Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
During an investigation of the insufficiently known system M1O-M2O-X2O5-H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis­[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2-type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the inter­connection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry \overline{1}), form isolated CuO4 squares inter­connected by PO4 tetra­hedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108032332/ku3001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108032332/ku3001Isup2.hkl
Contains datablock I

Comment top

Natural and synthetic metal phosphates, arsenates and vanadates often form tetrahedral–octahedral framework structures with potentially interesting properties (e.g. ion conductivity, ion exchange and catalytic activities). An ongoing comprehensive study of the hydrothermal synthesis, crystallography and properties of phosphate(V), arsenate(V) and vanadate(V) compounds in the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Sr2+, Cd2+ and Ba2+; M2 = Mg2+, Co2+, Ni2+, Cu2+ and Zn2+; and X = P5+, As5+ and V5+) yielded a large number of new M12+–, M22+– and M1–M2–(H–) phosphates, arsenates and vanadates (Mihajlović & Effenberger, 2004, 2006; Mihajlović, Libowitzky & Effenberger, 2004; Mihajlović, Kolitsch & Effenberger, 2004; Đorđević, Šutović et al., 2008; Đorđević, Karanović, & Tillmanns, 2008; Đorđević & Karanović, 2008; Đordević, 2008a,b), which were characterized structurally and, in part, also by spectroscopic techniques. The present contribution reports the hydrothermal synthesis and crystal structure of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2.

Cd2Cu(PO4)2 is isomorphous with only five compounds, namely two phosphates, two arsenates and one vanadate [structure prototype Cu3(PO4)2 (Forsyth et al., 1990; Shoemaker et al., 1977), (Mg0.21,Cu0.79)3(PO4)2 (Moqine et al., 1994), Cu3(AsO4)2 (Effenberger, 1988), Zn2Cu(AsO4)2 (mineral stranskiite; Plieth & Sänger, 1967; Calvo & Leung, 1969; Keller, et al., 1979) and Cu3(VO4)2 (mineral mcbirneyite; (Coing-Boyat, 1982)]. All compounds crystallize in the space group P1 and have the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+, and X = As5+, P5+ and V5+; Table 1). It is interesting that the crystal structure of Cd2Cu(PO4)2 is different from that of monoclinic Cd1.35Cu1.65(PO4)2, which has a very similar chemical composition (Müller-Buschbaum & Münchau, 1996). The crystal structure of Cd2Cu(PO4)2 consists of [Cu(PO4)2]n chains, running along the [100] direction, interconnected by double chains of CdO6 polyhedra extending in the same direction (Fig. 1). Very similar [Cu(PO4)2]n chains have been described in the crystal structures of Ba2Cu(PO4)2.H2O (Effenberger, 1999), Ba2Cu(PO4)2 (Etheredge & Hwu, 1996) and Sr2Cu(PO4)2 (Johannes et al., 2006).

The Cu atom, located on an inversion centre (M2 position), is coordinated by four O atoms with an average Cu1—O bond distance of 1.941 (3) Å, forming a slightly distorted square-planar coordination [the O2ii—Cu1—O3 and O2ii—Cu1—O3i bond angles are 88.42 (10) and 91.58 (10)°; symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 1, -z]. All four O atoms (O2 × 2 and O3 × 2) of the CuO4 squares are triply coordinated, bridging Cd1, Cu1 and P1 atoms. The P atom exhibits the usual tetrahedral coordination, with a mean P1—O distance of 1.541 (3) Å. The CuO4 squares and PO4 tetrahedra generate [Cu(PO4)2]n chains along the a axis (Fig. 1a).

Similar to other isomorphous compounds, the M1 cation (M1 = Cd) is situated in the general position. However, it is surrounded by six not five O atoms, forming a (5+1)-coordination polyhedron, which can be described as an extremely distorted octahedron. Pairs of CdO6 polyhedra sharing an O4—O4i edge form Cd2O10 dimers (Fig. 1b) similar to the isolated M1O8 dimers in related structures. The exceptional characteristic of this structure is that the Cd2O10 dimers are further polymerized, sharing common vertices (O1 and its symmetry equivalents) in double chains [Cd2O10]n running along the a axis. In this way, every Cd polyhedron shares additionally two vertices with neighboring polyhedra. The neighboring [Cd2O10]n double chains are interconnected by PO4 tetrahedra, which are linked to both CdO6 and CuO4 polyhedra. In addition to atom P1, atoms O1 and O4 are bonded to two Cd1 atoms, and O2 and O3 to one Cd1 and one Cu1 atoms (Fig. 2).

Excluding the sixth O atom [O1vi; symmetry code: (vi) x+1, y, z] of the CdO6 polyhedron, the average Cd1—O bond length is 2.259 (2) Å. The sixth O atom, located at a Cd1—O1vi distance of 2.716 (2) Å, contributes to the bond valence by approximately 5.5%. Taking into account the contribution of the five O atoms only, atom Cd1is undersaturated, i.e. νij(Cd1) is 1.92 valence units (v.u.). Including the sixth O atom, O1viνij(Cd1) increase to 2.02 v.u. The bond valence calculated according to the formula suggested by Brown and Altermatt (1985) for O1 shows that O1 is also undersaturated, i.e. νij(O1) is 1.80 v.u. This could indicate that vacancies exist at the O1 position, but the refinement showed that no such significant vacancies are present at this site [the refined occupancy was 1.05 (1)]. Therefore, the refinement was completed with a fixed atom site occupancy value of 1. Very probably, the undersaturation of O1 is due to the unusually long distance of 2.716 (2) Å. Hypothetically, if it is assumed that both the Cd1—O1 and the Cd1—O1vi distances are equal to 2.242 (2) Å, the calculated νij(O1) was becomes 2.09 v.u.

The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the other isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with that of Cu, Mg and Zn. The increase in the polymerization of the CdO6 polyhedra is accompanied by a decrease of the M1···M1 distances along the a axis. The Cd1···Cd1 distance along the chain extension is 4.7982 (3) Å, which is identical to the unit-cell parameter a and is shorter than the Cu···Cu distances in Cu3(PO4)2, Cu(AsO4)2 and Cu3(VO4)2, as well as the Zn···Zn distance in Zn2Cu(AsO4)2. Therefore, the unit-cell parameter a in Cd2Cu(PO4)2 achieves the shortest value amongst the isomorphous compounds, although it has the largest M1 cation and unit-cell volume (Table 1). In contrast, the b parameter has the largest value, while c is longer than those obtained for Cu3(PO4)2, Cu3(AsO4)2 and Cu3(VO4)2, but similar to c in Zn2Cu(AsO4)2.

An interesting aspect of the crystal structure is that it can also be described as PO4 tetrahedra sandwiched between two metal layers, which are situated near the (101) plane (Fig. 3). The two Cd1 cations in the dimer are located in the same (101) plane and separated from each other by 3.5198 (8) Å, and the Cd1—O4—Cd1v [symmetry code: (v) -x + 1, -y, -z + 1] angle is 102.33 (10)°. As mentioned above the Cd1···Cd1 distances between neighbours along the chain direction are 4.7982 (3) Å, and the shortest Cd1···Cd1 distance between neighbouring dimers positioned in the adjacent (101) plane is 4.2599 (5) Å. The shortest Cu1···Cd1 distances in the (101) plane are 3.5270 (3) and 3.7977 (4), and between two (101) planes is 3.9408 (4) Å. Because the Cu1 atoms are situated at the origin of the unit cell, the Cu1—Cu1 distances are equal to the lengths of unit-cell parameters a, b and c. All metal–metal distances are longer than the sum of the van der Waals radii [3.16 Å (2 × rCd), 2.98 Å (rCd + rCu = 1.58 + 1.40 = 2.98 Å) and 2.80 Å (2 × rCu), respectively (Bondi, 1964)].

Related literature top

For related literature, see: Bondi (1964); Brown & Altermatt (1985); Calvo & Leung (1969); Coing-Boyat (1982); Effenberger (1988, 1999); Etheredge & Hwu (1996); Forsyth et al. (1990); Johannes et al. (2006); Keller et al. (1979); Müller-Buschbaum & Münchau (1996); Mihajlović & Effenberger (2004, 2006); Mihajlović, Kolitsch & Effenberger (2004); Mihajlović, Libowitzky & Effenberger (2004); Moqine et al. (1994); Plieth & Sänger (1967); Shoemaker et al. (1977); Đordević (2008a, 2008b); Đorđević & Karanović (2008); Đorđević, Karanović & Tillmanns (2008); Đorđević, Šutović, Stojanović & Karanović (2008).

Experimental top

A mixture of Cd(OH)2 (Alfa Products, > 99%), (NH4)2HPO4 ( Loba Chemie, > 99%) and CuCl2.2H2O (Merck, > 99%) was transferred into teflon vessels and filled to approximately 70% of the inner volume with distilled water [quantities of reagents?]. The pH of the mixture was 5. The vessel was enclosed in a stainless steel autoclave and heated from room temperature to 493 K (4h), held at 493 K for 192 h, and finally spontaneously cooled to room temperature. At the end of the reaction the pH of the solvent was 6.

The title compound crystallized as blue prismatic crystals (yield ca 55%) of up to 100 µm in length together with green prismatic crystals of Cu2(PO4)OH (yield ca 35 %) and colourless crystals of NH4Cl (yield ca 10 %). All the reaction products were filtered off, washed thoroughly with distilled water and dried in air at room temperature.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. (a) The infinite [Cu(PO4)2]n chain and (b) the double [Cd2O10]n chain with the atomic numbering scheme (displacement ellipsoids are shown at the 91% probability level). The longest Cd1—O1 bond distance is shown as a fine line. [Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z; (iii) x, y-1, z; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (viii) x, y, z-1; (ix) -x+1, -y+1, -z].
[Figure 2] Fig. 2. A perspective view of the crystal structure of Cd2Cu(PO4)2, projected along [100] (b axis horizontal). Large grey spheres represent Cd1 and smaller spheres Cu1 atoms. PO4 tetrahedra and CuO4 coordination squares are shaded.
[Figure 3] Fig. 3. Perspective views of the crystal structure of Cd2Cu(PO4)2, projected approximately along (a) [111] and (b) [010], showing PO4 tetrahedra sandwiched between metal layers situated near the (101) plane. Larger grey spheres represent Cd1 and smaller spheres Cu1 atoms. PO4 tetrahedra are shaded.
dicadmium copper(II) bis[phosphate(V)] top
Crystal data top
Cd2Cu(PO4)2Z = 1
Mr = 478.31F(000) = 219
Triclinic, P1Dx = 4.884 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.7982 (3) ÅCell parameters from 3683 reflections
b = 5.5801 (3) Åθ = 1.0–30.0°
c = 6.7217 (3) ŵ = 10.22 mm1
α = 74.266 (3)°T = 295 K
β = 86.330 (3)°Prism, blue
γ = 69.924 (3)°0.09 × 0.04 × 0.02 mm
V = 162.62 (2) Å3
Data collection top
Nonius KappaCCD diffractomer805 independent reflections
Radiation source: fine-focus sealed X-ray tube747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ + ω scansθmax = 28.3°, θmin = 4.0°
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
h = 66
Tmin = 0.460, Tmax = 0.822k = 77
1596 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0187P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.79 e Å3
805 reflectionsΔρmin = 0.59 e Å3
63 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0054 (15)
Crystal data top
Cd2Cu(PO4)2γ = 69.924 (3)°
Mr = 478.31V = 162.62 (2) Å3
Triclinic, P1Z = 1
a = 4.7982 (3) ÅMo Kα radiation
b = 5.5801 (3) ŵ = 10.22 mm1
c = 6.7217 (3) ÅT = 295 K
α = 74.266 (3)°0.09 × 0.04 × 0.02 mm
β = 86.330 (3)°
Data collection top
Nonius KappaCCD diffractomer805 independent reflections
Absorption correction: multi-scan
(Otwinowski & Minor, 1997)
747 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.822Rint = 0.016
1596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01863 parameters
wR(F2) = 0.0430 restraints
S = 1.09Δρmax = 0.79 e Å3
805 reflectionsΔρmin = 0.59 e Å3
Special details top

Experimental. Qualitative chemical analyses were performed using a JEOL JSM-6400LV and JSM-6460LV scanning electron microscopes (SEM) connected with a LINK energy-dispersive X-ray analysis (EDX) unit. The presence of Cd, Cu and P was confirmed in all investigated samples.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.00974 (14)
Cd10.29320 (5)0.28014 (5)0.31066 (4)0.01168 (11)
P10.37203 (18)0.31990 (16)0.78682 (13)0.00803 (18)
O10.2020 (5)0.3928 (5)0.3243 (4)0.0135 (5)
O20.3110 (5)0.6921 (5)0.1636 (4)0.0126 (5)
O30.2297 (5)0.2256 (5)0.0068 (4)0.0099 (5)
O40.3801 (5)0.1346 (5)0.6523 (4)0.0124 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0070 (3)0.0087 (3)0.0127 (3)0.0027 (2)0.0016 (2)0.0010 (2)
Cd10.01194 (15)0.01009 (15)0.01117 (16)0.00144 (10)0.00111 (9)0.00252 (9)
P10.0067 (4)0.0079 (4)0.0087 (4)0.0014 (3)0.0001 (3)0.0022 (3)
O10.0108 (12)0.0074 (11)0.0175 (13)0.0001 (9)0.0013 (9)0.0009 (9)
O20.0080 (11)0.0131 (12)0.0160 (13)0.0038 (9)0.0011 (9)0.0019 (10)
O30.0102 (11)0.0115 (12)0.0090 (11)0.0043 (10)0.0001 (9)0.0032 (9)
O40.0139 (12)0.0110 (12)0.0120 (12)0.0018 (10)0.0005 (9)0.0057 (9)
Geometric parameters (Å, º) top
Cu1—O31.928 (2)P1—O2xiv1.553 (2)
Cu1—O3i1.928 (2)O1—P1xi1.525 (3)
Cu1—O2ii1.952 (3)O1—Cd1vii2.716 (2)
Cu1—O2iii1.952 (3)O1—Cd1xi3.359 (3)
Cu1—O4iv2.966 (3)O1—Cu1xiii3.892 (3)
Cu1—O4v2.966 (3)O1—Cd1v4.038 (3)
Cu1—O13.370 (3)O1—Cd1ii4.148 (3)
Cu1—O1i3.370 (3)O1—Cu1xvii4.365 (3)
Cu1—O3vi3.470 (2)O1—Cu1xv4.480 (3)
Cu1—O3vii3.470 (2)O1—Cd1xvii4.684 (3)
Cu1—Cd1i3.5270 (3)O1—Cd1ix4.926 (3)
Cu1—Cd13.5270 (3)O1—Cd1xviii5.567 (3)
Cu1—O4viii3.644 (3)O1—Cu1vii5.800 (3)
Cu1—O4ix3.644 (3)O1—Cd1iii5.861 (3)
Cu1—Cd1ii3.7977 (4)O2—P1xiv1.553 (2)
Cu1—Cd1iii3.7977 (4)O2—Cu1xiii1.952 (3)
Cu1—O1ii3.892 (3)O2—Cd1xii3.599 (3)
Cu1—O1iii3.892 (3)O2—Cd1xiii3.648 (3)
Cu1—Cd1vi3.9408 (4)O2—Cd1xiv4.181 (3)
Cu1—Cd1vii3.9408 (4)O2—Cu1xix4.184 (3)
Cu1—O3ii4.089 (3)O2—Cd1ii4.381 (3)
Cd1—O42.232 (3)O2—Cd1xi4.426 (3)
Cd1—O12.242 (2)O2—Cu1x4.486 (3)
Cd1—O4ix2.263 (3)O2—Cd1x4.517 (3)
Cd1—O22.271 (2)O2—Cd1xvii5.072 (3)
Cd1—O32.288 (2)O2—Cd1ix5.377 (3)
Cd1—O1x2.716 (2)O2—Cd1xx5.772 (3)
Cd1—O3ii3.306 (3)O3—P1iv1.548 (2)
Cd1—O1xi3.359 (3)O3—Cd1ii3.306 (3)
Cd1—Cd1ix3.5019 (8)O3—Cu1x3.470 (2)
Cd1—O2xii3.599 (3)O3—Cd1vi3.933 (3)
Cd1—O2iii3.648 (3)O3—Cu1xiii4.089 (3)
Cd1—O4xi3.776 (3)O3—Cd1xii4.207 (3)
Cd1—Cu1xiii3.7977 (4)O3—Cd1iv4.513 (2)
Cd1—O3vi3.933 (3)O3—Cd1vii4.798 (3)
Cd1—Cu1x3.9408 (4)O3—Cd1ix4.987 (3)
Cd1—O1v4.038 (3)O3—Cd1iii5.035 (3)
Cd1—O4xiv4.146 (3)O3—Cd1i5.203 (3)
Cd1—O1ii4.148 (3)O3—Cd1v5.688 (3)
Cd1—O2xiv4.181 (3)O3—Cd1x5.787 (3)
Cd1—O3xii4.207 (3)O4—Cd1ix2.263 (3)
Cd1—Cd1xi4.2599 (5)O4—Cu1xv2.966 (3)
Cd1—O2ii4.381 (3)O4—Cu1xxi3.644 (3)
Cd1—O2xi4.426 (3)O4—Cd1xi3.776 (3)
Cd1—O3xv4.513 (2)O4—Cd1xiv4.146 (3)
Cd1—O2vii4.517 (3)O4—Cd1v4.536 (3)
Cd1—O4v4.536 (3)O4—Cd1xv4.680 (3)
Cd1—O4iv4.680 (3)O4—Cd1x5.027 (3)
Cd1—O1xvi4.684 (3)O4—Cu1x5.217 (3)
Cd1—Cd1ii4.7525 (5)O4—Cu1xiii5.418 (3)
P1—O1xi1.525 (3)O4—Cd1vii5.545 (3)
P1—O41.538 (3)O4—Cu1xxii5.625 (3)
P1—O3xv1.548 (3)
O3—Cu1—O3i180.00 (8)O2xii—Cd1—O4v112.59 (5)
O3—Cu1—O2ii88.42 (10)O2iii—Cd1—O4v47.17 (5)
O3i—Cu1—O2ii91.58 (10)O4xi—Cd1—O4v83.81 (5)
O3—Cu1—O2iii91.58 (10)O3vi—Cd1—O4v85.22 (5)
O3i—Cu1—O2iii88.42 (10)O1v—Cd1—O4v45.13 (5)
O2ii—Cu1—O2iii180.0O4xiv—Cd1—O4v157.62 (6)
O3—Cu1—O4iv56.49 (8)O1ii—Cd1—O4v95.71 (5)
O3i—Cu1—O4iv123.51 (8)O2xiv—Cd1—O4v122.55 (5)
O2ii—Cu1—O4iv83.92 (9)O3xii—Cd1—O4v154.60 (5)
O2iii—Cu1—O4iv96.08 (9)O2ii—Cd1—O4v49.27 (5)
O3i—Cu1—O4v56.49 (8)O2xi—Cd1—O4v63.26 (5)
O2ii—Cu1—O4v96.08 (9)O3xv—Cd1—O4v91.23 (5)
O2iii—Cu1—O4v83.92 (9)O2vii—Cd1—O4v54.97 (5)
O4iv—Cu1—O4v180.00 (10)O4—Cd1—O4iv151.12 (9)
O3—Cu1—O163.73 (8)O1—Cd1—O4iv96.87 (8)
O3i—Cu1—O1116.27 (8)O4ix—Cd1—O4iv73.86 (8)
O2ii—Cu1—O178.23 (9)O2—Cd1—O4iv88.61 (8)
O2iii—Cu1—O1101.77 (9)O3—Cd1—O4iv12.16 (6)
O4iv—Cu1—O1117.66 (6)O1x—Cd1—O4iv98.83 (7)
O4v—Cu1—O162.34 (6)O1v—Cd1—O4iv103.00 (5)
O3—Cu1—O1i116.27 (8)O4xiv—Cd1—O4iv112.69 (4)
O3i—Cu1—O1i63.73 (8)O1ii—Cd1—O4iv32.52 (4)
O2iii—Cu1—O1i78.23 (9)O2xiv—Cd1—O4iv149.68 (5)
O4iv—Cu1—O1i62.34 (6)O3xii—Cd1—O4iv78.43 (5)
O1—Cu1—O1i180.00 (9)O2ii—Cd1—O4iv43.57 (5)
O3—Cu1—O3vi57.12 (10)O2xi—Cd1—O4iv141.42 (5)
O3i—Cu1—O3vi122.88 (10)O3xv—Cd1—O4iv167.04 (4)
O2ii—Cu1—O3vi134.74 (8)O2vii—Cd1—O4iv87.41 (5)
O2iii—Cu1—O3vi45.26 (8)O4v—Cd1—O4iv80.12 (5)
O4iv—Cu1—O3vi53.56 (7)O4—Cd1—O1xvi83.89 (8)
O4v—Cu1—O3vi126.44 (7)O1—Cd1—O1xvi114.80 (8)
O1—Cu1—O3vi106.11 (6)O2—Cd1—O1xvi141.00 (7)
O1i—Cu1—O3vi73.89 (6)O3—Cd1—O1xvi71.71 (7)
O3i—Cu1—O3vii57.12 (10)O1x—Cd1—O1xvi94.10 (6)
O2ii—Cu1—O3vii45.26 (8)O3ii—Cd1—O1xvi134.67 (5)
O4v—Cu1—O3vii53.56 (7)O1xi—Cd1—O1xvi131.77 (4)
O3vi—Cu1—O3vii180.0O2xii—Cd1—O1xvi75.43 (6)
O3—Cu1—O4viii126.63 (8)O2iii—Cd1—O1xvi31.42 (5)
O3i—Cu1—O4viii53.37 (8)O4xi—Cd1—O1xvi154.77 (5)
O2ii—Cu1—O4viii42.11 (8)O3vi—Cd1—O1xvi32.94 (5)
O2iii—Cu1—O4viii137.89 (8)O1v—Cd1—O1xvi49.16 (6)
O4iv—Cu1—O4viii92.50 (7)O4xiv—Cd1—O1xvi130.08 (5)
O4v—Cu1—O4viii87.50 (7)O1ii—Cd1—O1xvi99.23 (5)
O1—Cu1—O4viii110.35 (6)O2xiv—Cd1—O1xvi99.17 (6)
O1i—Cu1—O4viii69.65 (6)O3xii—Cd1—O1xvi112.02 (5)
O3vi—Cu1—O4viii139.12 (6)O2ii—Cd1—O1xvi87.92 (6)
O3vii—Cu1—O4viii40.88 (6)O2xi—Cd1—O1xvi108.62 (5)
O3—Cu1—O4ix53.37 (8)O3xv—Cd1—O1xvi100.91 (6)
O3i—Cu1—O4ix126.63 (8)O2vii—Cd1—O1xvi123.78 (5)
O2iii—Cu1—O4ix42.11 (8)O4v—Cd1—O1xvi71.19 (5)
O4v—Cu1—O4ix92.50 (7)O4iv—Cd1—O1xvi67.25 (5)
O1—Cu1—O4ix69.65 (6)O1xi—P1—O4111.01 (14)
O1i—Cu1—O4ix110.35 (6)O1xi—P1—O3xv111.94 (14)
O4viii—Cu1—O4ix180.00 (8)O4—P1—O3xv107.58 (14)
O3—Cu1—O1ii34.42 (8)O1xi—P1—O2xiv106.53 (14)
O3i—Cu1—O1ii145.58 (8)O4—P1—O2xiv111.58 (14)
O2ii—Cu1—O1ii60.66 (8)O3xv—P1—O2xiv108.22 (14)
O2iii—Cu1—O1ii119.34 (8)Cd1xi—O1—Cu1xiii81.65 (5)
O4iv—Cu1—O1ii40.43 (6)Cu1—O1—Cu1xiii100.16 (6)
O4v—Cu1—O1ii139.57 (6)Cd1—O1—Cd1v101.62 (8)
O1—Cu1—O1ii79.84 (6)Cd1vii—O1—Cd1v58.63 (5)
O1i—Cu1—O1ii100.16 (6)Cd1xi—O1—Cd1v97.51 (6)
O3vi—Cu1—O1ii75.55 (6)Cd1—O1—Cd1ii91.09 (8)
O3vii—Cu1—O1ii104.45 (6)Cd1vii—O1—Cd1ii88.83 (7)
O4viii—Cu1—O1ii93.12 (6)Cd1xi—O1—Cd1ii126.78 (7)
O4ix—Cu1—O1ii86.88 (6)Cd1v—O1—Cd1ii132.11 (7)
O3—Cu1—O1iii145.58 (8)Cd1—O1—Cu1xvii139.66 (9)
O2ii—Cu1—O1iii119.34 (8)Cd1vii—O1—Cu1xvii59.57 (5)
O4v—Cu1—O1iii40.43 (6)Cd1xi—O1—Cu1xvii89.06 (6)
O1—Cu1—O1iii100.16 (6)Cu1—O1—Cu1xvii100.51 (6)
O3vi—Cu1—O1iii104.45 (6)Cu1xiii—O1—Cu1xvii70.79 (5)
O3vii—Cu1—O1iii75.55 (6)Cd1v—O1—Cu1xvii117.12 (6)
O4ix—Cu1—O1iii93.12 (6)Cd1ii—O1—Cu1xvii55.08 (4)
O1ii—Cu1—O1iii180.00 (9)Cd1vii—O1—Cd1ix121.44 (7)
O3—Cu1—O3ii47.27 (9)Cd1xi—O1—Cd1ix90.40 (6)
O3i—Cu1—O3ii132.73 (9)Cd1v—O1—Cd1ix63.83 (4)
O2ii—Cu1—O3ii51.57 (8)Cd1ii—O1—Cd1ix124.73 (6)
O2iii—Cu1—O3ii128.43 (8)Cd1—O1—Cd1xviii154.39 (9)
O4iv—Cu1—O3ii85.32 (6)Cd1vii—O1—Cd1xviii48.03 (4)
O4v—Cu1—O3ii94.68 (6)Cd1xi—O1—Cd1xviii59.02 (4)
O1—Cu1—O3ii38.43 (5)Cd1v—O1—Cd1xviii75.16 (5)
O1i—Cu1—O3ii141.57 (5)Cd1ii—O1—Cd1xviii110.10 (6)
O3vi—Cu1—O3ii104.31 (6)Cd1xvii—O1—Cd1xviii57.58 (4)
O3vii—Cu1—O3ii75.69 (6)Cd1ix—O1—Cd1xviii124.69 (5)
O4viii—Cu1—O3ii93.27 (6)Cu1—O1—Cu1vii55.79 (4)
O4ix—Cu1—O3ii86.73 (6)Cu1xiii—O1—Cu1vii121.73 (6)
O1ii—Cu1—O3ii44.90 (5)Cd1—O1—Cd1iii71.72 (6)
O1iii—Cu1—O3ii135.10 (5)Cd1vii—O1—Cd1iii79.23 (6)
O4—Cd1—O195.88 (9)Cd1xi—O1—Cd1iii135.23 (6)
O4—Cd1—O4ix77.67 (10)Cd1—O2—Cd1xiv93.55 (8)
O1—Cd1—O4ix125.88 (9)Cd1xii—O2—Cd1xiv119.34 (6)
O4—Cd1—O2115.22 (9)Cd1xiii—O2—Cd1xiv52.60 (4)
O1—Cd1—O297.50 (9)Cu1xiii—O2—Cu1xix96.00 (8)
O4ix—Cd1—O2134.24 (9)Cd1—O2—Cd1ii84.90 (7)
O4—Cd1—O3153.16 (9)Cd1xii—O2—Cd1ii73.18 (5)
O1—Cd1—O384.75 (9)Cd1xiii—O2—Cd1ii122.67 (7)
O4ix—Cd1—O380.30 (9)Cd1xiv—O2—Cd1ii166.75 (7)
O2—Cd1—O391.18 (9)Cu1xix—O2—Cd1ii120.66 (6)
O4—Cd1—O1x81.89 (9)Cd1ii—O2—Cd1xi99.49 (5)
O1—Cd1—O1x150.70 (11)Cu1xiii—O2—Cu1x132.51 (10)
O4ix—Cd1—O1x82.40 (8)Cd1—O2—Cd1x82.89 (7)
O2—Cd1—O1x58.48 (8)Cd1xii—O2—Cd1x70.66 (5)
O3—Cd1—O1x110.22 (8)Cd1xiii—O2—Cd1x93.60 (6)
O4—Cd1—O3ii134.13 (8)Cd1xiv—O2—Cd1x58.50 (4)
O1—Cd1—O3ii50.31 (8)Cu1xix—O2—Cd1x51.59 (3)
O4ix—Cd1—O3ii144.97 (8)Cd1ii—O2—Cd1x134.00 (6)
O2—Cd1—O3ii54.29 (7)Cd1xi—O2—Cd1x117.61 (6)
O3—Cd1—O3ii64.88 (9)Cu1xiii—O2—Cu197.41 (8)
O1x—Cd1—O3ii112.20 (7)Cu1xix—O2—Cu1136.47 (6)
O4—Cd1—O1xi48.71 (7)Cd1—O2—Cd1xvii102.25 (8)
O1—Cd1—O1xi82.99 (9)Cd1xii—O2—Cd1xvii129.93 (7)
O4ix—Cd1—O1xi123.05 (8)Cd1xiii—O2—Cd1xvii64.36 (4)
O2—Cd1—O1xi70.70 (8)Cd1xiv—O2—Cd1xvii93.22 (5)
O3—Cd1—O1xi156.48 (7)Cu1xix—O2—Cd1xvii120.33 (5)
O1x—Cd1—O1xi73.60 (8)Cd1ii—O2—Cd1xvii74.32 (4)
O4—Cd1—O2xii140.14 (8)Cu1x—O2—Cd1xvii158.46 (6)
O1—Cd1—O2xii123.63 (8)Cd1x—O2—Cd1xvii151.66 (6)
O4ix—Cd1—O2xii74.92 (8)Cu1—O2—Cd1xvii97.84 (5)
O2—Cd1—O2xii68.43 (9)Cd1xii—O2—Cd1ix111.38 (6)
O3—Cd1—O2xii43.87 (7)Cd1xiii—O2—Cd1ix121.95 (6)
O1x—Cd1—O2xii66.35 (7)Cd1xiv—O2—Cd1ix70.16 (4)
O3ii—Cd1—O2xii82.12 (6)Cu1xix—O2—Cd1ix111.06 (5)
O1xi—Cd1—O2xii133.29 (6)Cd1ii—O2—Cd1ix110.68 (5)
O4—Cd1—O2iii103.51 (8)Cd1xi—O2—Cd1ix74.49 (5)
O1—Cd1—O2iii88.32 (8)Cd1x—O2—Cd1ix59.93 (4)
O4ix—Cd1—O2iii43.91 (7)Cu1—O2—Cd1ix63.54 (3)
O2—Cd1—O2iii139.86 (10)Cd1xvii—O2—Cd1ix115.27 (5)
O3—Cd1—O2iii49.66 (7)Cu1xiii—O2—Cd1xx50.01 (7)
O1x—Cd1—O2iii120.71 (7)Cd1—O2—Cd1xx131.88 (9)
O3ii—Cd1—O2iii104.95 (6)Cd1xiii—O2—Cd1xx88.04 (5)
O1xi—Cd1—O2iii149.29 (6)Cd1xiv—O2—Cd1xx130.25 (5)
O2xii—Cd1—O2iii75.33 (6)Cu1xix—O2—Cd1xx64.28 (4)
O4—Cd1—O4xi93.73 (8)Cd1ii—O2—Cd1xx57.02 (4)
O1—Cd1—O4xi40.29 (7)Cd1xi—O2—Cd1xx137.47 (5)
O4ix—Cd1—O4xi163.60 (10)Cu1x—O2—Cd1xx87.77 (5)
O2—Cd1—O4xi62.07 (7)Cd1x—O2—Cd1xx102.22 (6)
O3—Cd1—O4xi103.53 (8)Cu1—O2—Cd1xx94.45 (5)
O1x—Cd1—O4xi110.48 (7)Cd1xvii—O2—Cd1xx94.93 (5)
O3ii—Cd1—O4xi40.49 (6)Cd1ix—O2—Cd1xx143.86 (5)
O1xi—Cd1—O4xi55.11 (6)Cu1—O3—Cd1ii89.01 (8)
O2xii—Cd1—O4xi119.01 (6)Cd1—O3—Cd1ii115.12 (9)
O2iii—Cd1—O4xi127.54 (6)Cu1—O3—Cu1x122.88 (10)
O4—Cd1—Cu1xiii125.95 (7)Cd1—O3—Cu1x83.68 (7)
O1—Cd1—Cu1xiii75.38 (7)Cd1ii—O3—Cu1x134.32 (8)
O4ix—Cd1—Cu1xiii149.34 (6)Cu1—O3—Cd1vi76.05 (7)
O2—Cd1—Cu1xiii23.93 (6)Cd1—O3—Cd1vi132.72 (9)
O3—Cd1—Cu1xiii80.27 (6)Cd1ii—O3—Cd1vi111.16 (7)
O1x—Cd1—Cu1xiii82.35 (6)Cu1x—O3—Cd1vi56.49 (4)
O3ii—Cd1—Cu1xiii30.50 (4)Cu1—O3—Cu1xiii132.73 (9)
O1xi—Cd1—Cu1xiii77.24 (5)Cd1—O3—Cu1xiii66.25 (6)
O4—Cd1—O3vi113.58 (8)Cd1ii—O3—Cu1xiii55.76 (4)
O1—Cd1—O3vi122.20 (8)Cu1x—O3—Cu1xiii104.31 (6)
O4ix—Cd1—O3vi36.07 (7)Cd1vi—O3—Cu1xiii141.72 (7)
O2—Cd1—O3vi111.14 (8)Cu1—O3—Cd1xii153.18 (10)
O3—Cd1—O3vi47.28 (9)Cd1—O3—Cd1xii93.54 (7)
O1x—Cd1—O3vi84.58 (7)Cd1ii—O3—Cd1xii78.38 (5)
O1xi—Cd1—O3vi153.06 (5)Cu1x—O3—Cd1xii58.36 (4)
O2xii—Cd1—O3vi43.06 (5)Cd1vi—O3—Cd1xii86.48 (5)
O2iii—Cd1—O3vi38.49 (5)Cu1xiii—O3—Cd1xii56.70 (4)
O4xi—Cd1—O3vi150.81 (5)Cu1—O3—Cd1iv85.25 (8)
O4—Cd1—O1v54.71 (8)Cd1—O3—Cd1iv161.46 (9)
O1—Cd1—O1v78.38 (8)Cd1ii—O3—Cd1iv63.86 (5)
O4ix—Cd1—O1v53.87 (7)Cu1x—O3—Cd1iv85.34 (6)
O2—Cd1—O1v168.01 (7)Cd1vi—O3—Cd1iv48.39 (4)
O3—Cd1—O1v99.58 (7)Cu1xiii—O3—Cd1iv102.33 (6)
O1x—Cd1—O1v121.37 (5)Cd1xii—O3—Cd1iv67.96 (4)
O3ii—Cd1—O1v126.14 (6)Cu1—O3—Cd1vii52.70 (6)
O1xi—Cd1—O1v97.51 (6)Cd1—O3—Cd1vii76.20 (6)
O2xii—Cd1—O1v123.26 (6)Cd1ii—O3—Cd1vii71.96 (5)
O2iii—Cd1—O1v51.81 (5)Cu1x—O3—Cd1vii152.72 (6)
O4xi—Cd1—O1v109.77 (6)Cd1vi—O3—Cd1vii128.75 (6)
O3vi—Cd1—O1v80.31 (5)Cu1xiii—O3—Cd1vii84.37 (5)
O4—Cd1—O4xiv84.91 (8)Cd1xii—O3—Cd1vii140.12 (6)
O1—Cd1—O4xiv114.66 (7)Cd1iv—O3—Cd1vii118.53 (5)
O4ix—Cd1—O4xiv118.05 (9)Cu1—O3—Cd1ix93.79 (8)
O2—Cd1—O4xiv32.90 (7)Cd1ii—O3—Cd1ix151.41 (7)
O3—Cd1—O4xiv119.27 (7)Cu1x—O3—Cd1ix65.65 (5)
O1x—Cd1—O4xiv36.11 (6)Cd1vi—O3—Cd1ix97.09 (5)
O3ii—Cd1—O4xiv84.27 (6)Cu1xiii—O3—Cd1ix103.95 (6)
O1xi—Cd1—O4xiv50.21 (6)Cd1xii—O3—Cd1ix108.63 (5)
O2xii—Cd1—O4xiv83.08 (6)Cd1iv—O3—Cd1ix144.71 (6)
O2iii—Cd1—O4xiv154.88 (5)Cd1vii—O3—Cd1ix87.24 (5)
O4xi—Cd1—O4xiv74.38 (5)Cd1—O3—Cd1iii91.36 (7)
O3vi—Cd1—O4xiv116.43 (5)Cd1ii—O3—Cd1iii130.03 (6)
O1v—Cd1—O4xiv139.29 (5)Cu1x—O3—Cd1iii87.54 (6)
O4—Cd1—O1ii172.61 (7)Cd1vi—O3—Cd1iii65.07 (4)
O1—Cd1—O1ii88.91 (8)Cu1xiii—O3—Cd1iii152.74 (6)
O4ix—Cd1—O1ii104.05 (8)Cd1xii—O3—Cd1iii144.66 (6)
O2—Cd1—O1ii58.38 (8)Cd1iv—O3—Cd1iii103.05 (5)
O3—Cd1—O1ii32.81 (7)Cd1vii—O3—Cd1iii74.89 (5)
O1x—Cd1—O1ii91.17 (7)Cd1ix—O3—Cd1iii58.28 (4)
O3ii—Cd1—O1ii46.69 (6)Cd1—O3—Cd1i137.10 (8)
O1xi—Cd1—O1ii126.78 (7)Cd1ii—O3—Cd1i78.49 (5)
O2xii—Cd1—O1ii36.27 (5)Cu1x—O3—Cd1i116.79 (6)
O2iii—Cd1—O1ii82.21 (6)Cd1vi—O3—Cd1i61.51 (4)
O4xi—Cd1—O1ii86.28 (6)Cu1xiii—O3—Cd1i132.83 (6)
O3vi—Cd1—O1ii68.00 (6)Cd1xii—O3—Cd1i129.36 (5)
O1v—Cd1—O1ii132.11 (7)Cd1iv—O3—Cd1i61.42 (4)
O4xiv—Cd1—O1ii87.97 (5)Cd1vii—O3—Cd1i69.87 (4)
O4—Cd1—O2xiv31.43 (7)Cd1ix—O3—Cd1i113.13 (5)
O1—Cd1—O2xiv113.43 (8)Cd1iii—O3—Cd1i55.28 (3)
O4ix—Cd1—O2xiv88.47 (8)Cu1—O3—Cd1v52.25 (6)
O2—Cd1—O2xiv86.45 (8)Cd1—O3—Cd1v61.03 (5)
O3—Cd1—O2xiv161.82 (7)Cd1ii—O3—Cd1v109.74 (6)
O1x—Cd1—O2xiv53.66 (7)Cu1x—O3—Cd1v115.63 (6)
O3ii—Cd1—O2xiv126.15 (6)Cd1vi—O3—Cd1v111.31 (5)
O1xi—Cd1—O2xiv36.16 (6)Cu1xiii—O3—Cd1v106.89 (5)
O2xii—Cd1—O2xiv119.34 (6)Cd1xii—O3—Cd1v154.52 (5)
O2iii—Cd1—O2xiv127.40 (4)Cd1iv—O3—Cd1v137.50 (5)
O4xi—Cd1—O2xiv91.28 (6)Cd1ix—O3—Cd1v52.93 (3)
O3vi—Cd1—O2xiv117.32 (5)Cd1iii—O3—Cd1v46.32 (3)
O1v—Cd1—O2xiv84.94 (6)Cd1i—O3—Cd1v76.08 (4)
O4xiv—Cd1—O2xiv54.35 (5)Cu1—O3—Cd1x144.58 (9)
O1ii—Cd1—O2xiv141.19 (5)Cd1—O3—Cd1x53.63 (5)
O4—Cd1—O3xii113.67 (8)Cd1ii—O3—Cd1x126.34 (6)
O1—Cd1—O3xii126.45 (7)Cd1vi—O3—Cd1x91.00 (5)
O4ix—Cd1—O3xii104.22 (7)Cu1xiii—O3—Cd1x76.29 (5)
O2—Cd1—O3xii30.05 (7)Cd1xii—O3—Cd1x54.02 (3)
O3—Cd1—O3xii86.46 (7)Cd1iv—O3—Cd1x110.71 (5)
O1x—Cd1—O3xii35.57 (6)Cd1vii—O3—Cd1x129.83 (5)
O3ii—Cd1—O3xii78.38 (5)Cd1ix—O3—Cd1x54.66 (3)
O1xi—Cd1—O3xii84.80 (5)Cd1iii—O3—Cd1x103.59 (5)
O2xii—Cd1—O3xii48.56 (5)Cd1i—O3—Cd1x149.84 (5)
O2iii—Cd1—O3xii123.24 (5)Cd1v—O3—Cd1x105.77 (4)
O4xi—Cd1—O3xii91.99 (5)Cd1—O4—Cu1xv131.99 (10)
O3vi—Cd1—O3xii86.48 (5)Cd1ix—O4—Cu1xv96.89 (9)
O1v—Cd1—O3xii155.06 (5)Cd1—O4—Cu1xxi135.45 (10)
O4xiv—Cd1—O3xii34.68 (5)Cd1ix—O4—Cu1xxi68.81 (7)
O1ii—Cd1—O3xii58.96 (5)Cu1xv—O4—Cu1xxi92.50 (7)
O2xiv—Cd1—O3xii82.47 (5)Cd1—O4—Cd1xi86.27 (8)
O4—Cd1—O2ii140.40 (7)Cd1ix—O4—Cd1xi163.60 (10)
O1—Cd1—O2ii53.32 (7)Cu1xv—O4—Cd1xi67.33 (5)
O4ix—Cd1—O2ii99.68 (8)Cu1xxi—O4—Cd1xi114.60 (7)
O2—Cd1—O2ii95.10 (7)Cd1—O4—Cd1xiv95.09 (8)
O3—Cd1—O2ii31.43 (7)Cd1ix—O4—Cd1xiv118.05 (9)
O1x—Cd1—O2ii137.44 (6)Cu1xv—O4—Cd1xiv113.75 (7)
O3ii—Cd1—O2ii47.65 (5)Cu1xxi—O4—Cd1xiv57.92 (4)
O1xi—Cd1—O2ii132.53 (5)Cd1—O4—Cd1xiv95.09 (8)
O2xii—Cd1—O2ii73.18 (5)Cd1ix—O4—Cd1xiv118.05 (9)
O2iii—Cd1—O2ii57.33 (7)Cu1xv—O4—Cd1xiv113.75 (7)
O4xi—Cd1—O2ii77.95 (6)Cu1xxi—O4—Cd1xiv57.92 (4)
O3vi—Cd1—O2ii74.40 (5)Cd1xi—O4—Cd1xiv74.38 (5)
O1v—Cd1—O2ii91.42 (6)Cd1—O4—Cd1v88.36 (8)
O4xiv—Cd1—O2ii127.98 (5)Cd1ix—O4—Cd1v82.52 (7)
O1ii—Cd1—O2ii46.79 (5)Cu1xv—O4—Cd1v51.01 (4)
O2xiv—Cd1—O2ii166.75 (7)Cu1xxi—O4—Cd1v130.67 (7)
O3xii—Cd1—O2ii105.34 (5)Cd1xi—O4—Cd1v83.81 (5)
O4—Cd1—O2xi48.12 (7)Cd1xiv—O4—Cd1v157.62 (6)
O1—Cd1—O2xi48.24 (7)Cd1—O4—Cd1xv151.12 (9)
O4ix—Cd1—O2xi110.65 (8)Cd1ix—O4—Cd1xv106.14 (8)
O2—Cd1—O2xi109.17 (7)Cu1xv—O4—Cd1xv48.87 (4)
O3—Cd1—O2xi129.72 (7)Cu1xxi—O4—Cd1xv54.82 (4)
O1x—Cd1—O2xi119.71 (6)Cd1xi—O4—Cd1xv67.41 (5)
O3ii—Cd1—O2xi90.11 (6)Cd1xiv—O4—Cd1xv67.31 (4)
O1xi—Cd1—O2xi49.38 (5)Cd1v—O4—Cd1xv99.88 (5)
O2xii—Cd1—O2xi171.73 (7)Cd1—O4—Cd1x71.21 (7)
O2iii—Cd1—O2xi104.20 (5)Cd1ix—O4—Cd1x76.23 (7)
O4xi—Cd1—O2xi54.55 (6)Cu1xv—O4—Cd1x156.75 (7)
O3vi—Cd1—O2xi139.59 (5)Cu1xxi—O4—Cd1x64.26 (4)
O1v—Cd1—O2xi59.69 (5)Cd1xi—O4—Cd1x120.02 (6)
O4xiv—Cd1—O2xi99.01 (5)Cd1xiv—O4—Cd1x54.32 (4)
O1ii—Cd1—O2xi135.55 (5)Cd1v—O4—Cd1x146.20 (6)
O2xiv—Cd1—O2xi67.69 (4)Cd1xv—O4—Cd1x111.05 (5)
O3xii—Cd1—O2xi132.56 (5)Cd1ix—O4—Cu184.81 (7)
O2ii—Cd1—O2xi99.49 (5)Cu1xv—O4—Cu1108.05 (6)
O4—Cd1—O3xv18.13 (7)Cu1xxi—O4—Cu1148.46 (6)
O1—Cd1—O3xv83.12 (8)Cd1xi—O4—Cu195.64 (6)
O4ix—Cd1—O3xv95.58 (8)Cd1xiv—O4—Cu1128.09 (6)
O2—Cd1—O3xv104.26 (8)Cd1v—O4—Cu158.17 (4)
O3—Cd1—O3xv161.46 (9)Cd1xv—O4—Cu1154.65 (6)
O1x—Cd1—O3xv86.92 (7)Cd1x—O4—Cu193.59 (5)
O3ii—Cd1—O3xv116.14 (5)Cd1ix—O4—Cu1x65.76 (6)
O2xii—Cd1—O3xv152.38 (5)Cu1xv—O4—Cu1x155.08 (7)
O2iii—Cd1—O3xv115.88 (6)Cu1xxi—O4—Cu1x97.08 (5)
O4xi—Cd1—O3xv75.66 (6)Cd1xi—O4—Cu1x127.41 (6)
O3vi—Cd1—O3xv131.61 (4)Cd1xiv—O4—Cu1x90.74 (5)
O1v—Cd1—O3xv64.23 (5)Cd1v—O4—Cu1x106.80 (5)
O4xiv—Cd1—O3xv78.70 (5)Cd1xv—O4—Cu1x150.38 (6)
O1ii—Cd1—O3xv159.85 (5)Cu1—O4—Cu1x54.95 (3)
O2xiv—Cd1—O3xv33.33 (4)Cd1ix—O4—Cu1xiii133.70 (8)
O3xii—Cd1—O3xv112.04 (4)Cu1xv—O4—Cu1xiii123.67 (7)
O2ii—Cd1—O3xv134.42 (5)Cu1xxi—O4—Cu1xiii124.04 (6)
O2xi—Cd1—O3xv35.22 (4)Cd1xi—O4—Cu1xiii59.16 (4)
O4—Cd1—O2vii110.48 (8)Cd1xiv—O4—Cu1xiii68.19 (4)
O4ix—Cd1—O2vii136.15 (7)Cd1v—O4—Cu1xiii104.92 (5)
O2—Cd1—O2vii82.89 (7)Cd1xv—O4—Cu1xiii116.94 (5)
O3—Cd1—O2vii75.94 (7)Cd1x—O4—Cu1xiii73.32 (4)
O1x—Cd1—O2vii140.47 (6)Cu1—O4—Cu1xiii63.48 (3)
O3ii—Cd1—O2vii33.11 (5)Cu1x—O4—Cu1xiii68.42 (4)
O1xi—Cd1—O2vii86.73 (6)Cd1—O4—Cd1vii59.13 (6)
O2xii—Cd1—O2vii109.34 (5)Cd1ix—O4—Cd1vii112.81 (8)
O2iii—Cd1—O2vii93.60 (6)Cu1xv—O4—Cd1vii72.88 (5)
O4xi—Cd1—O2vii34.46 (5)Cu1xxi—O4—Cd1vii165.37 (6)
O3vi—Cd1—O2vii120.18 (5)Cd1xi—O4—Cd1vii59.61 (4)
O1v—Cd1—O2vii94.52 (6)Cd1xiv—O4—Cd1vii126.88 (6)
O4xiv—Cd1—O2vii105.70 (5)Cd1xv—O4—Cd1vii112.30 (5)
O1ii—Cd1—O2vii73.42 (6)Cd1x—O4—Cd1vii130.33 (5)
O2xiv—Cd1—O2vii121.50 (4)Cu1x—O4—Cd1vii96.66 (4)
O3xii—Cd1—O2vii110.41 (5)Cu1xiii—O4—Cd1vii66.24 (4)
O2ii—Cd1—O2vii46.00 (6)Cd1—O4—Cu1xxii109.40 (8)
O2xi—Cd1—O2vii62.39 (6)Cd1ix—O4—Cu1xxii144.31 (8)
O3xv—Cd1—O2vii95.55 (6)Cu1xv—O4—Cu1xxii73.82 (5)
O4—Cd1—O4v91.64 (8)Cu1xxi—O4—Cu1xxii77.12 (5)
O1—Cd1—O4v43.61 (7)Cd1v—O4—Cu1xxii113.71 (5)
O4ix—Cd1—O4v82.52 (7)Cd1x—O4—Cu1xxii98.65 (5)
O2—Cd1—O4v136.52 (7)Cu1—O4—Cu1xxii130.88 (5)
O3—Cd1—O4v70.35 (7)Cu1x—O4—Cu1xxii130.76 (5)
O1x—Cd1—O4v164.56 (6)Cu1xiii—O4—Cu1xxii74.96 (4)
O3ii—Cd1—O4v82.34 (5)Cd1vii—O4—Cu1xxii97.54 (5)
O1xi—Cd1—O4v112.39 (5)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x1, y, z; (viii) x1, y, z1; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x, y+1, z+1; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x+1, y+1, z+1; (xv) x, y, z+1; (xvi) x+1, y1, z; (xvii) x1, y+1, z; (xviii) x1, y+1, z+1; (xix) x+1, y+1, z; (xx) x, y+1, z1; (xxi) x+1, y, z+1; (xxii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaCd2Cu(PO4)2
Mr478.31
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)4.7982 (3), 5.5801 (3), 6.7217 (3)
α, β, γ (°)74.266 (3), 86.330 (3), 69.924 (3)
V3)162.62 (2)
Z1
Radiation typeMo Kα
µ (mm1)10.22
Crystal size (mm)0.09 × 0.04 × 0.02
Data collection
DiffractometerNonius KappaCCD diffractomer
Absorption correctionMulti-scan
(Otwinowski & Minor, 1997)
Tmin, Tmax0.460, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
1596, 805, 747
Rint0.016
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.09
No. of reflections805
No. of parameters63
Δρmax, Δρmin (e Å3)0.79, 0.59

Computer programs: COLLECT (Nonius, 2002), HKL SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999), ATOMS (Dowty, 2000), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Cu1—O31.928 (2)Cd1—O12.242 (2)
Cu1—O3i1.928 (2)Cd1—O4v2.263 (3)
Cu1—O2ii1.952 (3)Cd1—O22.271 (2)
Cu1—O2iii1.952 (3)Cd1—O32.288 (2)
Cu1—Cd1i3.5270 (3)Cd1—O1vi2.716 (2)
Cu1—Cd1ii3.7977 (4)Cd1—Cd1v3.5019 (8)
Cu1—Cd1iv3.9408 (4)Cd1—Cd1vii4.2599 (5)
Cd1—O42.232 (3)Cd1—Cd1ii4.7525 (5)
O3—Cu1—O2ii88.42 (10)O3i—Cu1—O2ii91.58 (10)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x, y+1, z+1.
Table 1. Unit-cell parameters of the M12M2(XO4)2 (M1, M2 = Cd2+, Cu2+, Mg2+ and Zn2+, and X = As5+, P5+ and V5+) family of compounds top
Compounda(Å)b(Å)c(Å)α(o)β(o)γ(o)V3)
Cu3(PO4)214.855 (1)5.288 (1)6.184 (1)72.34 (1)86.99 (1)68.54 (1)140.49
Cu3(PO4)214.848 (1)5.280 (1)6.183 (1)72.30 (1)86.90 (1)68.59 (1)140.08
Cu3(PO4)224.8537 (7)5.2855 (6)6.1821 (8)72.35 (1)86.99 (1)68.54 (1)140.35
Mg0.63Cu2.37(PO4)234.845 (3)5.265 (3)6.246 (2)71.98 (4)93.04 (4)111.42 (4)140.72
Red. Cell#4.845 (3)5.265 (3)6.246 (2)71.98 (4)86.95968.579
Cd2Cu(PO4)244.7982 (3)5.5801 (3)6.7217 (3)74.266 (3)86.330 (3)69.924 (3)162.62
Cu3(VO4)255.196 (4)5.355 (1)6.505 (4)69.22 (3)88.69 (4)68.08 (3)155.73
Cu3(AsO4)265.046 (2)5.417 (2)6.354 (2)70.61 (2)86.52 (2)68.43 (2)151.98
Zn2Cu(AsO4)275.092 (2)6.695 (2)5.304 (2)110.16 (2)112.09 (2)86.74 (2)156.73
Red. Cell*5.092 (2)5.304 (2)6.695 (2)69.8486.7467.91
Zn2Cu(AsO4)285.094 (1)6.752 (1)5.304 (1)111.0 (1)112.5 (1)86.0 (1)156.87
Red. Cell*5.094 (1)5.304 (1)6.752 (1)698667.5
Zn2Cu(AsO4)295.094 (5)6.752 (5)5.304 (5)11111286157.47
Red. Cell*5.094 (5)5.304 (5)6.752 (5)698668
Notes: (a) Transformation matrix 1: 1 0 0 / 0 -1 0 / 0 0 -1; (b) transformation matrix 2: 1 0 0 / 0 0 -1 / 0 1 0. References: (1) Forsyth et al. (1990); (2) Shoemaker et al. (1977); (3) Moqine et al. (1994); (4) this work; (5) Coing-Boyat (1982); (6) Effenberger (1988); (7) Keller et al. (1979); (8) Plieth & Sänger (1967); (9) Calvo & Leung (1969).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds