contacts (four C—H···O and one C—H···F) in which the H···F/O distance is less than 2.55 Å. In (II), there are six interactions (five C—H···O and one C—H···F). In all these contacts, the angles subtended at the H atoms (in calculated sites) are greater than 137° and most are greater than 150°.

Experimental top

2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl fluoride, (I), and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(14)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl fluoride, (II), were both obtained as single α-anomers (as judged by1H NMR spectroscopy). They were prepared following known procedures (Juennemann et al., 1993), exposing the peracetylated glucose or maltose to a 70% mixture of hydrogen fluoride in pyridine in a Teflon bottle. The resulting products were purified by crystallization from a mixture of ethyl acetate and hexane [Solvent ratio?]. Crystals suitable for X-ray diffraction were obtained as colourless blocks in both cases by slow recrystallization from the same solvent system.

Refinement top

Since the anomalous scattering does not allow definitive determination of the absolute configurations in either of these compounds, the intensities of Friedel pairs were merged (using the MERG 3 command in SHELXL97; Sheldrick, 2008). The configurations were established since these compounds were prepared from α-D-glucose and α-D-maltose.

All H atoms were included in idealized positions, with C—H = 0.96–0.98 Å and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. The methyl groups were refined as rigid groups rotating about the C—Me bond. In compound (I), three of the methyl groups showed disorder over alternative orientations, all of which were included as idealized methyl groups with two positions rotated by 60° from each other. These were allowed to rotate about the C—Me bond, and the site occupation factors of the two orientations refined to 0.25 (3):0.75 (3), 0.39 (2):0.61 (2) and 0.22 (2):0.78 (2) for the H atoms at C22, C42 and C62, respectively.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Johnson, 1976; Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the fully acetylated glucosyl fluoride, (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as white rods. The methyl groups of three of the acetyl groups were refined as disordered in two distinct orientations; only one arrangement for each is shown here.
[Figure 2] Fig. 2. The molecular structure of the fully acetylated maltosyl fluoride, (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as white rods.
(I) 2,3,4,6-tetra-O-acetyl-1-fluoro-α-D-glucopyranose top
Crystal data top
C14H19FO9Z = 2
Mr = 350.29F(000) = 368
Monoclinic, P21Dx = 1.357 Mg m3
a = 5.35502 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.96182 (14) ŵ = 0.12 mm1
c = 20.1151 (5) ÅT = 140 K
β = 92.061 (2)°Plate, colourless
V = 857.06 (3) Å30.55 × 0.31 × 0.11 mm
Data collection top
Oxford Xcalibur 3 CCD area-detector
diffractometer
2677 independent reflections
Radiation source: Enhance (Mo) X-ray Source2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0050 pixels mm-1θmax = 30.0°, θmin = 3.3°
thin–slice ϕ and ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1111
Tmin = 0.970, Tmax = 1.033l = 2828
24426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C14H19FO9V = 857.06 (3) Å3
Mr = 350.29Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.35502 (11) ŵ = 0.12 mm1
b = 7.96182 (14) ÅT = 140 K
c = 20.1151 (5) Å0.55 × 0.31 × 0.11 mm
β = 92.061 (2)°
Data collection top
Oxford Xcalibur 3 CCD area-detector
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2325 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.033Rint = 0.037
24426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2677 reflectionsΔρmin = 0.14 e Å3
224 parameters
Special details top

Experimental. CrysAlisPro RED (Oxford Diffraction Ltd., Version 1.171.32.24). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6033 (3)0.0924 (2)0.77495 (8)0.0328 (4)
H10.61340.01750.79690.039*
F10.35222 (18)0.12992 (12)0.76037 (5)0.0404 (3)
C20.7110 (3)0.2240 (2)0.82211 (8)0.0328 (4)
H20.87180.18420.84090.039*
O20.5423 (2)0.2501 (2)0.87516 (6)0.0439 (3)
C210.5919 (3)0.1744 (2)0.93372 (8)0.0318 (4)
O210.7746 (2)0.0915 (2)0.94472 (6)0.0452 (3)
C220.3888 (4)0.2075 (3)0.98137 (10)0.0472 (5)
H22A0.24210.24650.95730.071*0.25 (3)
H22B0.44360.29141.01290.071*0.25 (3)
H22C0.35070.10571.00450.071*0.25 (3)
H22D0.44880.18251.02580.071*0.75 (3)
H22E0.24730.13760.97020.071*0.75 (3)
H22F0.34030.32340.97860.071*0.75 (3)
C30.7486 (3)0.3919 (2)0.78877 (8)0.0284 (3)
H30.58860.44990.78130.034*
O30.9140 (2)0.48888 (16)0.83218 (6)0.0364 (3)
C310.8463 (3)0.6464 (2)0.84832 (8)0.0306 (3)
O310.6465 (2)0.70525 (15)0.83370 (7)0.0394 (3)
C321.0518 (3)0.7312 (3)0.88735 (10)0.0458 (5)
H32A0.99600.83950.90170.069*
H32B1.19370.74460.86000.069*
H32C1.09800.66420.92550.069*
C40.8793 (3)0.36885 (18)0.72381 (8)0.0246 (3)
H41.05150.33130.73270.029*
O40.8793 (2)0.53069 (13)0.69203 (6)0.0287 (2)
C411.1004 (3)0.5908 (2)0.67263 (8)0.0292 (3)
O411.2878 (2)0.51069 (18)0.67489 (8)0.0493 (4)
C421.0749 (4)0.7672 (2)0.64776 (10)0.0412 (4)
H42A0.90490.78740.63320.062*0.39 (2)
H42B1.18270.78360.61120.062*0.39 (2)
H42C1.12090.84400.68290.062*0.39 (2)
H42D1.23410.82260.65170.062*0.61 (2)
H42E0.95630.82640.67370.062*0.61 (2)
H42F1.01810.76600.60200.062*0.61 (2)
C50.7405 (3)0.24153 (19)0.68033 (8)0.0250 (3)
H50.57030.28140.67010.030*
O50.7315 (2)0.08485 (13)0.71669 (6)0.0297 (2)
C60.8690 (3)0.20300 (19)0.61687 (7)0.0265 (3)
H6A0.89790.30530.59210.032*
H6B1.02830.14850.62630.032*
O60.7027 (2)0.09256 (14)0.57958 (5)0.0288 (2)
C610.7852 (3)0.0334 (2)0.52204 (8)0.0276 (3)
O610.9860 (2)0.06861 (17)0.50114 (7)0.0382 (3)
C620.5989 (3)0.0825 (2)0.48918 (10)0.0385 (4)
H62A0.44290.07430.51100.058*0.78 (2)
H62B0.65960.19580.49220.058*0.78 (2)
H62C0.57470.05190.44320.058*0.78 (2)
H62D0.67520.14040.45330.058*0.22 (2)
H62E0.45850.01880.47210.058*0.22 (2)
H62F0.54340.16280.52110.058*0.22 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0315 (8)0.0285 (7)0.0386 (9)0.0109 (7)0.0070 (7)0.0106 (7)
F10.0291 (5)0.0380 (6)0.0544 (6)0.0062 (4)0.0055 (4)0.0086 (5)
C20.0296 (8)0.0422 (9)0.0269 (8)0.0180 (7)0.0070 (6)0.0088 (7)
O20.0376 (7)0.0600 (8)0.0348 (6)0.0242 (7)0.0123 (5)0.0101 (6)
C210.0328 (8)0.0379 (9)0.0248 (8)0.0023 (7)0.0019 (6)0.0062 (7)
O210.0443 (7)0.0622 (9)0.0293 (6)0.0149 (7)0.0041 (5)0.0091 (6)
C220.0421 (10)0.0666 (14)0.0337 (9)0.0012 (10)0.0106 (8)0.0074 (9)
C30.0265 (8)0.0309 (8)0.0276 (8)0.0115 (6)0.0032 (6)0.0016 (6)
O30.0327 (6)0.0418 (7)0.0341 (7)0.0161 (5)0.0090 (5)0.0094 (5)
C310.0312 (8)0.0341 (8)0.0271 (7)0.0057 (7)0.0091 (6)0.0011 (6)
O310.0320 (7)0.0313 (6)0.0548 (8)0.0084 (5)0.0026 (6)0.0022 (6)
C320.0370 (10)0.0552 (12)0.0453 (11)0.0017 (9)0.0042 (8)0.0140 (10)
C40.0229 (7)0.0229 (7)0.0277 (8)0.0089 (6)0.0009 (6)0.0031 (6)
O40.0280 (6)0.0220 (5)0.0360 (6)0.0089 (4)0.0012 (5)0.0046 (5)
C410.0321 (8)0.0234 (7)0.0319 (8)0.0033 (7)0.0012 (6)0.0018 (6)
O410.0285 (7)0.0420 (8)0.0778 (10)0.0092 (6)0.0066 (6)0.0190 (7)
C420.0498 (11)0.0242 (8)0.0502 (11)0.0055 (8)0.0086 (8)0.0030 (7)
C50.0259 (7)0.0209 (6)0.0280 (7)0.0061 (6)0.0002 (6)0.0047 (6)
O50.0340 (6)0.0216 (5)0.0340 (6)0.0078 (5)0.0069 (4)0.0058 (5)
C60.0266 (7)0.0236 (7)0.0293 (8)0.0014 (6)0.0001 (6)0.0008 (6)
O60.0259 (5)0.0302 (5)0.0302 (6)0.0003 (5)0.0016 (4)0.0039 (5)
C610.0277 (8)0.0251 (7)0.0300 (8)0.0052 (6)0.0008 (6)0.0004 (6)
O610.0314 (6)0.0462 (7)0.0375 (6)0.0051 (5)0.0073 (5)0.0074 (5)
C620.0311 (9)0.0428 (10)0.0416 (10)0.0030 (8)0.0021 (7)0.0122 (8)
Geometric parameters (Å, º) top
C1—O51.381 (2)C4—C51.516 (2)
C1—F11.3981 (19)C4—H40.9800
C1—C21.514 (3)O4—C411.348 (2)
C1—H10.9800C41—O411.188 (2)
C2—O21.4378 (19)C41—C421.496 (2)
C2—C31.512 (2)C42—H42A0.9600
C2—H20.9800C42—H42B0.9600
O2—C211.341 (2)C42—H42C0.9600
C21—O211.194 (2)C42—H42D0.9600
C21—C221.499 (2)C42—H42E0.9600
C22—H22A0.9600C42—H42F0.9600
C22—H22B0.9600C5—O51.4477 (18)
C22—H22C0.9600C5—C61.503 (2)
C22—H22D0.9600C5—H50.9800
C22—H22E0.9600C6—O61.4424 (18)
C22—H22F0.9600C6—H6A0.9700
C3—O31.445 (2)C6—H6B0.9700
C3—C41.515 (2)O6—C611.339 (2)
C3—H30.9800C61—O611.202 (2)
O3—C311.348 (2)C61—C621.495 (2)
C31—O311.195 (2)C62—H62A0.9600
C31—C321.490 (3)C62—H62B0.9600
C32—H32A0.9600C62—H62C0.9600
C32—H32B0.9600C62—H62D0.9600
C32—H32C0.9600C62—H62E0.9600
C4—O41.4384 (18)C62—H62F0.9600
O5—C1—F1109.58 (13)O41—C41—C42125.72 (17)
O5—C1—C2111.84 (14)O4—C41—C42111.08 (14)
F1—C1—C2108.98 (13)C41—C42—H42A109.5
O5—C1—H1108.8C41—C42—H42B109.5
F1—C1—H1108.8H42A—C42—H42B109.5
C2—C1—H1108.8C41—C42—H42C109.5
O2—C2—C3107.38 (14)H42A—C42—H42C109.5
O2—C2—C1109.25 (15)H42B—C42—H42C109.5
C3—C2—C1112.83 (13)C41—C42—H42D109.5
O2—C2—H2109.1H42A—C42—H42D141.1
C3—C2—H2109.1H42B—C42—H42D56.3
C1—C2—H2109.1H42C—C42—H42D56.3
C21—O2—C2118.48 (13)C41—C42—H42E109.5
O21—C21—O2123.11 (15)H42A—C42—H42E56.3
O21—C21—C22125.95 (17)H42B—C42—H42E141.1
O2—C21—C22110.93 (16)H42C—C42—H42E56.3
C21—C22—H22A109.5H42D—C42—H42E109.5
C21—C22—H22B109.5C41—C42—H42F109.5
H22A—C22—H22B109.5H42A—C42—H42F56.3
C21—C22—H22C109.5H42B—C42—H42F56.3
H22A—C22—H22C109.5H42C—C42—H42F141.1
H22B—C22—H22C109.5H42D—C42—H42F109.5
C21—C22—H22D109.5H42E—C42—H42F109.5
H22A—C22—H22D141.1O5—C5—C6106.12 (12)
H22B—C22—H22D56.3O5—C5—C4108.02 (11)
H22C—C22—H22D56.3C6—C5—C4113.36 (13)
C21—C22—H22E109.5O5—C5—H5109.7
H22A—C22—H22E56.3C6—C5—H5109.7
H22B—C22—H22E141.1C4—C5—H5109.7
H22C—C22—H22E56.3C1—O5—C5114.70 (12)
H22D—C22—H22E109.5O6—C6—C5105.85 (12)
C21—C22—H22F109.5O6—C6—H6A110.6
H22A—C22—H22F56.3C5—C6—H6A110.6
H22B—C22—H22F56.3O6—C6—H6B110.6
H22C—C22—H22F141.1C5—C6—H6B110.6
H22D—C22—H22F109.5H6A—C6—H6B108.7
H22E—C22—H22F109.5C61—O6—C6116.57 (12)
O3—C3—C2107.03 (13)O61—C61—O6123.18 (15)
O3—C3—C4107.09 (13)O61—C61—C62125.47 (16)
C2—C3—C4110.39 (13)O6—C61—C62111.33 (14)
O3—C3—H3110.7C61—C62—H62A109.5
C2—C3—H3110.7C61—C62—H62B109.5
C4—C3—H3110.7H62A—C62—H62B109.5
C31—O3—C3118.57 (13)C61—C62—H62C109.5
O31—C31—O3123.49 (16)H62A—C62—H62C109.5
O31—C31—C32126.11 (17)H62B—C62—H62C109.5
O3—C31—C32110.39 (15)C61—C62—H62D109.5
C31—C32—H32A109.5H62A—C62—H62D141.1
C31—C32—H32B109.5H62B—C62—H62D56.3
H32A—C32—H32B109.5H62C—C62—H62D56.3
C31—C32—H32C109.5C61—C62—H62E109.5
H32A—C32—H32C109.5H62A—C62—H62E56.3
H32B—C32—H32C109.5H62B—C62—H62E141.1
O4—C4—C3106.38 (12)H62C—C62—H62E56.3
O4—C4—C5110.52 (11)H62D—C62—H62E109.5
C3—C4—C5110.27 (13)C61—C62—H62F109.5
O4—C4—H4109.9H62A—C62—H62F56.3
C3—C4—H4109.9H62B—C62—H62F56.3
C5—C4—H4109.9H62C—C62—H62F141.1
C41—O4—C4117.43 (12)H62D—C62—H62F109.5
O41—C41—O4123.20 (15)H62E—C62—H62F109.5
O5—C1—C2—O2168.42 (12)C2—C3—C4—C553.23 (16)
F1—C1—C2—O247.11 (17)C3—C4—O4—C41127.16 (14)
O5—C1—C2—C349.06 (17)C5—C4—O4—C41113.13 (14)
F1—C1—C2—C372.25 (16)C4—O4—C41—O417.2 (2)
C3—C2—O2—C21137.54 (16)C4—O4—C41—C42173.47 (14)
C1—C2—O2—C2199.78 (17)O4—C4—C5—O5176.06 (12)
C2—O2—C21—O213.0 (3)C3—C4—C5—O558.72 (15)
C2—O2—C21—C22176.58 (17)O4—C4—C5—C666.65 (15)
O2—C2—C3—O375.69 (16)C3—C4—C5—C6176.01 (13)
C1—C2—C3—O3163.87 (13)F1—C1—O5—C563.56 (18)
O2—C2—C3—C4168.09 (13)C2—C1—O5—C557.40 (16)
C1—C2—C3—C447.66 (18)C6—C5—O5—C1175.67 (13)
C2—C3—O3—C31129.48 (15)C4—C5—O5—C162.46 (16)
C4—C3—O3—C31112.13 (15)O5—C5—C6—O666.43 (14)
C3—O3—C31—O317.1 (2)C4—C5—C6—O6175.17 (11)
C3—O3—C31—C32174.11 (15)C5—C6—O6—C61176.41 (12)
O3—C3—C4—O470.72 (14)C6—O6—C61—O610.2 (2)
C2—C3—C4—O4173.10 (13)C6—O6—C61—C62178.56 (13)
O3—C3—C4—C5169.42 (11)
(II) 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-(1 4)-2,3,6-tri-O-acetyl-1-fluoro-α-D-glucopyranose top
Crystal data top
C26H35FO17Z = 2
Mr = 638.54F(000) = 672
Monoclinic, P21Dx = 1.392 Mg m3
a = 5.63832 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 18.2908 (3) ŵ = 0.12 mm1
c = 14.8144 (2) ÅT = 140 K
β = 94.4966 (15)°Prism, colourless
V = 1523.09 (4) Å30.42 × 0.37 × 0.14 mm
Data collection top
Oxford Xcalibur 3 CCD area-detector
diffractometer
4545 independent reflections
Radiation source: Enhance (Mo) X-ray Source3785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.0050 pixels mm-1θmax = 30.0°, θmin = 3.6°
thin slice ϕ and ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2525
Tmin = 0.923, Tmax = 1.070l = 2020
40401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.1222P]
where P = (Fo2 + 2Fc2)/3
4545 reflections(Δ/σ)max < 0.001
404 parametersΔρmax = 0.70 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C26H35FO17V = 1523.09 (4) Å3
Mr = 638.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.63832 (9) ŵ = 0.12 mm1
b = 18.2908 (3) ÅT = 140 K
c = 14.8144 (2) Å0.42 × 0.37 × 0.14 mm
β = 94.4966 (15)°
Data collection top
Oxford Xcalibur 3 CCD area-detector
diffractometer
4545 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3785 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.070Rint = 0.052
40401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.117H-atom parameters constrained
S = 1.07Δρmax = 0.70 e Å3
4545 reflectionsΔρmin = 0.46 e Å3
404 parameters
Special details top

Experimental. CrysAlisPro RED (Oxford Diffraction Ltd., Version 1.171.32.24). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8543 (5)0.75932 (16)0.47776 (19)0.0281 (6)
H10.88150.80130.51840.034*
F11.0726 (3)0.72718 (10)0.46416 (12)0.0326 (4)
C20.7013 (5)0.70408 (16)0.52227 (17)0.0258 (5)
H20.55840.72820.54140.031*
O20.8410 (4)0.67711 (14)0.60025 (12)0.0344 (5)
C210.7528 (6)0.6813 (2)0.68088 (19)0.0359 (7)
O210.5548 (6)0.6998 (3)0.69031 (19)0.0815 (12)
C220.9284 (6)0.6531 (2)0.7536 (2)0.0443 (8)
H22A0.91420.60090.75770.066*
H22B0.89700.67480.81050.066*
H22C1.08650.66560.73940.066*
C30.6293 (4)0.64091 (14)0.45845 (16)0.0202 (5)
H30.76560.60880.45090.024*
O30.4392 (3)0.60079 (11)0.49598 (12)0.0253 (4)
C310.4958 (5)0.54205 (19)0.5482 (2)0.0341 (7)
O310.6948 (4)0.51879 (16)0.5608 (2)0.0550 (8)
C320.2820 (6)0.5108 (2)0.5865 (3)0.0489 (9)
H32A0.20530.54790.61960.073*
H32B0.32890.47110.62640.073*
H32C0.17360.49310.53810.073*
C40.5274 (4)0.67022 (14)0.36663 (16)0.0202 (5)
H40.37000.69170.37220.024*
O40.5111 (3)0.61181 (10)0.30199 (11)0.0204 (3)
C50.6943 (5)0.72693 (14)0.32998 (17)0.0238 (5)
H50.84180.70280.31540.029*
O50.7499 (4)0.78380 (10)0.39587 (13)0.0292 (4)
C60.5868 (5)0.76593 (16)0.24753 (19)0.0296 (6)
H6A0.70000.80040.22590.035*
H6B0.54430.73110.19960.035*
O60.3775 (4)0.80396 (12)0.27250 (15)0.0355 (5)
C610.3229 (6)0.86492 (18)0.2293 (3)0.0429 (8)
O610.4214 (7)0.8825 (2)0.1631 (3)0.1068 (17)
C620.1211 (6)0.90479 (18)0.2675 (2)0.0392 (7)
H62A0.02210.92650.21900.059*
H62B0.18320.94240.30800.059*
H62C0.02870.87100.29990.059*
C410.2934 (4)0.57372 (15)0.29205 (17)0.0218 (5)
H410.22110.57320.35010.026*
C420.3466 (4)0.49612 (14)0.26440 (17)0.0217 (5)
H420.20090.46670.26150.026*
O420.5249 (3)0.46378 (11)0.32721 (13)0.0287 (4)
C4210.4574 (5)0.41221 (18)0.3840 (2)0.0372 (7)
O4210.2547 (5)0.3998 (2)0.3934 (3)0.0928 (15)
C4220.6667 (6)0.3744 (2)0.4311 (3)0.0450 (9)
H42A0.79750.40800.43920.067*
H42B0.71150.33370.39510.067*
H42C0.62580.35710.48900.067*
C430.4525 (4)0.49523 (13)0.17340 (18)0.0210 (5)
H430.60880.51900.17860.025*
O430.4777 (3)0.41974 (10)0.14757 (14)0.0264 (4)
C4310.7009 (5)0.39281 (16)0.1475 (2)0.0267 (6)
O4310.8748 (3)0.42949 (12)0.15643 (17)0.0374 (5)
C4320.6975 (6)0.31181 (19)0.1342 (4)0.0558 (11)
H43A0.61280.28930.18060.084*
H43B0.85770.29370.13760.084*
H43C0.61980.30040.07590.084*
C440.2902 (4)0.53365 (14)0.10220 (17)0.0210 (5)
H440.15080.50360.08400.025*
O440.4317 (3)0.54654 (11)0.02680 (12)0.0259 (4)
C4410.3355 (5)0.53338 (15)0.05887 (18)0.0265 (5)
O4410.1375 (4)0.51048 (12)0.07524 (14)0.0335 (5)
C4420.5070 (6)0.55528 (18)0.1255 (2)0.0359 (7)
H44A0.65850.53290.10950.054*
H44B0.52460.60750.12490.054*
H44C0.44850.53960.18490.054*
C450.2157 (5)0.60876 (15)0.13594 (17)0.0220 (5)
H450.35230.64190.13680.026*
O450.1328 (3)0.60589 (11)0.22489 (12)0.0243 (4)
C460.0165 (5)0.63951 (14)0.07376 (19)0.0277 (6)
H46A0.04340.62850.01130.033*
H46B0.13350.61770.08720.033*
O460.0076 (4)0.71792 (10)0.08672 (13)0.0304 (4)
C4610.1296 (6)0.75321 (17)0.02403 (19)0.0357 (7)
O4610.2391 (7)0.72173 (15)0.0365 (2)0.0771 (11)
C4620.1235 (8)0.83421 (17)0.0351 (2)0.0427 (8)
H46C0.24570.84900.07280.064*
H46D0.14980.85710.02320.064*
H46E0.02900.84870.06270.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0276 (14)0.0277 (14)0.0291 (13)0.0017 (11)0.0043 (11)0.0114 (11)
F10.0252 (8)0.0353 (9)0.0379 (9)0.0000 (7)0.0064 (7)0.0088 (8)
C20.0250 (13)0.0333 (14)0.0194 (11)0.0047 (11)0.0045 (10)0.0066 (10)
O20.0320 (10)0.0530 (13)0.0183 (8)0.0091 (10)0.0020 (7)0.0066 (9)
C210.0380 (16)0.0502 (19)0.0206 (12)0.0040 (14)0.0102 (11)0.0032 (13)
O210.0615 (18)0.151 (4)0.0347 (13)0.028 (2)0.0206 (13)0.0108 (18)
C220.0487 (19)0.060 (2)0.0231 (14)0.0130 (17)0.0022 (13)0.0018 (14)
C30.0187 (11)0.0259 (12)0.0164 (10)0.0011 (9)0.0031 (9)0.0005 (9)
O30.0186 (8)0.0363 (11)0.0214 (8)0.0003 (8)0.0035 (7)0.0042 (8)
C310.0278 (14)0.0475 (18)0.0266 (13)0.0048 (13)0.0005 (11)0.0146 (13)
O310.0283 (12)0.0648 (18)0.0713 (17)0.0044 (11)0.0002 (11)0.0437 (15)
C320.0353 (17)0.068 (3)0.0439 (18)0.0107 (17)0.0060 (14)0.0234 (18)
C40.0194 (11)0.0235 (12)0.0182 (11)0.0035 (9)0.0041 (9)0.0016 (9)
O40.0196 (8)0.0236 (9)0.0182 (8)0.0037 (7)0.0033 (6)0.0019 (7)
C50.0282 (13)0.0206 (12)0.0236 (12)0.0003 (10)0.0085 (10)0.0035 (10)
O50.0385 (11)0.0223 (9)0.0269 (9)0.0004 (8)0.0046 (8)0.0065 (8)
C60.0413 (16)0.0239 (13)0.0246 (13)0.0029 (11)0.0090 (12)0.0005 (11)
O60.0418 (12)0.0288 (11)0.0368 (11)0.0029 (9)0.0086 (9)0.0100 (9)
C610.0418 (18)0.0295 (16)0.058 (2)0.0048 (13)0.0052 (16)0.0131 (15)
O610.100 (3)0.085 (3)0.146 (4)0.042 (2)0.072 (3)0.080 (3)
C620.0417 (17)0.0272 (15)0.0471 (18)0.0009 (13)0.0063 (14)0.0010 (14)
C410.0169 (11)0.0285 (13)0.0198 (11)0.0044 (9)0.0007 (9)0.0073 (10)
C420.0172 (11)0.0217 (12)0.0251 (12)0.0037 (9)0.0049 (9)0.0088 (10)
O420.0242 (9)0.0289 (10)0.0314 (10)0.0056 (8)0.0074 (8)0.0153 (8)
C4210.0281 (15)0.0391 (17)0.0438 (17)0.0019 (12)0.0002 (12)0.0253 (14)
O4210.0295 (13)0.139 (3)0.109 (3)0.0079 (16)0.0017 (15)0.102 (3)
C4220.0337 (16)0.0413 (18)0.058 (2)0.0005 (14)0.0107 (15)0.0300 (16)
C430.0167 (11)0.0160 (11)0.0299 (13)0.0022 (9)0.0010 (9)0.0042 (9)
O430.0186 (8)0.0199 (9)0.0399 (11)0.0027 (7)0.0028 (8)0.0003 (8)
C4310.0226 (13)0.0241 (13)0.0335 (14)0.0009 (10)0.0022 (11)0.0024 (11)
O4310.0202 (10)0.0368 (12)0.0553 (14)0.0052 (9)0.0050 (9)0.0040 (10)
C4320.0328 (17)0.0274 (16)0.109 (4)0.0034 (13)0.017 (2)0.000 (2)
C440.0202 (11)0.0210 (11)0.0214 (11)0.0040 (9)0.0017 (9)0.0053 (10)
O440.0254 (9)0.0299 (10)0.0223 (9)0.0083 (8)0.0011 (7)0.0016 (8)
C4410.0331 (14)0.0218 (13)0.0239 (12)0.0012 (11)0.0012 (11)0.0026 (10)
O4410.0347 (11)0.0353 (11)0.0291 (10)0.0050 (9)0.0057 (8)0.0027 (9)
C4420.0465 (18)0.0359 (17)0.0258 (14)0.0043 (14)0.0057 (12)0.0027 (12)
C450.0239 (11)0.0199 (11)0.0214 (11)0.0034 (10)0.0036 (9)0.0051 (9)
O450.0183 (8)0.0274 (10)0.0268 (9)0.0007 (7)0.0004 (7)0.0041 (8)
C460.0323 (14)0.0178 (12)0.0309 (14)0.0007 (10)0.0113 (11)0.0016 (10)
O460.0460 (12)0.0184 (9)0.0253 (9)0.0029 (8)0.0080 (8)0.0014 (7)
C4610.059 (2)0.0237 (14)0.0227 (13)0.0088 (13)0.0065 (13)0.0033 (11)
O4610.122 (3)0.0328 (14)0.0649 (18)0.0213 (16)0.0638 (19)0.0080 (13)
C4620.079 (3)0.0221 (14)0.0269 (14)0.0086 (15)0.0037 (15)0.0032 (12)
Geometric parameters (Å, º) top
C1—O51.381 (3)C41—H410.9800
C1—F11.393 (3)C42—O421.442 (3)
C1—C21.513 (4)C42—C431.517 (4)
C1—H10.9800C42—H420.9800
C2—O21.434 (3)O42—C4211.339 (3)
C2—C31.527 (4)C421—O4211.184 (4)
C2—H20.9800C421—C4221.493 (4)
O2—C211.332 (3)C422—H42A0.9600
C21—O211.185 (4)C422—H42B0.9600
C21—C221.496 (5)C422—H42C0.9600
C22—H22A0.9600C43—O431.443 (3)
C22—H22B0.9600C43—C441.514 (3)
C22—H22C0.9600C43—H430.9800
C3—O31.446 (3)O43—C4311.352 (3)
C3—C41.532 (3)C431—O4311.187 (3)
C3—H30.9800C431—C4321.495 (4)
O3—C311.348 (4)C432—H43A0.9600
C31—O311.201 (4)C432—H43B0.9600
C31—C321.486 (4)C432—H43C0.9600
C32—H32A0.9600C44—O441.442 (3)
C32—H32B0.9600C44—C451.532 (4)
C32—H32C0.9600C44—H440.9800
C4—O41.433 (3)O44—C4411.362 (3)
C4—C51.529 (4)C441—O4411.200 (3)
C4—H40.9800C441—C4421.489 (4)
O4—C411.409 (3)C442—H44A0.9600
C5—O51.444 (3)C442—H44B0.9600
C5—C61.501 (4)C442—H44C0.9600
C5—H50.9800C45—O451.433 (3)
C6—O61.443 (4)C45—C461.505 (4)
C6—H6A0.9700C45—H450.9800
C6—H6B0.9700C46—O461.448 (3)
O6—C611.310 (4)C46—H46A0.9700
C61—O611.209 (5)C46—H46B0.9700
C61—C621.499 (5)O46—C4611.329 (3)
C62—H62A0.9600C461—O4611.196 (4)
C62—H62B0.9600C461—C4621.491 (4)
C62—H62C0.9600C462—H46C0.9600
C41—O451.420 (3)C462—H46D0.9600
C41—C421.514 (4)C462—H46E0.9600
O5—C1—F1109.3 (2)C42—C41—H41109.4
O5—C1—C2112.4 (2)O42—C42—C41110.7 (2)
F1—C1—C2108.8 (2)O42—C42—C43105.4 (2)
O5—C1—H1108.8C41—C42—C43110.5 (2)
F1—C1—H1108.8O42—C42—H42110.0
C2—C1—H1108.8C41—C42—H42110.0
O2—C2—C1106.6 (2)C43—C42—H42110.0
O2—C2—C3109.9 (2)C421—O42—C42118.5 (2)
C1—C2—C3111.6 (2)O421—C421—O42122.2 (3)
O2—C2—H2109.6O421—C421—C422126.2 (3)
C1—C2—H2109.6O42—C421—C422111.5 (3)
C3—C2—H2109.6C421—C422—H42A109.5
C21—O2—C2118.9 (2)C421—C422—H42B109.5
O21—C21—O2122.9 (3)H42A—C422—H42B109.5
O21—C21—C22126.1 (3)C421—C422—H42C109.5
O2—C21—C22110.7 (3)H42A—C422—H42C109.5
C21—C22—H22A109.5H42B—C422—H42C109.5
C21—C22—H22B109.5O43—C43—C44109.0 (2)
H22A—C22—H22B109.5O43—C43—C42107.4 (2)
C21—C22—H22C109.5C44—C43—C42110.8 (2)
H22A—C22—H22C109.5O43—C43—H43109.8
H22B—C22—H22C109.5C44—C43—H43109.8
O3—C3—C2108.4 (2)C42—C43—H43109.8
O3—C3—C4106.32 (19)C431—O43—C43117.4 (2)
C2—C3—C4110.4 (2)O431—C431—O43123.7 (3)
O3—C3—H3110.6O431—C431—C432125.2 (3)
C2—C3—H3110.6O43—C431—C432111.0 (2)
C4—C3—H3110.6C431—C432—H43A109.5
C31—O3—C3118.4 (2)C431—C432—H43B109.5
O31—C31—O3123.2 (3)H43A—C432—H43B109.5
O31—C31—C32125.5 (3)C431—C432—H43C109.5
O3—C31—C32111.3 (3)H43A—C432—H43C109.5
C31—C32—H32A109.5H43B—C432—H43C109.5
C31—C32—H32B109.5O44—C44—C43105.93 (19)
H32A—C32—H32B109.5O44—C44—C45106.77 (19)
C31—C32—H32C109.5C43—C44—C45110.8 (2)
H32A—C32—H32C109.5O44—C44—H44111.1
H32B—C32—H32C109.5C43—C44—H44111.1
O4—C4—C5106.10 (18)C45—C44—H44111.1
O4—C4—C3109.4 (2)C441—O44—C44119.3 (2)
C5—C4—C3110.7 (2)O441—C441—O44123.1 (3)
O4—C4—H4110.2O441—C441—C442127.0 (3)
C5—C4—H4110.2O44—C441—C442109.8 (2)
C3—C4—H4110.2C441—C442—H44A109.5
C41—O4—C4116.61 (19)C441—C442—H44B109.5
O5—C5—C6105.1 (2)H44A—C442—H44B109.5
O5—C5—C4110.84 (19)C441—C442—H44C109.5
C6—C5—C4113.0 (2)H44A—C442—H44C109.5
O5—C5—H5109.3H44B—C442—H44C109.5
C6—C5—H5109.3O45—C45—C46107.1 (2)
C4—C5—H5109.3O45—C45—C44112.6 (2)
C1—O5—C5114.5 (2)C46—C45—C44110.2 (2)
O6—C6—C5107.9 (2)O45—C45—H45108.9
O6—C6—H6A110.1C46—C45—H45108.9
C5—C6—H6A110.1C44—C45—H45108.9
O6—C6—H6B110.1C41—O45—C45115.04 (19)
C5—C6—H6B110.1O46—C46—C45108.7 (2)
H6A—C6—H6B108.4O46—C46—H46A109.9
C61—O6—C6116.8 (2)C45—C46—H46A109.9
O61—C61—O6121.1 (3)O46—C46—H46B109.9
O61—C61—C62126.0 (3)C45—C46—H46B109.9
O6—C61—C62112.7 (3)H46A—C46—H46B108.3
C61—C62—H62A109.5C461—O46—C46114.4 (2)
C61—C62—H62B109.5O461—C461—O46121.9 (3)
H62A—C62—H62B109.5O461—C461—C462124.6 (3)
C61—C62—H62C109.5O46—C461—C462113.5 (3)
H62A—C62—H62C109.5C461—C462—H46C109.5
H62B—C62—H62C109.5C461—C462—H46D109.5
O4—C41—O45111.8 (2)H46C—C462—H46D109.5
O4—C41—C42107.6 (2)C461—C462—H46E109.5
O45—C41—C42109.1 (2)H46C—C462—H46E109.5
O4—C41—H41109.4H46D—C462—H46E109.5
O45—C41—H41109.4
O5—C1—C2—O2173.4 (2)O4—C41—C42—O4253.6 (3)
F1—C1—C2—O252.2 (3)O45—C41—C42—O42175.12 (19)
O5—C1—C2—C353.4 (3)O4—C41—C42—C4362.8 (2)
F1—C1—C2—C367.8 (3)O45—C41—C42—C4358.7 (2)
C1—C2—O2—C21125.0 (3)C41—C42—O42—C421107.7 (3)
C3—C2—O2—C21113.9 (3)C43—C42—O42—C421132.8 (3)
C2—O2—C21—O217.5 (5)C42—O42—C421—O42111.0 (6)
C2—O2—C21—C22177.8 (3)C42—O42—C421—C422168.8 (3)
O2—C2—C3—O376.1 (2)O42—C42—C43—O4365.7 (2)
C1—C2—C3—O3165.9 (2)C41—C42—C43—O43174.72 (18)
O2—C2—C3—C4167.9 (2)O42—C42—C43—C44175.3 (2)
C1—C2—C3—C449.9 (3)C41—C42—C43—C4455.7 (3)
C2—C3—O3—C3194.0 (3)C44—C43—O43—C431129.2 (2)
C4—C3—O3—C31147.4 (2)C42—C43—O43—C431110.6 (2)
C3—O3—C31—O314.5 (5)C43—O43—C431—O4319.6 (4)
C3—O3—C31—C32175.8 (3)C43—O43—C431—C432170.8 (3)
O3—C3—C4—O475.6 (2)O43—C43—C44—O4476.6 (2)
C2—C3—C4—O4167.10 (19)C42—C43—C44—O44165.32 (19)
O3—C3—C4—C5167.8 (2)O43—C43—C44—C45167.94 (19)
C2—C3—C4—C550.5 (3)C42—C43—C44—C4549.9 (3)
C5—C4—O4—C41148.2 (2)C43—C44—O44—C441136.4 (2)
C3—C4—O4—C4192.3 (2)C45—C44—O44—C441105.4 (2)
O4—C4—C5—O5172.08 (19)C44—O44—C441—O4410.9 (4)
C3—C4—C5—O553.4 (3)C44—O44—C441—C442176.1 (2)
O4—C4—C5—C670.3 (3)O44—C44—C45—O45163.48 (18)
C3—C4—C5—C6171.1 (2)C43—C44—C45—O4548.6 (3)
F1—C1—O5—C562.8 (3)O44—C44—C45—C4676.9 (3)
C2—C1—O5—C558.0 (3)C43—C44—C45—C46168.2 (2)
C6—C5—O5—C1179.4 (2)O4—C41—O45—C4559.8 (3)
C4—C5—O5—C158.2 (3)C42—C41—O45—C4559.1 (3)
O5—C5—C6—O659.8 (3)C46—C45—O45—C41176.2 (2)
C4—C5—C6—O661.2 (3)C44—C45—O45—C4154.8 (3)
C5—C6—O6—C61149.0 (3)O45—C45—C46—O4677.4 (3)
C6—O6—C61—O6110.7 (6)C44—C45—C46—O46159.7 (2)
C6—O6—C61—C62173.1 (3)C45—C46—O46—C461167.7 (3)
C4—O4—C41—O4589.8 (2)C46—O46—C461—O4611.4 (5)
C4—O4—C41—C42150.4 (2)C46—O46—C461—C462176.1 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H19FO9C26H35FO17
Mr350.29638.54
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)140140
a, b, c (Å)5.35502 (11), 7.96182 (14), 20.1151 (5)5.63832 (9), 18.2908 (3), 14.8144 (2)
β (°) 92.061 (2) 94.4966 (15)
V3)857.06 (3)1523.09 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.120.12
Crystal size (mm)0.55 × 0.31 × 0.110.42 × 0.37 × 0.14
Data collection
DiffractometerOxford Xcalibur 3 CCD area-detector
diffractometer
Oxford Xcalibur 3 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.970, 1.0330.923, 1.070
No. of measured, independent and
observed [I > 2σ(I)] reflections
24426, 2677, 2325 40401, 4545, 3785
Rint0.0370.052
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.02 0.048, 0.117, 1.07
No. of reflections26774545
No. of parameters224404
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.140.70, 0.46

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Johnson, 1976; Farrugia, 1997).

Selected bond lengths (Å), including those affected by the anomeric effect, in glycosyl halide derivatives and pentaacetyl-α-D-gluopyranose [Scheme 2 here, please] top
XRC5—O5O5—C1C1—XC1—C2C2—C3C3—C4C4—C5
BraAc1.458 (14)1.347 (15)2.002f1.572 (16)g1.531 (16)g1.600 (16)g1.500 (16)g
ClbAc1.445f1.383f1.777f
FcAc1.4477 (18)1.381 (2)1.3981 (19)1.514 (3)1.512 (2)1.515 (2)1.516 (2)
Fd(Ac)4Glc1.444 (3)1.381 (3)1.393 (3)1.513 (4)1.527 (4)1.532 (3)1.529 (4)
OGlyd(Ac)4Glc1.433 (3)1.420 (3)1.409 (3)1.514 (4)1.517 (4)1.514 (3)1.532 (4)
OAceAc1.422 (4)1.403 (4)1.431 (4)1.507 (4)1.524 (4)1.504 (4)1.534 (4)
Notes: (a) Takai et al. (1976); (b) James & Hall (1969); (c) this work, compound (I); (d) this work, compound (II); (e) Jones et al. (1982); (f) s.u. values are not available; (g) s.u. values are taken from a mean value.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds