Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the new salt 1-(o-tol­yl)biguanidium chloride, C9H14N5+·Cl, has been determined by single-crystal X-ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydro­philic ions are mostly connected to each other via N—H...N and N—H...Cl hydrogen bonds to form layers parallel to the ab plane around y = 1 \over 3 and y = 2 \over 3. The 2-methyl­benzyl groups form layers between these layers around y = 0 and y = 1 \over 2, with the methyl group forming C—H...π inter­actions with the aromatic ring. Inter­molecular inter­actions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydro­phobic inter­actions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N—H...Cl) and repulsive contacts. Electrostatic energies between ions reveal that the inter­acting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation...Cl dimers. The vibrational absorption bands were identified by IR spectroscopy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620006336/ku3263sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006336/ku3263Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620006336/ku3263sup3.pdf
IR spectroscopy information and spectra, plus additional packing diagrams

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620006336/ku3263Isup4.cml
Supplementary material

CCDC reference: 1877569

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2008, 2015b) and MoPro (Jelsch et al., 2005); molecular graphics: DIAMOND (Brandenburg, 1998).

2-[Amino(iminiumyl)methyl]-1-(2-methylphenyl)guanidine chloride top
Crystal data top
C9H14N5+·ClF(000) = 960
Mr = 227.68Dx = 1.293 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8409 reflections
a = 18.4640 (7) Åθ = 3.7–32.4°
b = 13.7652 (6) ŵ = 0.30 mm1
c = 9.3158 (3) ÅT = 110 K
β = 98.847 (4)°Prism, white
V = 2339.54 (16) Å30.23 × 0.15 × 0.04 mm
Z = 8
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
3970 independent reflections
Radiation source: fine-focus sealed tube2840 reflections with > 2.0σ(I)
Mirror monochromatorRint = 0.063
ω scansθmax = 31.9°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 2727
Tmin = 0.850, Tmax = 1.000k = 1920
29979 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: difference Fourier map
wR(F2) = 0.065All H-atom parameters refined
S = 0.97 w = 1/[2.1*σ2(Fo2)]
3970 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 0.64 e Å3
47 restraintsΔρmin = 0.40 e Å3
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

A single crystal was carefully selected under a polarizing microscope in order to perform its structural analysis. X-ray diffraction data were collected on a SuperNova (Dual, Cu at zero Atlas) diffractometer at 110 K, using graphite-monochromated Mo Kα = 0.71073 Å radiation. The structure was solved using a direct method with the SHELXT program The structure was refined using the full-matrix least-squares procedure using the SHELXL program (Sheldrick, 2008; Sheldrick 2015). The drawings were made with Diamond (Brandenburg, 1998). Crystal data and experimental parameters used for the intensity data collection are summarized in Table 1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.414821 (13)0.88578 (2)0.04433 (3)0.01974 (2)
N20.33610 (4)0.78604 (6)0.42786 (10)0.01757 (7)
N30.30580 (4)0.81756 (7)0.65219 (9)0.01997 (8)
H10.3193 (6)0.8406 (9)0.756 (10)0.0244 (2)*
H20.257 (10)0.7853 (8)0.6192 (12)0.0244 (2)*
N40.36565 (5)0.75392 (7)0.20089 (10)0.01987 (8)
H40.3785 (6)0.7843 (8)0.109 (10)0.0244 (2)*
N50.39543 (5)0.90299 (7)0.29973 (9)0.02277 (8)
H30.3896 (7)0.957 (10)0.3710 (9)0.0280 (3)*
H50.4122 (6)0.9204 (8)0.204 (10)0.0279 (3)*
N60.41948 (5)0.86368 (8)0.61097 (9)0.02504 (8)
H60.4310 (6)0.8816 (9)0.718 (10)0.0302 (3)*
H70.460 (10)0.8615 (10)0.5498 (9)0.0302 (3)*
C70.35465 (5)0.82389 (8)0.56102 (12)0.01720 (8)
C80.36674 (5)0.81496 (8)0.31484 (12)0.01704 (8)
C90.35099 (6)0.65283 (8)0.20189 (13)0.02048 (9)
C10.39317 (6)0.59042 (9)0.29875 (14)0.02626 (11)
C20.29635 (6)0.61761 (8)0.09368 (13)0.02776 (11)
H80.2707 (5)0.667 (10)0.0104 (8)0.0335 (3)*
C30.28159 (7)0.51917 (10)0.08305 (15)0.03686 (13)
H90.240 (10)0.4912 (5)0.0010 (9)0.0449 (4)*
C40.37666 (7)0.49095 (9)0.28582 (15)0.03765 (14)
H140.410 (10)0.4425 (4)0.3608 (9)0.0464 (5)*
C60.45508 (6)0.62439 (8)0.40909 (13)0.03502 (12)
H100.4772 (4)0.692 (10)0.3770 (9)0.0523 (5)*
H110.499 (10)0.5723 (4)0.4226 (10)0.0523 (5)*
H120.4374 (4)0.6349 (7)0.513 (10)0.0522 (5)*
C50.32202 (8)0.45601 (8)0.17956 (18)0.04085 (15)
H130.3110 (6)0.379 (10)0.1731 (12)0.0506 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.02111 (12)0.02624 (15)0.01251 (14)0.00064 (10)0.00457 (9)0.00235 (11)
N20.0193 (4)0.0218 (5)0.0124 (5)0.0053 (4)0.0050 (3)0.0019 (4)
N30.0189 (4)0.0286 (6)0.0135 (5)0.0043 (4)0.0061 (4)0.0024 (4)
N40.0276 (5)0.0197 (5)0.0135 (5)0.0037 (4)0.0070 (4)0.0023 (4)
N50.0334 (5)0.0224 (5)0.0140 (5)0.0096 (4)0.0085 (4)0.0021 (4)
N60.0196 (4)0.0427 (7)0.0132 (5)0.0091 (4)0.0040 (4)0.0041 (5)
C70.0177 (5)0.0217 (6)0.0128 (6)0.0026 (4)0.0044 (4)0.0013 (5)
C80.0193 (5)0.0187 (6)0.0136 (6)0.0030 (4)0.0040 (4)0.0014 (5)
C90.0228 (5)0.0209 (6)0.0198 (6)0.0025 (4)0.0097 (4)0.0023 (5)
C10.0272 (6)0.0225 (6)0.0309 (7)0.0004 (5)0.0100 (5)0.0019 (6)
C20.0296 (6)0.0275 (7)0.0267 (7)0.0071 (5)0.0061 (5)0.0101 (6)
C30.0390 (7)0.0318 (8)0.0411 (9)0.0097 (6)0.0104 (6)0.0136 (7)
C40.0437 (8)0.0253 (7)0.0470 (10)0.0036 (6)0.0164 (7)0.0058 (7)
C60.0337 (7)0.0381 (8)0.0322 (8)0.0062 (6)0.0015 (6)0.0058 (6)
C50.0487 (8)0.0216 (7)0.0554 (11)0.0071 (6)0.0184 (7)0.0103 (7)
Geometric parameters (Å, º) top
N2—C81.3306 (13)C9—C11.3938 (16)
N2—C71.3405 (14)C9—C21.3986 (15)
N3—C71.3335 (12)C1—C41.4039 (17)
N3—H11.01 (9)C1—C61.4902 (17)
N3—H21.01 (16)C2—C31.3826 (16)
N4—C81.3516 (14)C2—H81.08 (9)
N4—C91.4179 (14)C3—C51.384 (2)
N4—H41.01 (8)C3—H91.08 (11)
N5—C81.3385 (13)C4—C51.3863 (19)
N5—H31.01 (10)C4—H141.08 (9)
N5—H51.01 (9)C6—H111.08 (14)
N6—C71.3334 (13)C6—H101.08 (12)
N6—H71.02 (15)C6—H121.08 (9)
N6—H61.02 (9)C5—H131.08 (14)
C8—N2—C7122.46 (8)C9—C1—C4116.95 (10)
C7—N3—H1120 (4)C9—C1—C6123.10 (9)
C7—N3—H2120 (8)C4—C1—C6119.91 (10)
H1—N3—H2120 (2)C9—C2—C3120.24 (10)
C8—N4—C9125.79 (8)C9—C2—H8119 (3)
C8—N4—H4115 (4)C3—C2—H8120 (7)
C9—N4—H4118.7 (6)C2—C3—C5119.24 (10)
C8—N5—H3121 (7)C2—C3—H9121 (2)
C8—N5—H5119 (1)C5—C3—H9120 (4)
H3—N5—H5119 (4)C1—C4—C5121.61 (11)
C7—N6—H7120 (9)C1—C4—H14117 (2)
C7—N6—H6119 (1)C5—C4—H14122 (6)
H7—N6—H6120 (4)C1—C6—H11111 (7)
N2—C7—N6124.79 (8)C1—C6—H10111 (2)
N2—C7—N3117.54 (8)C1—C6—H12111 (3)
N6—C7—N3117.61 (8)H11—C6—H10107 (6)
N4—C8—N2118.60 (8)H11—C6—H12108 (4)
N4—C8—N5116.01 (8)H10—C6—H12108 (2)
N2—C8—N5125.27 (8)C3—C5—C4120.43 (11)
N4—C9—C1121.39 (9)C3—C5—H13120 (5)
N4—C9—C2116.92 (9)C4—C5—H13119 (3)
C1—C9—C2121.48 (10)
N2—C8—N4—C916.30 (15)C8—N4—C9—C2127.35 (15)
N2—C8—N4—H4166 (2)C9—C1—C4—C51.41 (17)
N2—C8—N5—H38 (4)C9—C1—C4—H14180 (9)
N2—C8—N5—H5173 (3)C9—C1—C6—H11143 (9)
N2—C7—N6—H75 (4)C9—C1—C6—H1024 (1)
N2—C7—N6—H6171 (2)C9—C1—C6—H1296 (5)
N2—C7—N3—H1175 (2)C9—C2—C3—C50.72 (17)
N2—C7—N3—H20 (5)C9—C2—C3—H9179 (10)
N3—C7—N2—C8156.67 (15)C1—C9—C2—C31.78 (17)
N3—C7—N6—H7172 (4)C1—C9—C2—H8170 (1)
N3—C7—N6—H66 (2)C1—C4—C5—C30.44 (19)
H1—N3—C7—N62 (2)C1—C4—C5—H13180 (1)
H2—N3—C7—N6178 (5)C2—C9—C1—C42.07 (16)
N4—C8—N2—C7157.09 (14)C2—C9—C1—C6175.84 (17)
N4—C8—N5—H3168 (4)C2—C3—C5—C40.07 (19)
N4—C8—N5—H53 (2)C2—C3—C5—H13180 (1)
N4—C9—C1—C4176.71 (15)H8—C2—C3—C5171 (2)
N4—C9—C1—C61.20 (15)H8—C2—C3—H97 (11)
N4—C9—C2—C3176.65 (15)C3—C5—C4—H14179 (10)
N4—C9—C2—H84 (2)H9—C3—C5—C4179 (13)
H4—N4—C8—N510 (2)H9—C3—C5—H132 (13)
H4—N4—C9—C1120 (2)C4—C1—C6—H1135 (9)
H4—N4—C9—C255 (2)C4—C1—C6—H10154 (1)
N5—C8—N4—C9167.49 (15)C4—C1—C6—H1286 (5)
N5—C8—N2—C727.08 (15)H14—C4—C1—C62 (13)
N6—C7—N2—C826.32 (16)H14—C4—C5—H132 (13)
C8—N4—C9—C157.78 (16)C6—C1—C4—C5176.57 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1.01 (8)2.17 (7)3.1584 (9)163 (1)
N5—H5···Cl1.01 (9)2.37 (9)3.2880 (9)150 (6)
N6—H7···N51.02 (15)2.52 (6)2.9156 (13)103 (5)
C6—H10···C81.08 (12)2.65 (9)3.1420 (15)108 (5)
N3—H1···Cli1.01 (9)2.44 (6)3.3431 (9)148 (4)
N6—H6···Cli1.02 (9)2.28 (9)3.2398 (9)157 (1)
N5—H3···Clii1.01 (10)2.32 (13)3.2454 (9)150 (3)
N6—H7···Cliii1.02 (15)2.34 (18)3.2284 (9)146 (11)
N3—H2···N2iv1.01 (16)1.96 (15)2.9754 (12)174 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y+2, z+1/2; (iii) x+1, y, z+1/2; (iv) x+1/2, y+3/2, z+1.
Analysis of contacts on the Hirshfeld surface. Reciprocal contacts X···Y and Y···X are merged. The second line shows the chemical content on the surface. The % of contact types between chemical species are given in the next five lines, followed by their enrichment ratios. The major contacts, as well as the most enriched ones, are highlighted in bold. The lower part of the table give the contact enrichment when the N atom with lone pair Nlp is distinguished from the other N—H/NH2 atoms top
AtomHnCNClHc
Surface %27.319.38.115.529.8
Hn4.4
C6.45.0% contacts
N4.91.10
Cl27.31.21.20.2
Hc7.818.77.13.811.0
Hn0.58
C0.621.43Enrichment
N1.240.420
Cl2.920.190.480.08
Hc0.481.691.680.381.25
AtomHnCNlpNhClHc
Nlp2.370.050000.98
Nh0.390.36000.882.24
Comparison between C—N bond distances in 1-(o-tolyl)biguanidium and metformin chloride (Niranjana et al., 2017) top
1-(o-Tolyl)biguanidium chlorideMetformin chloride
N6—C71.3334 (13)N5—C41.3398 (3)
N3—C71.3335 (13)N4—C41.3407 (4)
N2—C71.3407 (13)N3—C41.3332 (3)
N2—C81.3307 (13)C4—N31.3332 (3)
N5—C81.3385 (13)N2—C31.3372 (4)
N4—C81.3516 (14)N1—C31.3376 (4)
N4—C91.4180 (14)N1—C1(CH3)1.4590 (4)
N1—C2(CH3)1.4566 (5)
Electrostatic energy (kJ mol-1) between the TBG+ cations and the neighbouring cations in direct contact. The summation was performed by attributing a coefficient 1/2 to the involutional symmetry operators σ and a unitary weight to the others top
Symmetry codeEnergyCoefficient
TBG+···Cl-x, y, z-3851/2
x, y, z+1-4101
x, -y+2, z+1/2-3691
-x+1, y, -z+1/2-3691/2
x, -y+1, z-1/21261
-x+1, y, -z+1/22161/2
TBG+···TBG+-x+1, y, -z+3/22451/2
-x+1, -y+1, -z+11351/2
-x+1/2, y-1/2, -z+1/21381
-x+1/2, -y+3/2, -z1411/2
-x+1/2, -y+3/2, -z+1601/2
Sum-472
Calculated energies of the possible cations obtained by protonation of 1-(o-tolyl)biguanide top
StructureAbsolute energy (Ha)Relative energy versus structure 6 (kJ mol-1)
1-624.898406392230
2-624.903083434216
3-624.916688817182
4-624.95458411183
5-624.96612531552
6-624.9863331710
7-624.96470561255
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds