Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111022566/ky3002sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270111022566/ky3002Isup2.hkl |
CCDC reference: 838131
For related literature, see: Anokhina & Jacobson (2004); Balamurugan & Mukherjee (2005); Couck et al. (2009); Cui et al. (2003); Ezuhara et al. (1999); Han & Hong (2005); Han & Zhou (2008); Han et al. (2007); He et al. (2007); Leong & Vittal (2011); Reger et al. (2011); Vaidhyanathan et al. (2009); Wang et al. (2004, 2005); Yuan et al. (2009); Zheng & Lu (2010).
A mixture of Zn(NO3)2.6H2O (92.6 mg, 0.5 mmol), 2-aminobenzene-1,4-dicarboxylic acid (149.6 mg, 0.5 mmol) and pyridine (1.0 g) in H2O (5 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 423 K for 3 d. A crop of colourless single crystals of the title compound was obtained after cooling the solution to room temperature. Block-shaped crystals of (I) were collected and washed with distilled water. The yield was approximately 40% based on Zn2+.
All H atoms were positioned geometrically and allowed to ride on their respective parent atoms at distances of C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C,N). Displacement ellipsoids indicate some considerable vibrational movement or disorder in the NH2-BDC ligands, but we were unable to model this.
Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Zn(C8H5NO4)(C5H5N)2] | Dx = 1.467 Mg m−3 |
Mr = 402.70 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43 | Cell parameters from 3397 reflections |
Hall symbol: P 4cw | θ = 3.8–25.5° |
a = 8.4243 (1) Å | µ = 1.37 mm−1 |
c = 25.6975 (9) Å | T = 298 K |
V = 1823.72 (7) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.24 × 0.20 mm |
F(000) = 824 |
Rigaku R-AXIS RAPID diffractometer | 3172 independent reflections |
Radiation source: fine-focus sealed tube | 2082 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
Detector resolution: 0 pixels mm-1 | θmax = 25.0°, θmin = 3.8° |
ω scans | h = −8→10 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −9→10 |
Tmin = 0.716, Tmax = 0.771 | l = −30→30 |
11175 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0204P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.005 |
3172 reflections | Δρmax = 0.47 e Å−3 |
235 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1546 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.030 (17) |
[Zn(C8H5NO4)(C5H5N)2] | Z = 4 |
Mr = 402.70 | Mo Kα radiation |
Tetragonal, P43 | µ = 1.37 mm−1 |
a = 8.4243 (1) Å | T = 298 K |
c = 25.6975 (9) Å | 0.26 × 0.24 × 0.20 mm |
V = 1823.72 (7) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3172 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2082 reflections with I > 2σ(I) |
Tmin = 0.716, Tmax = 0.771 | Rint = 0.057 |
11175 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.071 | Δρmax = 0.47 e Å−3 |
S = 1.01 | Δρmin = −0.29 e Å−3 |
3172 reflections | Absolute structure: Flack (1983), 1546 Friedel pairs |
235 parameters | Absolute structure parameter: 0.030 (17) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.13367 (7) | 0.28865 (6) | 0.22997 (3) | 0.05215 (18) | |
O1 | 0.0108 (5) | 0.3604 (4) | 0.29281 (14) | 0.0684 (10) | |
O2 | −0.1383 (4) | 0.4001 (4) | 0.22471 (16) | 0.0665 (10) | |
O3 | −0.6869 (7) | 0.7693 (6) | 0.39686 (18) | 0.1087 (16) | |
O4 | −0.4988 (6) | 0.7690 (5) | 0.45486 (19) | 0.0921 (16) | |
N1 | 0.0322 (5) | 0.0729 (5) | 0.21115 (18) | 0.0555 (13) | |
N2 | 0.3322 (5) | 0.1989 (6) | 0.26715 (17) | 0.0597 (12) | |
N3 | −0.6359 (8) | 0.6390 (7) | 0.3017 (3) | 0.139 (2) | |
H3B | −0.7069 | 0.6858 | 0.3202 | 0.166* | |
H3C | −0.6574 | 0.6106 | 0.2703 | 0.166* | |
C1 | −0.1159 (7) | 0.4141 (6) | 0.2713 (2) | 0.0518 (14) | |
C2 | −0.2307 (7) | 0.4956 (6) | 0.3073 (2) | 0.0497 (15) | |
C3 | −0.1873 (7) | 0.5372 (6) | 0.3570 (2) | 0.0640 (16) | |
H3A | −0.0863 | 0.5133 | 0.3693 | 0.077* | |
C4 | −0.2944 (9) | 0.6144 (7) | 0.3883 (2) | 0.0756 (19) | |
H4A | −0.2636 | 0.6425 | 0.4218 | 0.091* | |
C5 | −0.4462 (8) | 0.6519 (7) | 0.3720 (3) | 0.0607 (16) | |
C6 | −0.4836 (6) | 0.6087 (6) | 0.3228 (3) | 0.0583 (15) | |
C7 | −0.3820 (6) | 0.5343 (5) | 0.2872 (3) | 0.0622 (16) | |
H7A | −0.4118 | 0.5122 | 0.2531 | 0.075* | |
C8 | −0.5454 (10) | 0.7367 (8) | 0.4115 (3) | 0.078 (2) | |
C9 | 0.4413 (8) | 0.1131 (8) | 0.2414 (3) | 0.092 (2) | |
H9A | 0.4324 | 0.1058 | 0.2054 | 0.111* | |
C10 | 0.5621 (9) | 0.0377 (9) | 0.2644 (4) | 0.113 (3) | |
H10A | 0.6341 | −0.0211 | 0.2449 | 0.136* | |
C11 | 0.5773 (9) | 0.0489 (9) | 0.3167 (4) | 0.100 (2) | |
H11A | 0.6596 | −0.0033 | 0.3337 | 0.121* | |
C12 | 0.4739 (9) | 0.1348 (9) | 0.3435 (3) | 0.087 (2) | |
H12A | 0.4838 | 0.1441 | 0.3794 | 0.104* | |
C13 | 0.3527 (7) | 0.2094 (8) | 0.3182 (2) | 0.0699 (15) | |
H13A | 0.2817 | 0.2701 | 0.3374 | 0.084* | |
C14 | −0.0490 (7) | 0.0512 (8) | 0.1669 (3) | 0.0773 (18) | |
H14A | −0.0489 | 0.1324 | 0.1424 | 0.093* | |
C15 | −0.1310 (8) | −0.0826 (10) | 0.1560 (3) | 0.096 (2) | |
H15A | −0.1881 | −0.0925 | 0.1252 | 0.115* | |
C16 | −0.1274 (10) | −0.2025 (9) | 0.1915 (4) | 0.101 (3) | |
H16A | −0.1851 | −0.2950 | 0.1857 | 0.121* | |
C17 | −0.0399 (8) | −0.1867 (7) | 0.2351 (4) | 0.101 (2) | |
H17A | −0.0323 | −0.2709 | 0.2583 | 0.122* | |
C18 | 0.0372 (7) | −0.0488 (8) | 0.2452 (3) | 0.082 (2) | |
H18A | 0.0941 | −0.0380 | 0.2760 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0575 (4) | 0.0499 (4) | 0.0491 (3) | −0.0020 (4) | 0.0135 (4) | 0.0004 (4) |
O1 | 0.067 (3) | 0.076 (3) | 0.062 (3) | 0.011 (2) | 0.017 (2) | −0.002 (2) |
O2 | 0.081 (3) | 0.070 (2) | 0.049 (2) | 0.0060 (19) | 0.018 (2) | −0.002 (2) |
O3 | 0.119 (4) | 0.115 (4) | 0.092 (4) | 0.042 (3) | 0.037 (3) | 0.007 (3) |
O4 | 0.111 (4) | 0.084 (4) | 0.082 (4) | 0.010 (3) | 0.028 (3) | −0.027 (3) |
N1 | 0.061 (3) | 0.049 (3) | 0.056 (4) | −0.002 (2) | 0.015 (2) | 0.004 (3) |
N2 | 0.053 (3) | 0.073 (3) | 0.052 (3) | −0.008 (3) | 0.012 (2) | −0.008 (3) |
N3 | 0.139 (6) | 0.137 (6) | 0.139 (6) | 0.010 (5) | 0.026 (5) | −0.031 (5) |
C1 | 0.044 (4) | 0.049 (3) | 0.062 (4) | 0.008 (3) | 0.017 (3) | 0.006 (3) |
C2 | 0.058 (4) | 0.035 (3) | 0.056 (4) | 0.000 (3) | 0.018 (3) | −0.005 (3) |
C3 | 0.058 (4) | 0.076 (4) | 0.058 (4) | 0.015 (3) | 0.006 (3) | −0.017 (3) |
C4 | 0.101 (6) | 0.057 (4) | 0.070 (4) | 0.005 (4) | 0.026 (5) | −0.006 (3) |
C5 | 0.065 (4) | 0.054 (4) | 0.063 (4) | 0.009 (3) | 0.019 (4) | −0.001 (3) |
C6 | 0.035 (3) | 0.053 (4) | 0.087 (5) | 0.003 (3) | 0.002 (3) | 0.007 (3) |
C7 | 0.044 (4) | 0.038 (3) | 0.105 (5) | 0.006 (3) | 0.037 (3) | 0.004 (3) |
C8 | 0.080 (6) | 0.055 (4) | 0.099 (6) | 0.018 (4) | 0.040 (5) | 0.023 (5) |
C9 | 0.081 (5) | 0.118 (6) | 0.077 (6) | 0.036 (4) | 0.010 (4) | −0.027 (4) |
C10 | 0.084 (6) | 0.138 (7) | 0.117 (8) | 0.056 (5) | −0.007 (5) | −0.004 (6) |
C11 | 0.071 (6) | 0.101 (6) | 0.129 (8) | −0.001 (5) | −0.022 (6) | 0.026 (6) |
C12 | 0.071 (5) | 0.127 (6) | 0.062 (5) | −0.008 (5) | −0.013 (4) | 0.013 (4) |
C13 | 0.061 (4) | 0.087 (5) | 0.062 (4) | −0.004 (4) | 0.003 (4) | −0.008 (4) |
C14 | 0.094 (5) | 0.073 (5) | 0.065 (4) | −0.008 (4) | −0.011 (4) | 0.009 (4) |
C15 | 0.112 (6) | 0.096 (6) | 0.078 (5) | −0.045 (5) | 0.005 (4) | −0.042 (5) |
C16 | 0.130 (8) | 0.054 (5) | 0.118 (8) | −0.031 (5) | 0.038 (6) | −0.027 (5) |
C17 | 0.118 (6) | 0.060 (5) | 0.126 (8) | −0.019 (4) | 0.021 (6) | 0.031 (5) |
C18 | 0.087 (5) | 0.064 (4) | 0.094 (6) | −0.017 (4) | −0.002 (4) | 0.032 (4) |
Zn1—O1 | 2.011 (3) | C4—C5 | 1.382 (8) |
Zn1—N1 | 2.066 (4) | C4—H4A | 0.9300 |
Zn1—N2 | 2.069 (5) | C5—C6 | 1.353 (7) |
Zn1—O4i | 2.072 (5) | C5—C8 | 1.496 (9) |
Zn1—O3i | 2.296 (5) | C6—C7 | 1.401 (7) |
Zn1—O2 | 2.480 (3) | C7—H7A | 0.9300 |
Zn1—C8i | 2.498 (7) | C8—Zn1ii | 2.498 (7) |
Zn1—C1 | 2.582 (5) | C9—C10 | 1.337 (8) |
O1—C1 | 1.284 (6) | C9—H9A | 0.9300 |
O2—C1 | 1.219 (6) | C10—C11 | 1.352 (8) |
O3—C8 | 1.279 (8) | C10—H10A | 0.9300 |
O3—Zn1ii | 2.296 (5) | C11—C12 | 1.326 (10) |
O4—C8 | 1.212 (8) | C11—H11A | 0.9300 |
O4—Zn1ii | 2.072 (4) | C12—C13 | 1.364 (8) |
N1—C14 | 1.340 (7) | C12—H12A | 0.9300 |
N1—C18 | 1.348 (6) | C13—H13A | 0.9300 |
N2—C13 | 1.325 (6) | C14—C15 | 1.351 (8) |
N2—C9 | 1.343 (6) | C14—H14A | 0.9300 |
N3—C6 | 1.416 (8) | C15—C16 | 1.362 (9) |
N3—H3B | 0.8600 | C15—H15A | 0.9300 |
N3—H3C | 0.8600 | C16—C17 | 1.347 (10) |
C1—C2 | 1.503 (7) | C16—H16A | 0.9300 |
C2—C3 | 1.374 (7) | C17—C18 | 1.356 (8) |
C2—C7 | 1.413 (7) | C17—H17A | 0.9300 |
C3—C4 | 1.373 (7) | C18—H18A | 0.9300 |
C3—H3A | 0.9300 | ||
O1—Zn1—N1 | 103.86 (15) | C2—C3—H3A | 120.3 |
O1—Zn1—N2 | 98.92 (17) | C4—C3—H3A | 120.3 |
N1—Zn1—N2 | 96.93 (19) | C3—C4—C5 | 122.6 (6) |
O1—Zn1—O4i | 101.20 (18) | C3—C4—H4A | 118.7 |
N1—Zn1—O4i | 148.31 (19) | C5—C4—H4A | 118.7 |
N2—Zn1—O4i | 98.03 (19) | C6—C5—C4 | 115.9 (6) |
O1—Zn1—O3i | 154.57 (18) | C6—C5—C8 | 129.2 (7) |
N1—Zn1—O3i | 90.48 (18) | C4—C5—C8 | 114.9 (7) |
N2—Zn1—O3i | 100.06 (17) | C5—C6—C7 | 126.0 (5) |
O4i—Zn1—O3i | 59.46 (17) | C5—C6—N3 | 121.4 (6) |
O1—Zn1—O2 | 56.93 (14) | C7—C6—N3 | 112.5 (6) |
N1—Zn1—O2 | 86.47 (15) | C6—C7—C2 | 114.6 (6) |
N2—Zn1—O2 | 155.54 (15) | C6—C7—H7A | 122.7 |
O4i—Zn1—O2 | 91.23 (15) | C2—C7—H7A | 122.7 |
O3i—Zn1—O2 | 104.13 (16) | O4—C8—O3 | 121.6 (7) |
O1—Zn1—C8i | 128.5 (3) | O4—C8—C5 | 123.3 (8) |
N1—Zn1—C8i | 120.5 (3) | O3—C8—C5 | 115.1 (8) |
N2—Zn1—C8i | 100.16 (18) | O4—C8—Zn1ii | 55.7 (4) |
O4i—Zn1—C8i | 28.9 (2) | O3—C8—Zn1ii | 65.9 (4) |
O3i—Zn1—C8i | 30.6 (2) | C5—C8—Zn1ii | 177.2 (5) |
O2—Zn1—C8i | 98.84 (18) | C10—C9—N2 | 123.9 (7) |
O1—Zn1—C1 | 29.22 (15) | C10—C9—H9A | 118.0 |
N1—Zn1—C1 | 96.88 (17) | N2—C9—H9A | 118.0 |
N2—Zn1—C1 | 128.13 (19) | C9—C10—C11 | 118.6 (8) |
O4i—Zn1—C1 | 95.56 (18) | C9—C10—H10A | 120.7 |
O3i—Zn1—C1 | 129.50 (19) | C11—C10—H10A | 120.7 |
O2—Zn1—C1 | 27.77 (14) | C12—C11—C10 | 119.5 (8) |
C8i—Zn1—C1 | 114.6 (2) | C12—C11—H11A | 120.3 |
C1—O1—Zn1 | 100.9 (3) | C10—C11—H11A | 120.3 |
C1—O2—Zn1 | 80.8 (3) | C11—C12—C13 | 119.7 (7) |
C8—O3—Zn1ii | 83.5 (4) | C11—C12—H12A | 120.2 |
C8—O4—Zn1ii | 95.5 (5) | C13—C12—H12A | 120.2 |
C14—N1—C18 | 117.6 (5) | N2—C13—C12 | 122.6 (6) |
C14—N1—Zn1 | 122.0 (4) | N2—C13—H13A | 118.7 |
C18—N1—Zn1 | 120.3 (4) | C12—C13—H13A | 118.7 |
C13—N2—C9 | 115.7 (5) | N1—C14—C15 | 123.4 (6) |
C13—N2—Zn1 | 122.5 (4) | N1—C14—H14A | 118.3 |
C9—N2—Zn1 | 121.5 (4) | C15—C14—H14A | 118.3 |
C6—N3—H3B | 120.0 | C14—C15—C16 | 117.9 (7) |
C6—N3—H3C | 120.0 | C14—C15—H15A | 121.0 |
H3B—N3—H3C | 120.0 | C16—C15—H15A | 121.0 |
O2—C1—O1 | 121.1 (5) | C17—C16—C15 | 119.7 (7) |
O2—C1—C2 | 123.2 (5) | C17—C16—H16A | 120.1 |
O1—C1—C2 | 115.6 (6) | C15—C16—H16A | 120.1 |
O2—C1—Zn1 | 71.4 (3) | C16—C17—C18 | 120.4 (7) |
O1—C1—Zn1 | 49.9 (2) | C16—C17—H17A | 119.8 |
C2—C1—Zn1 | 164.6 (5) | C18—C17—H17A | 119.8 |
C3—C2—C7 | 121.4 (5) | N1—C18—C17 | 120.8 (6) |
C3—C2—C1 | 121.1 (5) | N1—C18—H18A | 119.6 |
C7—C2—C1 | 117.5 (5) | C17—C18—H18A | 119.6 |
C2—C3—C4 | 119.4 (6) |
Symmetry codes: (i) −y+1, x+1, z−1/4; (ii) y−1, −x+1, z+1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3 | 0.86 | 2.10 | 2.715 (8) | 128 |
N3—H3C···O4iii | 0.86 | 2.14 | 2.966 (9) | 162 |
Symmetry code: (iii) −y, x+1, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C8H5NO4)(C5H5N)2] |
Mr | 402.70 |
Crystal system, space group | Tetragonal, P43 |
Temperature (K) | 298 |
a, c (Å) | 8.4243 (1), 25.6975 (9) |
V (Å3) | 1823.72 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.37 |
Crystal size (mm) | 0.26 × 0.24 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.716, 0.771 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11175, 3172, 2082 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.071, 1.01 |
No. of reflections | 3172 |
No. of parameters | 235 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.29 |
Absolute structure | Flack (1983), 1546 Friedel pairs |
Absolute structure parameter | 0.030 (17) |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Zn1—O1 | 2.011 (3) | Zn1—O4i | 2.072 (5) |
Zn1—N1 | 2.066 (4) | Zn1—O3i | 2.296 (5) |
Zn1—N2 | 2.069 (5) | Zn1—O2 | 2.480 (3) |
O1—Zn1—N1 | 103.86 (15) | N2—Zn1—O3i | 100.06 (17) |
O1—Zn1—N2 | 98.92 (17) | O4i—Zn1—O3i | 59.46 (17) |
N1—Zn1—N2 | 96.93 (19) | O1—Zn1—O2 | 56.93 (14) |
O1—Zn1—O4i | 101.20 (18) | N1—Zn1—O2 | 86.47 (15) |
N1—Zn1—O4i | 148.31 (19) | N2—Zn1—O2 | 155.54 (15) |
N2—Zn1—O4i | 98.03 (19) | O4i—Zn1—O2 | 91.23 (15) |
O1—Zn1—O3i | 154.57 (18) | O3i—Zn1—O2 | 104.13 (16) |
N1—Zn1—O3i | 90.48 (18) |
Symmetry code: (i) −y+1, x+1, z−1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···O3 | 0.86 | 2.10 | 2.715 (8) | 128.1 |
N3—H3C···O4ii | 0.86 | 2.14 | 2.966 (9) | 161.9 |
Symmetry code: (ii) −y, x+1, z−1/4. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
Considerable effort has been devoted to the synthesis and characterization of metal–organic coordination polymers because of their fascinating topologies and potential applications. One-dimensional coordination polymers, being the simplest topological type of coordination network, are commonly encountered in a number of forms such as helices, ladders, ribbons and zigzag chains (Leong & Vittal, 2011). Infinite helical coordination polymers have attracted growing interest because of their similarities to biological systems and because of their potential utility in enantioselective catalysis (Han & Hong, 2005; Zheng & Lu, 2010). Argueably the most important feature of a helix is its chirality, and to investigate this a number of helical chiral coordination polymers have been assembled using flexible chiral or achiral organic linkers (Anokhina & Jacobson, 2004; Cui et al., 2003; Reger et al., 2011; Yuan et al., 2009). When achiral organic ligands are used, many successful examples of spontaneous chiral induction have also been reported in the literature (Balamurugan & Mukherjee, 2005; Ezuhara et al., 1999; Han et al., 2007; He et al., 2007; Wang et al., 2005).
For the lower-dimensional helical chiral coordination polymers, it is easy and desirable to incorporate functional properties at the metal centres or in the backbone of the organic linkers. Furthermore, it is possible to develop strategies for engineering higher-dimensional materials through supramolecular entanglement (Cui et al., 2003; Han & Zhou, 2008; Leong & Vittal, 2011; Wang et al., 2004). These entangled porous frameworks usually display tuneable flexibility, which is useful for various applications and often associated with weak interactions, including hydrogen bonds, π-electron stacking and van der Waals interactions. In this study, we have synthesized a one-dimensional amino-functionalized helical chiral coordination polymer from achiral ligands, [Zn(NH2-BDC)(py)2]n (NH2-BDC is 2-aminobenzene-1,4-dicarboxylate and py is pyridine), (I), which forms a three-dimensional interdigitated supramolecular network via N—H···O hydrogen bonds.
The colourless crystals of (I) were synthesized hydrothermally by reacting Zn(NO3)2.6H2O, 2-aminobenzene-1,4-dicarboxylic acid and pyridine at 423 K for 3 d. Compound (I) crystallizes in the chiral space group P43 with one Zn2+ cation, one NH2-BDC anion and two pyridine molecules per asymmetric unit, as shown in Fig. 1. The Zn2+ centre is coordinated by four O atoms from the carboxylate groups of two different NH2-BDC ligands and two mutually cis N atoms from the pyridine groups, giving a distorted octahedral geometry. The bond angles around the Zn2+ centre are given in Table 1. The Zn—O bond lengths range from 2.011 (3) to 2.480 (3) Å, a large spread, which is due to the highly asymmetric coordination mode adopted by the carboxylate groups. Introducing the amino group into the backbone of the ligand results in an intramolecular hydrogen bond, N3—H3B···O3, with a donor-to-acceptor distance of 2.715 (8) Å. It should be pointed out that amino-functionalized porous coordination frameworks have recently gained much attention because of an enhanced capacity for CO2 adsorption (Couck et al., 2009; Vaidhyanathan et al., 2009).
The coordination behaviour of the bridging NH2-BDC ligand of (I) results in an infinite helical architecture running along the crystallographic c axis (Fig.2). The left-handed helix is generated around the crystallographic 43 axis with a pitch of 25.6975 (9) Å. Each `turn' of the helix consists of four Zn/NH2-BDC units. All the pyridine rings and the amino groups point away from the helical axis to generate a hollow tube with an opening of approximately 8 × 8 Å. Each left-handed helix further interweaves with four similar helices and links to them via strong intermolecular N—H···O hydrogen bonds (see Table 2). This combines to give a dense three-dimensional interdigitated supramolecular network (Fig. 3). All helices have, of crystallographic necessity, the same left-handed chirality and run along the c direction. This leads to an enantiopure network, despite being formed solely from achiral molecular units. As other crystals from the sample were not analysed, we must assume that the bulk sample is a conglomerate containing both possible handed forms.
In conclusion, (I) is an interesting example of an amino-functionalized helical one-dimensional coordination polymer assembled from achiral ligands.