Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of two hydrated salts of 4-amino­phenyl­arsonic acid (p-arsanilic acid), namely ammonium 4-amino­phenyl­arsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one-dimensional coordination polymer catena-poly[[(4-amino­phenyl­arsonato-κO)di­aqua­sodium]-μ-aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water mol­ecules inter­act through inter-species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen-bonding inter­actions involving the para-amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O-atom donors, one from a single monodentate arsonate ligand, two from monodentate water mol­ecules and two from bridging water mol­ecules, giving a very distorted square-pyramidal coordination environment. The water bridges generate one-dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen-bonding inter­actions link these chains, giving an overall three-dimensional structure. The two structures reported here are the first reported examples of salts of p-arsanilic acid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614014867/ky3057sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014867/ky3057Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614014867/ky3057IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614014867/ky3057Isup4.cml
CML file for the title compound

CCDC references: 1009992; 1009993

Introduction top

4-Amino­phenyl­arsonic acid (p-arsanilic acid) has a long history as an anti­helminth in veterinary applications (Thomas, 1905; Steverding, 2010) and more commonly as a previously employed anti­syphilitic drug (Ehrlich & Bertheim, 1907; Burke, 1925), when used as the hydrated sodium salt, under a variety of common names, primarily atoxyl (Jolliffe, 1993; O'Neil, 2001; Bosch & Rosich, 2008). The crystal structure of the parent acid (Shimada, 1961; Nuttall & Hunter, 1996) has confirmed the presence of a Ph–NH3+–AsO3H- zwitterion in the solid state. These structures are among only a small number of examples in the crystallographic literature involving this acid in any form, including the complexes with silver, zinc, cadmium and lead (Lesikar-Parrish et al., 2013), uranium (Adelani et al., 2012) and the sodium salt of a hybrid organic–inorganic polyoxovanadate cluster complex formed with arsanilate anions (Breen & Schmitt, 2008). Similarly, structures involving phenyl­arsonic acid are uncommon and are restricted to the parent acid [Shimada, 1960; Lloyd et al., 2008 (which includes the 4-fluoro-, 4-fluoro-3-nitro-, 3-amino-4-hy­droxy- and 3-amino-4-meth­oxy-derivatives)] and the salt adducts guanidinium phenyl­arsonate–guanidine–water (1/1/2) (Smith & Wermuth, 2010), bis­(guanidinium) phenyl­arsonate–water (1/2) (Latham et al., 2011) and ammonium 4-nitro­phenyl­arsonate (Yang et al., 2002).

Our 1:1 stoichiometric reaction of p-arsanilic acid with either ammonium carbonate or sodium carbonate in aqueous ethanol gave ammonium 4-amino­phenyl­arsonate monohydrate, (I), the one-dimensional coordination polymer catena-poly[[(4-amino­phenyl­arsonato-κO)di­aqua­sodium]-µ-aqua], (II), the structures and hydrogen-bonded packing modes for which are reported herein. Trihydrate complex (II) is the commonly employed form of the pharmaceutical compound atoxyl (Bosch & Rosich, 2008).

Experimental top

Synthesis and crystallization top

The title compounds were synthesized by heating together under reflux for 10 min, 4-amino­phenyl­arsonic acid (1 mmol, 217 mg) and either ammonium carbonate (1 mmol, 96 mg) [for (I)] or sodium carbonate (1 mmol, 106 mg) [for (II)] in 50% aqueous ethanol (30 ml). Room-temperature evaporation of the solutions gave colourless needles of both (I) and (II) from which specimens suitable for X-ray analyses were cleaved.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms involved in formal hydrogen-bonding inter­actions were located by difference methods and their positional and isotropic displacement parameters were allowed to ride, with N—H and O—H bond lengths restrained to 0.88±0.020 and 0.94±0.02 Å, respectively, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The aromatic H atoms were included in the refinement in calculated positions (C—H = 0.95 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C). The Flack structure parameters (Flack, 1983), although not of relevance for the two molecular structures reported, were 0.002 (16) (937 Friedel pairs) for (I) and 0.020 (15) (991 Friedel pairs) for (II).

Results and discussion top

In the structure of ammonium salt (I), the ammonium cations, arsonate anions and water molecules (Fig. 1) inter­act through inter-species N—H···O and arsonate and water O—H···O hydrogen bonds (Table 2), giving two-dimensional layers lying parallel to (010). These layers are extended into three dimensions through hydrogen-bonding inter­actions involving the para-related amine group acting both as a donor and acceptor (Fig. 2). Among the inter­actions are examples of expanded cyclic motifs, e.g. graph set R33(10) (Etter et al., 1990) (one ammonium and two arsenate species) and R54(12) (two ammonium and two arsenate species, and a water molecule). The formation of two-dimensional layers in ammonium salts of carb­oxy­lic acids is consistent with the observation (Odendal et al., 2010), with ammonium benzoate among examples of ammonium and aminium salt structures from the Cambridge Structural Database (Version 5.34; Allen, 2002), as well as in the ammonium salts of 4-nitro­benzoic acid and 2,4-di­chloro­benzoic acid (Smith, 2014a). Expansion from two- into three-dimensional structures occurs only with hydrogen-bonding inter­actions between the layers through stereochemically sited donor/acceptor groups, such as found in (I) and in the ammonium 4-nitro­anthranilate monohydrate structure (Smith, 2014b).

In the coordination polymeric structure of the sodium salt of p-arsanilate, (II), the basic NaO5 complex repeating unit (Fig. 3) comprises a single monodentate arsonate O-atom donor, two monodentate water O atoms (O1W and O3W) and two from the bridging water molecule (O2W and O2Wi) [symmetry code: (i) -x+1/2, y, z-1/2)] (Table 3). The complex stereochemistry is very distorted square pyramidal, with an Na—O bond-length range of 2.376 (4)–2.482 (5) Å. The single bridging link gives a one-dimensional chain polymer structure extending along the crystallographic c direction (Fig. 4), with an Na1···Na1i separation of 4.452 (3) Å. Unlike what is observed in sodium salts of aromatic benzoic acids having coordinatively associative p-related substituent groups, e.g. sodium 4-nitro­anthranilate dihydrate (Smith, 2013), no inter-chain or inter-layer polymeric bonding extensions through dative inter­actions of the 4-amino group are present in (II). However, in the crystal, there are extensive hydrogen-bonding associations (Table 4) involving the coordinated water molecules and the arsonate group in O1—H···O links to primarily arsonate O-atom acceptors, with one exception (O2W—H···O1W), and to a single amine N-atom acceptor (O3W—H···N4). The amine H atoms form N—H···O hydrogen bonds to a water molecule (O3W), as well as to an arsonate O-atom acceptor (Table 4). These inter­actions form network linkages between the complex chains, generating a three-dimensional framework structure (Fig. 5).

The monoanionic arsenate groups in both (I) and (II) are similar in having delocalized As—O11 and As—O12 bonds, which are essentially equal [1.672 (3) and 1.677 (3) Å in (I), and 1.670 (3) and 1.659 (3) Å in (II), respectively]. These values are similar to the values of 1.656 (6) and 1.669 (6) Å in the zwitterionic parent acid (Nuttall & Hunter, 1996) and 1.655 (3) and 1.673 (3) in ammonium phenyl­arsonate (Yang et al., 2002). The As—O13(H) bonds in (I) and (II) are 1.746 (3) and 1.745 (4) Å, respectively, which can be compared with 1.737 (8) Å in the parent acid and 1.732 (2) Å in ammonium phenyl­arsonate.

The work reported here provides the first two examples of three-dimensional hydrogen-bonded structures in salts of p-arsanilic acid (the historically significant pharmaceutical arsenical, atoxyl), viz. an ammonium salt hydrate and a coordination polymeric sodium complex salt trihydrate.

Related literature top

For related literature, see: Adelani et al. (2012); Allen (2002); Bosch & Rosich (2008); Breen & Schmitt (2008); Burke (1925); Ehrlich & Bertheim (1907); Etter et al. (1990); Flack (1983); Jolliffe (1993); Latham et al. (2011); Lesikar-Parrish, Neilson & Richards (2013); Lloyd et al. (2008); Nuttall & Hunter (1996); O'Neil (2001); Odendal et al. (2010); Shimada (1960, 1961); Smith (2013, 2014a, 2014b); Smith & Wermuth (2010); Steverding (2010); Thomas (1905); Yang et al. (2002).

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) for (I); SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012) for (II). For both compounds, molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-naming scheme for the p-arsonilate anion, the ammonium cation and the water molecule of solvation in (I). Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The three-dimensional hydrogen-bonded framework structure of (I), viewed down the c-axial direction of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-associative H atoms have been omitted. For symmetry codes, see Table 2.
[Figure 3] Fig. 3. The molecular configuration and atom-naming scheme for the complex unit in (II). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x+1/2, y, z-1/2.]
[Figure 4] Fig. 4. The one-dimensional coordination polymeric chains in the structure of (II), extending along c. [Symmetry code: (i) -x+1/2, y, z-1/2.]
[Figure 5] Fig. 5. The hydrogen-bonding extensions in the three-dimensional structure of (II) in the unit cell, viewed down c, showing hydrogen bonds as dashed lines. Non-associative H atoms have been omitted. For symmetry codes, see Table 4.
(I) Ammonium 4-aminophenylarsonate monohydrate top
Crystal data top
NH4+·C6H7AsNO3·H2OF(000) = 512
Mr = 252.10Dx = 1.610 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1760 reflections
a = 11.4287 (18) Åθ = 3.8–28.7°
b = 12.068 (2) ŵ = 3.26 mm1
c = 7.5427 (13) ÅT = 200 K
V = 1040.3 (3) Å3Plate, colourless
Z = 40.35 × 0.35 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1506 independent reflections
Radiation source: Enhance (Mo) X-ray source1385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1414
Tmin = 0.670, Tmax = 0.980l = 95
3581 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0368P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1506 reflectionsΔρmax = 0.33 e Å3
145 parametersΔρmin = 0.55 e Å3
10 restraintsAbsolute structure: Flack (1983), 937 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (17)
Crystal data top
NH4+·C6H7AsNO3·H2OV = 1040.3 (3) Å3
Mr = 252.10Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 11.4287 (18) ŵ = 3.26 mm1
b = 12.068 (2) ÅT = 200 K
c = 7.5427 (13) Å0.35 × 0.35 × 0.08 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1506 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1385 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.980Rint = 0.031
3581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.55 e Å3
1506 reflectionsAbsolute structure: Flack (1983), 937 Friedel pairs
145 parametersAbsolute structure parameter: 0.002 (17)
10 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.37887 (3)0.69813 (3)0.83352 (9)0.0184 (1)
O110.4879 (2)0.6316 (2)0.7310 (4)0.0260 (9)
O120.2461 (2)0.6448 (2)0.7922 (4)0.0299 (9)
O130.4115 (3)0.6822 (3)1.0582 (4)0.0285 (10)
N40.3830 (3)1.2004 (3)0.7348 (6)0.0287 (14)
C10.3801 (3)0.8535 (3)0.7905 (5)0.0192 (13)
C20.4733 (3)0.9058 (4)0.7062 (5)0.0257 (12)
C30.4747 (3)1.0208 (3)0.6881 (6)0.0260 (14)
C40.3824 (3)1.0852 (4)0.7514 (6)0.0210 (11)
C50.2882 (3)1.0317 (3)0.8357 (10)0.0397 (14)
C60.2862 (3)0.9167 (3)0.8519 (9)0.0364 (16)
O1W0.3081 (3)0.3203 (3)1.0573 (5)0.0356 (11)
N10.1296 (3)0.4874 (3)0.9783 (6)0.0267 (12)
H20.536300.862900.660900.0310*
H30.539301.055800.631900.0310*
H50.225401.074400.882000.0480*
H60.220800.881200.904900.0440*
H130.347 (3)0.676 (4)1.136 (6)0.0430*
H410.446 (3)1.223 (4)0.679 (6)0.0340*
H420.319 (3)1.220 (4)0.681 (6)0.0340*
H11W0.374 (3)0.328 (5)1.128 (7)0.0540*
H12W0.344 (5)0.298 (4)0.953 (5)0.0540*
H1A0.168 (4)0.544 (3)0.929 (6)0.0320*
H1B0.081 (3)0.455 (3)0.905 (5)0.0320*
H1C0.083 (4)0.519 (4)1.056 (5)0.0320*
H1D0.182 (3)0.440 (3)1.019 (6)0.0320*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0151 (2)0.0190 (2)0.0212 (2)0.0012 (1)0.0033 (3)0.0012 (3)
O110.0264 (15)0.0247 (15)0.0270 (15)0.0031 (13)0.0003 (12)0.0028 (12)
O120.0246 (13)0.0282 (14)0.037 (2)0.0111 (12)0.0114 (13)0.0069 (14)
O130.0193 (14)0.046 (2)0.0202 (16)0.0035 (15)0.0036 (13)0.0061 (15)
N40.026 (2)0.023 (2)0.037 (3)0.0002 (16)0.0050 (16)0.0062 (16)
C10.0217 (18)0.0179 (19)0.018 (3)0.0023 (15)0.0028 (15)0.0024 (15)
C20.022 (2)0.028 (2)0.027 (2)0.0048 (19)0.0086 (17)0.0001 (19)
C30.019 (2)0.028 (2)0.031 (3)0.0003 (19)0.0076 (18)0.011 (2)
C40.023 (2)0.021 (2)0.0190 (18)0.0007 (18)0.0011 (15)0.0011 (17)
C50.030 (2)0.028 (2)0.061 (3)0.0056 (18)0.023 (3)0.003 (3)
C60.0213 (17)0.026 (2)0.062 (4)0.0003 (17)0.020 (3)0.006 (3)
O1W0.044 (2)0.0333 (18)0.0295 (18)0.0020 (17)0.0048 (16)0.0056 (15)
N10.025 (2)0.027 (2)0.028 (2)0.0065 (18)0.0053 (15)0.0051 (17)
Geometric parameters (Å, º) top
As1—O111.672 (3)N1—H1D0.88 (4)
As1—O121.677 (2)N1—H1A0.89 (4)
As1—O131.746 (3)C1—C61.396 (5)
As1—C11.903 (4)C1—C21.392 (5)
O13—H130.95 (4)C2—C31.395 (6)
O1W—H12W0.93 (4)C3—C41.395 (5)
O1W—H11W0.93 (4)C4—C51.407 (6)
N4—C41.396 (6)C5—C61.393 (5)
N4—H420.87 (4)C2—H20.9500
N4—H410.88 (4)C3—H30.9500
N1—H1C0.88 (4)C5—H50.9500
N1—H1B0.88 (4)C6—H60.9500
O11—As1—O12113.83 (13)C2—C1—C6119.5 (4)
O11—As1—O13103.70 (15)As1—C1—C2122.0 (3)
O11—As1—C1112.88 (14)C1—C2—C3120.3 (4)
O12—As1—O13109.35 (16)C2—C3—C4120.8 (4)
O12—As1—C1110.67 (13)N4—C4—C3121.4 (4)
O13—As1—C1105.81 (17)N4—C4—C5120.1 (4)
As1—O13—H13116 (2)C3—C4—C5118.5 (4)
H11W—O1W—H12W99 (4)C4—C5—C6120.6 (4)
C4—N4—H41111 (3)C1—C6—C5120.2 (4)
C4—N4—H42108 (3)C1—C2—H2120.00
H41—N4—H42113 (4)C3—C2—H2120.00
H1A—N1—H1B113 (4)C2—C3—H3120.00
H1A—N1—H1C104 (4)C4—C3—H3120.00
H1C—N1—H1D117 (4)C4—C5—H5120.00
H1A—N1—H1D108 (4)C6—C5—H5120.00
H1B—N1—H1C103 (4)C1—C6—H6120.00
H1B—N1—H1D111 (3)C5—C6—H6120.00
As1—C1—C6118.4 (3)
O11—As1—C1—C29.6 (4)As1—C1—C6—C5174.9 (5)
O11—As1—C1—C6172.8 (4)C2—C1—C6—C52.8 (8)
O12—As1—C1—C2138.5 (3)C1—C2—C3—C41.0 (6)
O12—As1—C1—C644.0 (4)C2—C3—C4—N4179.7 (4)
O13—As1—C1—C2103.1 (3)C2—C3—C4—C50.6 (7)
O13—As1—C1—C674.4 (4)N4—C4—C5—C6179.5 (5)
As1—C1—C2—C3175.5 (3)C3—C4—C5—C61.4 (8)
C6—C1—C2—C32.0 (6)C4—C5—C6—C12.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O120.89 (4)1.83 (4)2.711 (5)170 (4)
N1—H1B···O11i0.88 (4)1.99 (4)2.857 (5)173 (4)
N1—H1C···O11ii0.88 (4)2.06 (4)2.909 (5)162 (4)
N1—H1D···O1W0.88 (4)2.06 (4)2.930 (5)168 (4)
N4—H41···O13iii0.88 (4)2.19 (4)3.049 (5)167 (4)
N4—H42···O1Wiv0.87 (4)2.11 (4)2.942 (5)161 (4)
O13—H13···O12ii0.95 (4)1.63 (4)2.562 (4)167 (4)
O1W—H11W···O11v0.93 (4)1.83 (4)2.737 (4)167 (5)
O1W—H12W···N4vi0.93 (4)2.07 (4)2.957 (6)159 (5)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1, y+2, z1/2; (iv) x+1/2, y+1, z1/2; (v) x+1, y+1, z+1/2; (vi) x, y1, z.
(II) catena-poly[[(4-aminophenylarsonato-κO)diaquasodium]-µ-aqua] top
Crystal data top
[Na(C6H7AsNO3)(H2O)3]F(000) = 592
Mr = 293.08Dx = 1.770 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1282 reflections
a = 10.4069 (13) Åθ = 3.9–28.4°
b = 13.6410 (17) ŵ = 3.14 mm1
c = 7.7494 (9) ÅT = 200 K
V = 1100.1 (2) Å3Block, colourless
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1637 independent reflections
Radiation source: Enhance (Mo) X-ray source1529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 816
Tmin = 0.816, Tmax = 0.980l = 99
2790 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0311P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1637 reflectionsΔρmax = 0.67 e Å3
163 parametersΔρmin = 0.52 e Å3
10 restraintsAbsolute structure: Flack (1983), 991 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (15)
Crystal data top
[Na(C6H7AsNO3)(H2O)3]V = 1100.1 (2) Å3
Mr = 293.08Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.4069 (13) ŵ = 3.14 mm1
b = 13.6410 (17) ÅT = 200 K
c = 7.7494 (9) Å0.25 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1637 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1529 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.980Rint = 0.037
2790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073Δρmax = 0.67 e Å3
S = 1.00Δρmin = 0.52 e Å3
1637 reflectionsAbsolute structure: Flack (1983), 991 Friedel pairs
163 parametersAbsolute structure parameter: 0.020 (15)
10 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.61030 (4)0.28209 (3)0.83909 (8)0.0143 (1)
Na10.35537 (18)0.40646 (15)0.7093 (3)0.0215 (6)
O1W0.4553 (3)0.5655 (3)0.7299 (5)0.0224 (11)
O2W0.1892 (3)0.4587 (3)0.9084 (5)0.0227 (11)
O3W0.2208 (3)0.2715 (3)0.6391 (5)0.0210 (12)
O110.7486 (3)0.3375 (2)0.8884 (4)0.0201 (11)
O120.4826 (3)0.3308 (3)0.9344 (4)0.0211 (11)
O130.5776 (4)0.2987 (3)0.6202 (5)0.0247 (11)
N40.6110 (4)0.1607 (4)0.9238 (6)0.0230 (17)
C10.6174 (4)0.1445 (4)0.8751 (6)0.0177 (16)
C20.7147 (5)0.0870 (4)0.8007 (6)0.0193 (16)
C30.7128 (4)0.0130 (4)0.8161 (7)0.0193 (16)
C40.6126 (4)0.0592 (4)0.9063 (7)0.0173 (16)
C50.5199 (4)0.0018 (4)0.9866 (6)0.0190 (17)
C60.5207 (4)0.0982 (4)0.9698 (6)0.0187 (16)
H20.782500.117800.739200.0230*
H30.779300.051200.765700.0240*
H50.455100.032301.054100.0230*
H60.455100.136201.022800.0230*
H11W0.389 (4)0.597 (4)0.786 (6)0.0340*
H12W0.481 (5)0.602 (3)0.633 (5)0.0340*
H130.647 (4)0.300 (4)0.546 (6)0.0370*
H21W0.122 (4)0.451 (4)0.830 (6)0.0340*
H22W0.213 (5)0.5246 (18)0.918 (7)0.0340*
H31W0.151 (4)0.286 (4)0.569 (6)0.0320*
H32W0.272 (5)0.224 (3)0.589 (8)0.0320*
H410.642 (4)0.183 (4)0.828 (4)0.0270*
H420.540 (3)0.186 (4)0.962 (7)0.0270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0129 (2)0.0163 (2)0.0138 (2)0.0013 (2)0.0018 (3)0.0010 (3)
Na10.0219 (10)0.0212 (11)0.0215 (10)0.0004 (9)0.0025 (9)0.0008 (10)
O1W0.0197 (19)0.025 (2)0.0225 (19)0.0030 (16)0.0018 (18)0.0004 (18)
O2W0.027 (2)0.0199 (19)0.0212 (18)0.0005 (17)0.0030 (15)0.0009 (17)
O3W0.019 (2)0.022 (2)0.022 (2)0.0005 (16)0.0007 (15)0.0005 (17)
O110.0136 (17)0.0247 (19)0.022 (2)0.0058 (15)0.0053 (14)0.0045 (16)
O120.0182 (19)0.026 (2)0.0190 (19)0.0023 (16)0.0019 (15)0.0000 (17)
O130.020 (2)0.038 (2)0.0160 (19)0.0033 (17)0.0016 (16)0.0088 (18)
N40.024 (3)0.018 (3)0.027 (3)0.0016 (19)0.007 (2)0.003 (2)
C10.016 (2)0.013 (2)0.024 (4)0.0008 (18)0.004 (2)0.003 (2)
C20.014 (2)0.024 (3)0.020 (3)0.003 (2)0.0046 (19)0.001 (2)
C30.019 (2)0.021 (3)0.018 (3)0.0061 (19)0.002 (2)0.002 (3)
C40.021 (3)0.016 (3)0.015 (2)0.003 (2)0.0034 (19)0.002 (2)
C50.014 (3)0.023 (3)0.020 (3)0.002 (2)0.004 (2)0.002 (3)
C60.015 (3)0.023 (3)0.018 (2)0.007 (2)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Na1—O1W2.411 (4)O13—H130.92 (4)
Na1—O2W2.425 (4)N4—C41.391 (8)
Na1—O3W2.376 (4)N4—H420.87 (4)
Na1—O122.421 (4)N4—H410.87 (4)
Na1—O2Wi2.482 (5)C1—C61.397 (6)
As1—O111.670 (3)C1—C21.405 (7)
As1—O121.659 (3)C2—C31.370 (8)
As1—O131.745 (4)C3—C41.405 (7)
As1—C11.899 (5)C4—C51.390 (7)
O1W—H11W0.92 (5)C5—C61.370 (8)
O1W—H12W0.94 (4)C2—H20.9500
O2W—H21W0.93 (4)C3—H30.9500
O2W—H22W0.94 (3)C5—H50.9500
O3W—H31W0.93 (4)C6—H60.9500
O3W—H32W0.92 (5)
O11—As1—O12114.03 (16)Na1—O3W—H32W107 (3)
O11—As1—O13109.38 (17)H31W—O3W—H32W111 (5)
O11—As1—C1112.35 (16)Na1—O3W—H31W116 (3)
O12—As1—O13102.98 (18)As1—O13—H13117 (3)
O12—As1—C1111.20 (19)C4—N4—H42116 (4)
O13—As1—C1106.2 (2)H41—N4—H42118 (5)
O1W—Na1—O2W90.06 (14)C4—N4—H41105 (4)
O1W—Na1—O3W165.12 (16)As1—C1—C2121.3 (4)
O1W—Na1—O1295.74 (15)As1—C1—C6119.8 (4)
O1W—Na1—O2Wi83.37 (14)C2—C1—C6118.9 (5)
O2W—Na1—O3W87.31 (14)C1—C2—C3120.7 (5)
O2W—Na1—O1293.26 (14)C2—C3—C4120.1 (5)
O2W—Na1—O2Wi112.34 (14)N4—C4—C3120.3 (4)
O3W—Na1—O1299.03 (15)N4—C4—C5120.6 (4)
O2Wi—Na1—O3W84.10 (15)C3—C4—C5119.0 (5)
O2Wi—Na1—O12154.36 (14)C4—C5—C6120.9 (4)
Na1—O2W—Na1ii130.30 (17)C1—C6—C5120.3 (4)
As1—O12—Na1106.74 (16)C1—C2—H2120.00
Na1—O1W—H11W97 (3)C3—C2—H2120.00
Na1—O1W—H12W123 (3)C2—C3—H3120.00
H11W—O1W—H12W110 (4)C4—C3—H3120.00
H21W—O2W—H22W111 (5)C4—C5—H5120.00
Na1ii—O2W—H21W116 (3)C6—C5—H5120.00
Na1ii—O2W—H22W105 (3)C1—C6—H6120.00
Na1—O2W—H21W95 (3)C5—C6—H6120.00
Na1—O2W—H22W98 (3)
O11—As1—O12—Na1111.88 (17)O2Wi—Na1—O12—As14.3 (5)
O13—As1—O12—Na16.5 (2)O1W—Na1—O2Wi—Na1i155.4 (2)
C1—As1—O12—Na1119.9 (2)O2W—Na1—O2Wi—Na1i68.1 (3)
O11—As1—C1—C253.3 (4)O3W—Na1—O2Wi—Na1i16.6 (2)
O11—As1—C1—C6130.1 (4)O12—Na1—O2Wi—Na1i115.1 (3)
O12—As1—C1—C2177.5 (4)As1—C1—C2—C3174.7 (4)
O12—As1—C1—C60.9 (4)C6—C1—C2—C32.0 (7)
O13—As1—C1—C266.2 (4)As1—C1—C6—C5175.5 (3)
O13—As1—C1—C6110.4 (4)C2—C1—C6—C51.2 (7)
O1W—Na1—O2W—Na1ii111.2 (2)C1—C2—C3—C40.3 (7)
O3W—Na1—O2W—Na1ii83.4 (2)C2—C3—C4—N4179.3 (5)
O12—Na1—O2W—Na1ii15.5 (2)C2—C3—C4—C53.3 (7)
O2Wi—Na1—O2W—Na1ii165.93 (19)N4—C4—C5—C6179.9 (4)
O1W—Na1—O12—As190.9 (2)C3—C4—C5—C64.1 (7)
O2W—Na1—O12—As1178.68 (19)C4—C5—C6—C11.8 (7)
O3W—Na1—O12—As190.9 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O3Wiii0.87 (4)2.07 (4)2.908 (6)164 (5)
N4—H42···O13iv0.87 (4)2.32 (5)3.117 (6)154 (4)
O13—H13···O11v0.92 (4)1.71 (5)2.604 (5)161 (5)
O1W—H11W···O11vi0.92 (5)1.89 (5)2.808 (5)177 (5)
O1W—H12W···O12vii0.94 (4)1.83 (4)2.768 (5)175 (5)
O2W—H21W···O1Wvi0.93 (4)1.91 (4)2.819 (5)163 (4)
O2W—H22W···O11vi0.94 (3)1.93 (3)2.852 (5)168 (5)
O3W—H31W···O12i0.93 (4)1.84 (5)2.766 (5)173 (5)
O3W—H32W···N4viii0.92 (5)1.97 (6)2.852 (6)160 (5)
Symmetry codes: (i) x+1/2, y, z1/2; (iii) x+1/2, y, z; (iv) x+1, y, z+1/2; (v) x+3/2, y, z1/2; (vi) x1/2, y+1, z; (vii) x+1, y+1, z1/2; (viii) x+1, y, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaNH4+·C6H7AsNO3·H2O[Na(C6H7AsNO3)(H2O)3]
Mr252.10293.08
Crystal system, space groupOrthorhombic, Pca21Orthorhombic, Pca21
Temperature (K)200200
a, b, c (Å)11.4287 (18), 12.068 (2), 7.5427 (13)10.4069 (13), 13.6410 (17), 7.7494 (9)
V3)1040.3 (3)1100.1 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)3.263.14
Crystal size (mm)0.35 × 0.35 × 0.080.25 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.670, 0.9800.816, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3581, 1506, 1385 2790, 1637, 1529
Rint0.0310.037
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.04 0.033, 0.073, 1.00
No. of reflections15061637
No. of parameters145163
No. of restraints1010
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.550.67, 0.52
Absolute structureFlack (1983), 937 Friedel pairsFlack (1983), 991 Friedel pairs
Absolute structure parameter0.002 (17)0.020 (15)

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O120.89 (4)1.83 (4)2.711 (5)170 (4)
N1—H1B···O11i0.88 (4)1.99 (4)2.857 (5)173 (4)
N1—H1C···O11ii0.88 (4)2.06 (4)2.909 (5)162 (4)
N1—H1D···O1W0.88 (4)2.06 (4)2.930 (5)168 (4)
N4—H41···O13iii0.88 (4)2.19 (4)3.049 (5)167 (4)
N4—H42···O1Wiv0.87 (4)2.11 (4)2.942 (5)161 (4)
O13—H13···O12ii0.95 (4)1.63 (4)2.562 (4)167 (4)
O1W—H11W···O11v0.93 (4)1.83 (4)2.737 (4)167 (5)
O1W—H12W···N4vi0.93 (4)2.07 (4)2.957 (6)159 (5)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z+1/2; (iii) x+1, y+2, z1/2; (iv) x+1/2, y+1, z1/2; (v) x+1, y+1, z+1/2; (vi) x, y1, z.
Selected bond lengths (Å) for (II) top
Na1—O1W2.411 (4)Na1—O122.421 (4)
Na1—O2W2.425 (4)Na1—O2Wi2.482 (5)
Na1—O3W2.376 (4)
Symmetry code: (i) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O3Wii0.87 (4)2.07 (4)2.908 (6)164 (5)
N4—H42···O13iii0.87 (4)2.32 (5)3.117 (6)154 (4)
O13—H13···O11iv0.92 (4)1.71 (5)2.604 (5)161 (5)
O1W—H11W···O11v0.92 (5)1.89 (5)2.808 (5)177 (5)
O1W—H12W···O12vi0.94 (4)1.83 (4)2.768 (5)175 (5)
O2W—H21W···O1Wv0.93 (4)1.91 (4)2.819 (5)163 (4)
O2W—H22W···O11v0.94 (3)1.93 (3)2.852 (5)168 (5)
O3W—H31W···O12i0.93 (4)1.84 (5)2.766 (5)173 (5)
O3W—H32W···N4vii0.92 (5)1.97 (6)2.852 (6)160 (5)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z; (iii) x+1, y, z+1/2; (iv) x+3/2, y, z1/2; (v) x1/2, y+1, z; (vi) x+1, y+1, z1/2; (vii) x+1, y, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds