Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The dipharmacophore com­pound 3-cyclo­propyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxa­diazole, C10H11N5O, was studied on the assumption of its potential biological activity. Two concomitant polymorphs were obtained on crystallization from iso­propanol solution and these were thoroughly studied. Identical conformations of the mol­ecules are found in both structures despite the low difference in energy between the four possible conformers. The two polymorphs differ crucially with respect to their crystal structures. A centrosymmetric dimer formed due to both stacking inter­actions of the `head-to-tail' type and N—H...N(π) hydrogen bonds is the building unit in the triclinic structure. The dimeric building units form an isotropic packing. In the ortho­rhom­bic polymorphic structure, the mol­ecules form stacking inter­actions of the `head-to-head' type, which results in their organization in a column as the primary basic structural motif. The formation of N—H...N(lone pair) hydrogen bonds between two neighbouring columns allows the formation of a double column as the main structural motif. The correct packing motifs in the two polymorphs could not be identified without calculations of the pairwise inter­action energies. The triclinic structure has a higher density and a lower (by 0.60 kcal mol−1) lattice energy according to periodic calculations com­pared to the ortho­rhom­bic structure. This allows us to presume that the triclinic form of 3-cyclo­propyl-5-(2-hydrazinylpyri­din-3-yl)-1,2,4-oxa­diazole is the more stable.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620010414/ku3265sup1.cif
Contains datablocks 1t, 1r, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620010414/ku32651tsup2.hkl
Contains datablock 1t

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620010414/ku32651rsup3.hkl
Contains datablock 1r

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620010414/ku32651rsup4.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620010414/ku3265sup5.pdf
Additional packing and energy-vector diagrams, plus interaction energy tables

CCDC references: 2015686; 2015685

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

3-Cyclopropyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxadiazole (1t) top
Crystal data top
C10H11N5OZ = 2
Mr = 217.24F(000) = 228
Triclinic, P1Dx = 1.407 Mg m3
a = 8.4476 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5662 (8) ÅCell parameters from 846 reflections
c = 8.6125 (8) Åθ = 4.2–25.7°
α = 110.812 (9)°µ = 0.10 mm1
β = 115.048 (11)°T = 293 K
γ = 92.854 (9)°Block, colorless
V = 512.82 (10) Å30.20 × 0.17 × 0.10 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1795 independent reflections
Radiation source: Enhance (Mo) X-ray Source1337 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.043
ω scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 510
Tmin = 0.188, Tmax = 1.000k = 1010
3563 measured reflectionsl = 109
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0858P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1795 reflectionsΔρmax = 0.20 e Å3
157 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6672 (2)0.56003 (19)0.9056 (2)0.0672 (5)
N10.8289 (3)0.6863 (3)0.9853 (3)0.0741 (6)
N20.7711 (2)0.4883 (2)0.7013 (2)0.0554 (5)
N30.3083 (2)0.0515 (2)0.3385 (3)0.0597 (5)
N40.5318 (3)0.2269 (2)0.3501 (3)0.0604 (5)
H40.637 (4)0.302 (3)0.409 (4)0.086 (8)*
N50.4945 (3)0.1157 (3)0.1664 (3)0.0686 (6)
H5NA0.479 (4)0.005 (4)0.162 (4)0.106 (10)*
H5NB0.382 (4)0.125 (3)0.088 (4)0.089 (9)*
C10.6453 (3)0.4486 (3)0.7380 (3)0.0521 (5)
C20.8817 (3)0.6343 (3)0.8581 (3)0.0612 (6)
C31.0478 (3)0.7243 (3)0.8816 (3)0.0697 (7)
H31.1152380.8303160.9963890.084*
C41.0535 (3)0.7184 (3)0.7084 (4)0.0739 (7)
H4A0.9466710.6556100.5882010.089*
H4B1.1204730.8198690.7182240.089*
C51.1560 (3)0.6188 (3)0.8065 (4)0.0762 (7)
H5A1.2859100.6591220.8765360.091*
H5B1.1121030.4948590.7465100.091*
C60.4923 (3)0.3020 (2)0.6283 (3)0.0515 (5)
C70.3911 (3)0.2607 (3)0.7049 (3)0.0583 (6)
H70.4169690.3309720.8275160.070*
C80.2524 (3)0.1164 (3)0.6011 (3)0.0632 (6)
H80.1833450.0873350.6513140.076*
C90.2187 (3)0.0162 (3)0.4206 (4)0.0656 (6)
H90.1266350.0831410.3515380.079*
C100.4442 (3)0.1922 (3)0.4374 (3)0.0507 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0811 (11)0.0626 (10)0.0438 (9)0.0021 (8)0.0312 (9)0.0077 (8)
N10.0835 (14)0.0646 (12)0.0472 (11)0.0130 (10)0.0275 (11)0.0031 (10)
N20.0577 (10)0.0510 (10)0.0413 (10)0.0015 (8)0.0205 (9)0.0077 (9)
N30.0547 (11)0.0542 (11)0.0527 (12)0.0004 (8)0.0217 (9)0.0102 (9)
N40.0652 (12)0.0581 (11)0.0421 (10)0.0048 (9)0.0278 (9)0.0035 (9)
N50.0751 (14)0.0660 (14)0.0453 (11)0.0041 (11)0.0318 (11)0.0012 (10)
C10.0612 (12)0.0481 (11)0.0360 (11)0.0070 (9)0.0197 (10)0.0108 (9)
C20.0649 (14)0.0553 (13)0.0425 (12)0.0017 (10)0.0160 (11)0.0119 (11)
C30.0700 (15)0.0609 (14)0.0532 (14)0.0094 (11)0.0201 (12)0.0119 (12)
C40.0705 (15)0.0751 (16)0.0703 (17)0.0012 (12)0.0265 (13)0.0345 (14)
C50.0598 (14)0.0802 (17)0.0783 (18)0.0061 (12)0.0232 (13)0.0350 (15)
C60.0535 (12)0.0509 (12)0.0442 (12)0.0089 (9)0.0210 (10)0.0169 (10)
C70.0649 (13)0.0648 (13)0.0479 (13)0.0142 (11)0.0299 (11)0.0224 (11)
C80.0560 (12)0.0696 (15)0.0637 (15)0.0049 (11)0.0281 (11)0.0290 (13)
C90.0590 (13)0.0597 (14)0.0674 (16)0.0012 (11)0.0293 (12)0.0177 (13)
C100.0508 (11)0.0511 (12)0.0441 (12)0.0081 (9)0.0203 (10)0.0166 (10)
Geometric parameters (Å, º) top
O1—C11.344 (2)C3—C51.496 (4)
O1—N11.428 (2)C3—H30.9800
N1—C21.299 (3)C4—C51.469 (3)
N2—C11.293 (3)C4—H4A0.9700
N2—C21.369 (3)C4—H4B0.9700
N3—C91.322 (3)C5—H5A0.9700
N3—C101.342 (3)C5—H5B0.9700
N4—C101.344 (3)C6—C71.381 (3)
N4—N51.410 (3)C6—C101.432 (3)
N4—H40.89 (3)C7—C81.372 (3)
N5—H5NA0.94 (3)C7—H70.9300
N5—H5NB0.93 (3)C8—C91.373 (3)
C1—C61.449 (3)C8—H80.9300
C2—C31.465 (3)C9—H90.9300
C3—C41.495 (3)
C1—O1—N1105.88 (15)C5—C4—H4B117.7
C2—N1—O1102.95 (18)C3—C4—H4B117.7
C1—N2—C2103.20 (17)H4A—C4—H4B114.8
C9—N3—C10118.7 (2)C4—C5—C360.58 (16)
C10—N4—N5122.60 (18)C4—C5—H5A117.7
C10—N4—H4124.1 (18)C3—C5—H5A117.7
N5—N4—H4111.1 (18)C4—C5—H5B117.7
N4—N5—H5NA105.2 (19)C3—C5—H5B117.7
N4—N5—H5NB105.1 (17)H5A—C5—H5B114.8
H5NA—N5—H5NB106 (3)C7—C6—C10117.7 (2)
N2—C1—O1113.07 (18)C7—C6—C1121.45 (19)
N2—C1—C6129.37 (18)C10—C6—C1120.79 (18)
O1—C1—C6117.54 (17)C8—C7—C6120.3 (2)
N1—C2—N2114.88 (19)C8—C7—H7119.8
N1—C2—C3122.4 (2)C6—C7—H7119.8
N2—C2—C3122.7 (2)C7—C8—C9117.93 (18)
C2—C3—C4117.8 (2)C7—C8—H8121.0
C2—C3—C5118.1 (2)C9—C8—H8121.0
C4—C3—C558.81 (16)N3—C9—C8124.3 (2)
C2—C3—H3116.6N3—C9—H9117.8
C4—C3—H3116.6C8—C9—H9117.8
C5—C3—H3116.6N3—C10—N4117.64 (19)
C5—C4—C360.61 (17)N3—C10—C6120.90 (18)
C5—C4—H4A117.7N4—C10—C6121.46 (19)
C3—C4—H4A117.7
C1—O1—N1—C20.3 (2)O1—C1—C6—C711.2 (3)
C2—N2—C1—O10.8 (2)N2—C1—C6—C1011.5 (3)
C2—N2—C1—C6177.3 (2)O1—C1—C6—C10170.48 (17)
N1—O1—C1—N20.3 (2)C10—C6—C7—C81.6 (3)
N1—O1—C1—C6177.99 (17)C1—C6—C7—C8176.74 (18)
O1—N1—C2—N20.9 (3)C6—C7—C8—C90.0 (3)
O1—N1—C2—C3178.65 (19)C10—N3—C9—C81.5 (4)
C1—N2—C2—N11.1 (3)C7—C8—C9—N31.6 (4)
C1—N2—C2—C3178.5 (2)C9—N3—C10—N4179.08 (19)
N1—C2—C3—C4149.0 (2)C9—N3—C10—C60.3 (3)
N2—C2—C3—C431.5 (3)N5—N4—C10—N34.6 (3)
N1—C2—C3—C5143.4 (3)N5—N4—C10—C6176.1 (2)
N2—C2—C3—C536.1 (3)C7—C6—C10—N31.8 (3)
C2—C3—C4—C5107.6 (3)C1—C6—C10—N3176.59 (18)
C2—C3—C5—C4107.2 (2)C7—C6—C10—N4177.56 (19)
N2—C1—C6—C7166.7 (2)C1—C6—C10—N44.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N20.89 (3)2.17 (3)2.795 (3)127 (2)
N5—H5NA···C8i0.94 (3)2.87 (3)3.487 (3)125 (2)
N5—H5NB···N1ii0.93 (3)2.50 (3)3.325 (4)148 (2)
N5—H5NA···N30.94 (3)2.45 (3)2.728 (2)97 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
3-Cyclopropyl-5-(2-hydrazinylpyridin-3-yl)-1,2,4-oxadiazole (1r) top
Crystal data top
C10H11N5ODx = 1.364 Mg m3
Mr = 217.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 655 reflections
a = 4.8240 (11) Åθ = 4.0–20.0°
b = 8.2685 (19) ŵ = 0.10 mm1
c = 26.527 (10) ÅT = 293 K
V = 1058.1 (5) Å3Stick, colourless
Z = 40.20 × 0.05 × 0.05 mm
F(000) = 456
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
1859 independent reflections
Radiation source: Enhance (Mo) X-ray Source1194 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.080
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 55
Tmin = 0.176, Tmax = 1.000k = 99
7941 measured reflectionsl = 3131
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0373P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.051(Δ/σ)max < 0.001
wR(F2) = 0.119Δρmax = 0.14 e Å3
S = 0.99Δρmin = 0.13 e Å3
1859 reflectionsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
158 parametersExtinction coefficient: 0.007 (3)
0 restraintsAbsolute structure: Flack x determined using 320 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.7 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3081 (6)0.5574 (4)0.66612 (13)0.0744 (10)
N10.1474 (7)0.6666 (5)0.69605 (17)0.0774 (11)
N20.4560 (6)0.8019 (4)0.64848 (14)0.0577 (9)
N31.0284 (7)0.5842 (4)0.54210 (14)0.0650 (10)
N40.8594 (7)0.8191 (4)0.57554 (15)0.0627 (10)
H4N0.733 (8)0.878 (5)0.6013 (18)0.078 (14)*
N51.0260 (11)0.9131 (5)0.5430 (2)0.0726 (12)
H5NA1.190 (10)0.871 (6)0.5497 (18)0.082 (18)*
H5NB0.960 (10)0.900 (6)0.514 (2)0.10 (2)*
C10.4820 (8)0.6484 (5)0.63948 (16)0.0568 (11)
C20.2470 (7)0.8070 (6)0.68382 (18)0.0630 (12)
C30.1501 (8)0.9554 (6)0.70658 (19)0.0690 (13)
H30.0038850.9440580.7319850.083*
C40.1412 (10)1.1041 (6)0.6759 (2)0.0820 (15)
H4A0.2014761.0967130.6410690.098*
H4B0.0102201.1789230.6817690.098*
C50.3504 (9)1.0890 (6)0.7148 (2)0.0913 (18)
H5A0.3288561.1542110.7449620.110*
H5B0.5406371.0719670.7042460.110*
C60.6711 (8)0.5670 (5)0.60523 (17)0.0530 (11)
C70.6770 (9)0.4014 (5)0.6022 (2)0.0677 (13)
H70.5585480.3396490.6220560.081*
C80.8581 (10)0.3271 (6)0.5697 (2)0.0782 (15)
H80.8665700.2149690.5674910.094*
C91.0241 (10)0.4218 (6)0.5411 (2)0.0744 (14)
H91.1447680.3703620.5189490.089*
C100.8517 (8)0.6557 (5)0.57396 (17)0.0541 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0751 (18)0.0711 (19)0.077 (2)0.0089 (17)0.0060 (18)0.0124 (19)
N10.066 (2)0.090 (3)0.076 (3)0.002 (2)0.011 (2)0.011 (3)
N20.0500 (17)0.063 (2)0.060 (2)0.0007 (17)0.0040 (18)0.002 (2)
N30.071 (2)0.066 (2)0.057 (3)0.0128 (19)0.004 (2)0.009 (2)
N40.070 (2)0.055 (2)0.063 (3)0.001 (2)0.017 (2)0.003 (2)
N50.086 (3)0.064 (2)0.068 (3)0.003 (2)0.017 (3)0.001 (3)
C10.049 (2)0.067 (3)0.055 (3)0.006 (2)0.005 (2)0.012 (2)
C20.048 (2)0.084 (3)0.057 (3)0.000 (2)0.000 (2)0.005 (3)
C30.053 (2)0.092 (3)0.063 (3)0.010 (3)0.013 (2)0.002 (3)
C40.074 (3)0.086 (3)0.086 (4)0.004 (3)0.008 (3)0.002 (3)
C50.056 (2)0.119 (4)0.099 (5)0.003 (3)0.002 (3)0.039 (4)
C60.051 (2)0.053 (2)0.055 (3)0.002 (2)0.010 (2)0.001 (2)
C70.079 (3)0.053 (2)0.072 (3)0.003 (3)0.012 (3)0.001 (3)
C80.102 (3)0.052 (2)0.080 (4)0.013 (3)0.019 (3)0.013 (3)
C90.088 (3)0.070 (3)0.066 (3)0.021 (3)0.012 (3)0.018 (3)
C100.056 (2)0.056 (2)0.050 (3)0.002 (2)0.007 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C11.330 (5)C3—C51.484 (6)
O1—N11.431 (5)C3—H30.9800
N1—C21.297 (5)C4—C51.449 (7)
N2—C11.298 (5)C4—H4A0.9700
N2—C21.377 (5)C4—H4B0.9700
N3—C101.338 (5)C5—H5A0.9700
N3—C91.343 (5)C5—H5B0.9700
N4—C101.352 (5)C6—C71.372 (5)
N4—N51.413 (5)C6—C101.409 (6)
N4—H4N1.04 (4)C7—C81.371 (6)
N5—H5NA0.88 (5)C7—H70.9300
N5—H5NB0.84 (5)C8—C91.354 (6)
C1—C61.453 (6)C8—H80.9300
C2—C31.445 (6)C9—H90.9300
C3—C41.475 (6)
C1—O1—N1106.2 (3)C5—C4—H4B117.7
C2—N1—O1103.0 (3)C3—C4—H4B117.7
C1—N2—C2103.0 (4)H4A—C4—H4B114.8
C10—N3—C9116.4 (4)C4—C5—C360.4 (3)
C10—N4—N5123.1 (4)C4—C5—H5A117.7
C10—N4—H4N118 (2)C3—C5—H5A117.7
N5—N4—H4N119 (2)C4—C5—H5B117.7
N4—N5—H5NA100 (3)C3—C5—H5B117.7
N4—N5—H5NB106 (4)H5A—C5—H5B114.9
H5NA—N5—H5NB118 (5)C7—C6—C10118.2 (4)
N2—C1—O1113.3 (4)C7—C6—C1120.8 (4)
N2—C1—C6129.0 (4)C10—C6—C1121.0 (4)
O1—C1—C6117.8 (4)C8—C7—C6119.8 (5)
N1—C2—N2114.5 (4)C8—C7—H7120.1
N1—C2—C3122.4 (4)C6—C7—H7120.1
N2—C2—C3123.2 (4)C9—C8—C7118.0 (4)
C2—C3—C4119.1 (4)C9—C8—H8121.0
C2—C3—C5118.9 (4)C7—C8—H8121.0
C4—C3—C558.6 (3)N3—C9—C8125.2 (5)
C2—C3—H3116.0N3—C9—H9117.4
C4—C3—H3116.0C8—C9—H9117.4
C5—C3—H3116.0N3—C10—N4116.4 (4)
C5—C4—C361.0 (3)N3—C10—C6122.4 (4)
C5—C4—H4A117.7N4—C10—C6121.3 (4)
C3—C4—H4A117.7
C1—O1—N1—C20.5 (4)O1—C1—C6—C72.6 (6)
C2—N2—C1—O10.1 (5)N2—C1—C6—C103.3 (7)
C2—N2—C1—C6180.0 (4)O1—C1—C6—C10176.8 (4)
N1—O1—C1—N20.4 (5)C10—C6—C7—C80.8 (7)
N1—O1—C1—C6179.7 (3)C1—C6—C7—C8179.7 (4)
O1—N1—C2—N20.5 (5)C6—C7—C8—C90.8 (7)
O1—N1—C2—C3178.0 (4)C10—N3—C9—C80.5 (7)
C1—N2—C2—N10.3 (5)C7—C8—C9—N30.7 (8)
C1—N2—C2—C3178.2 (4)C9—N3—C10—N4179.0 (4)
N1—C2—C3—C4146.1 (5)C9—N3—C10—C60.4 (6)
N2—C2—C3—C435.5 (6)N5—N4—C10—N35.0 (7)
N1—C2—C3—C5145.8 (5)N5—N4—C10—C6176.4 (4)
N2—C2—C3—C532.5 (7)C7—C6—C10—N30.6 (6)
C2—C3—C4—C5107.9 (5)C1—C6—C10—N3179.9 (4)
C2—C3—C5—C4108.3 (5)C7—C6—C10—N4179.1 (4)
N2—C1—C6—C7177.2 (4)C1—C6—C10—N41.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···N21.04 (4)1.93 (4)2.748 (5)133 (3)
N5—H5NB···N3i0.84 (5)2.56 (5)3.295 (7)146 (5)
N5—H5NA···N30.88 (5)2.51 (5)2.720 (6)94 (3)
Symmetry code: (i) x1/2, y+3/2, z+1.
Selected geometric parameters for molecule 1 in triclinic and orthorhombic polymorphic crystals top
ParameterStructure 1tStructure 1r
Bond lengths (Å)
C1—C61.450 (3)1.453 (6)
N4—N51.410 (3)1.412 (6)
N4—C101.345 (4)1.352 (5)
C2—C31.465 (4)1.445 (7)
Torsion angles (°)
C7—C6—C1—O1-11.2 (4)-2.7 (6)
N1—C2—C3—H3-3.00.0
N3—C10—N4—N5-4.6 (4)5.0 (6)
Intramolecular hydrogen bonds (Å, °)
N4—H···N2
H···N2.17 (3)1.94 (4)
N—-H···N127 (2)133 (3)
N5–H···N3
H···N2.45 (3)2.50 (5)
N—H···N97 (2)94 (3)
Geometric characteristics of the intermolecular hydrogen bonds and stacking interactions in different polymorphic crystals of compound 1 top
InteractionSymmetry operationGeometric characteristics
H···A (Å)D—H···A (°)
Polymorph 1t
N5—H5NA···C8(π)-x+1, -y, -z+12.87 (3)125 (3)
N5—H5NB···N1(π)-x+1, -y+1, -z+12.50 (3)148 (3)
C3—H3···N3(lp)x+1, y+1, z+12.57165
Stacking mol–mol-x+1, -y+1, -z+1Distance between mean planes is 3.56 Å Plane-to-plane shift is 2.709 Å Plane-to-plane twist angle is 0.0°
Stacking pyr–pyr-x+1, -y, -z+1Distance between mean planes is 3.41 Å Plane-to-plane shift is 1.669 Å Plane-to-plane twist angle is 0.0°
Polymorph 1r
N5—H5NB···N3(lp)x-1/2, -y+3/2, -z+12.56 (5)146 (4)
C8—H8···N5(lp)x, y-1, z2.69162
Stacking oxadiaz–pyrx+1, y, zDistance between mean planes is 3.36 Å Plane-to-plane shift is 1.761 Å Plane-to-plane twist angle is 3.3°
Symmetry codes, interaction energies of the basic unit with neighbouring units (Eint, kcal mol-1) with the highest values (more than 5% of the total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1t (for full list of dimers, see Tables S1 and S2 in the supporting information) top
DimerSymmetry operationEint (kcal mol-1)Contribution to the total interaction energy (%)Type of interaction
Building unit is a molecule
1t_m1-x+1, -y+1, -z+1-14.0723.6stacking, N—H···π
1t_m2-x+1, -y, -z+1-9.4115.8stacking, N—H···π
1t_m3-x+2, -y+1, -z+1-6.3810.7dispersion
1t_m4-x+2, -y+1, -z+2-5.749.6dispersion
1t_m5-x+1, -y+1, -z+2-4.788.0C—H···O
1t_m6x+1, y+1, z+1-4.157.0C—H···N(pyr)
1t_m7x-1, y-1, z-1-4.157.0C—H···N(pyr)
Building unit is a dimer (symmetry operation -x+1, -y+1, -z+1)
1t_d1x+1, y, z-10.8411.1dispersion
1t_d2x-1, y, z-10.8411.1dispersion
1t_d3x+1, y+1, z+1-10.4710.7C—H···N(pyr)
1t_d4x-1, y-1, z-1-10.4710.7C—H···N(pyr)
1t_d5x, y-1, z-10.1210.3stacking pyr–pyr
1t_d6x, y+1, z-10.1210.3stacking pyr–pyr
1t_d7x, y, z-1-6.486.6C—H···.O (2)
1t_d8x, y,, z+1-6.486.6C—H···.O (2)
1t_d9x-1,, z-1-6.196.3dispersion
1t_d10x+1, y, z+1-6.196.3dispersion
Symmetry codes, interaction energies of the basic molecule with neighbouring molecules (Eint, kcal mol-1) with the highest values (more than 5% of the total interaction energy) and the contribution of this energy to the total interaction energy (%) in polymorphic crystals 1r (for full list of dimers, see Table S3 in the supporting information) top
DimerSymmetry operationEint (kcal mol-1)Contribution to the total interaction energy (%)Type of interaction
1r_m1x+1, y, z-10.4617.4stacking oxadiaz–hydrazine
1r_m2x-1, y, z-10.4617.4stacking oxadiaz–hydrazine
1r_m3x+1/2, -y+3/2, -z+1-6.9911.7N—H···N(pyr)
1r_m4x-1/2, -y+3/2, -z+1-6.9911.7N—H···N(pyr)
1r_m5x, y-1, z-3.966.6C—H···N(lp)
1r_m6x, y+1, z-3.966.6C—H···N(lp)
1r_m7-x, y+1/2, -z+3/2-3.145.2dispersion
1r_m8-x, y-1/2, -z+3/2-3.145.2dispersion
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds