Buy article online - an online subscription or single-article purchase is required to access this article.
Copper(II)–Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric Cu
II complex, [Cu(C
10H
11N
2O
4)
2], has been synthesized by the reaction of 3-{[(3-hydroxypropyl)imino]methyl}-4-nitrophenol (H
2L) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single-crystal X-ray diffraction analysis and a photoluminescence study. The Cu
II atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual
trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O—H
O hydrogen bonds link the molecules to form a one-dimensional chain structure and π–π contacts also connect the molecules to form a three-dimensional structure. The solid-state photoluminescence properties of the complex and free H
2L have been investigated at room temperature in the visible region. When the complex and H
2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H
2L displays a blue emission at 480 nm.
Supporting information
CCDC reference: 1533191
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Bis(3-{[(3-hydroxypropyl)imino]methyl}-4-nitrophenolato-
κ3O,
N,
O')copper(II)
top
Crystal data top
[Cu(C10H11N2O4)2] | F(000) = 526 |
Mr = 509.95 | Dx = 1.667 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.5788 (11) Å | Cell parameters from 812 reflections |
b = 6.2806 (5) Å | θ = 3.7–22.9° |
c = 15.8478 (19) Å | µ = 1.14 mm−1 |
β = 105.272 (12)° | T = 292 K |
V = 1015.76 (19) Å3 | Plate, green |
Z = 2 | 0.25 × 0.15 × 0.06 mm |
Data collection top
Rigaku OD Xcalibur Eos diffractometer | 1303 reflections with I > 2σ(I) |
Detector resolution: 8.0667 pixels mm-1 | Rint = 0.046 |
ω scans | θmax = 25.7°, θmin = 3.5° |
Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2015) based on expressions
derived
by Clark & Reid (1995)] | h = −12→9 |
Tmin = 0.823, Tmax = 0.947 | k = −7→5 |
3722 measured reflections | l = −18→19 |
1908 independent reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0404P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1908 reflections | Δρmax = 0.46 e Å−3 |
152 parameters | Δρmin = −0.44 e Å−3 |
0 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.000000 | 0.500000 | 0.500000 | 0.0286 (3) | |
O1 | 0.0989 (3) | 0.4425 (5) | 0.6702 (2) | 0.0460 (9) | |
H1 | 0.176143 | 0.416414 | 0.674076 | 0.069* | |
O2 | 0.1378 (3) | 0.3461 (4) | 0.4671 (2) | 0.0330 (8) | |
O3 | 0.5874 (3) | 0.8420 (6) | 0.3669 (2) | 0.0552 (11) | |
O4 | 0.6111 (3) | 0.5323 (5) | 0.3162 (2) | 0.0539 (10) | |
N1 | 0.1206 (3) | 0.7498 (5) | 0.5363 (2) | 0.0248 (8) | |
N2 | 0.5543 (4) | 0.6560 (6) | 0.3538 (3) | 0.0365 (10) | |
C1 | 0.0895 (5) | 0.6305 (7) | 0.7191 (3) | 0.0414 (13) | |
H1A | 0.127875 | 0.601452 | 0.780692 | 0.050* | |
H1B | −0.002340 | 0.663412 | 0.711707 | 0.050* | |
C2 | 0.1560 (4) | 0.8230 (7) | 0.6936 (3) | 0.0359 (12) | |
H2A | 0.247528 | 0.788726 | 0.700176 | 0.043* | |
H2B | 0.152832 | 0.937389 | 0.734064 | 0.043* | |
C3 | 0.0980 (4) | 0.9032 (6) | 0.6012 (3) | 0.0312 (11) | |
H3A | 0.004588 | 0.925461 | 0.591842 | 0.037* | |
H3B | 0.137556 | 1.038768 | 0.593663 | 0.037* | |
C4 | 0.2233 (4) | 0.7797 (7) | 0.5107 (3) | 0.0268 (10) | |
H4 | 0.268637 | 0.905676 | 0.528558 | 0.032* | |
C5 | 0.2773 (4) | 0.6396 (6) | 0.4570 (3) | 0.0245 (10) | |
C6 | 0.3836 (4) | 0.7086 (7) | 0.4286 (3) | 0.0286 (11) | |
H6 | 0.414578 | 0.846620 | 0.441353 | 0.034* | |
C7 | 0.4442 (4) | 0.5766 (7) | 0.3818 (3) | 0.0295 (11) | |
C8 | 0.4019 (4) | 0.3672 (7) | 0.3639 (3) | 0.0328 (11) | |
H8 | 0.443455 | 0.277462 | 0.332954 | 0.039* | |
C9 | 0.2984 (4) | 0.2962 (7) | 0.3925 (3) | 0.0309 (11) | |
H9 | 0.269857 | 0.156892 | 0.379817 | 0.037* | |
C10 | 0.2332 (4) | 0.4250 (6) | 0.4404 (3) | 0.0256 (10) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0254 (4) | 0.0264 (4) | 0.0368 (5) | −0.0030 (4) | 0.0132 (4) | −0.0020 (4) |
O1 | 0.047 (2) | 0.0414 (19) | 0.052 (2) | 0.0018 (18) | 0.016 (2) | 0.0030 (17) |
O2 | 0.0263 (17) | 0.0268 (16) | 0.049 (2) | −0.0049 (15) | 0.0164 (16) | −0.0047 (15) |
O3 | 0.049 (2) | 0.056 (2) | 0.070 (3) | −0.020 (2) | 0.032 (2) | −0.001 (2) |
O4 | 0.040 (2) | 0.065 (2) | 0.067 (3) | 0.004 (2) | 0.032 (2) | 0.002 (2) |
N1 | 0.0221 (19) | 0.0233 (18) | 0.031 (2) | 0.0027 (18) | 0.0097 (17) | −0.0012 (17) |
N2 | 0.026 (2) | 0.048 (3) | 0.038 (2) | 0.002 (2) | 0.013 (2) | 0.007 (2) |
C1 | 0.045 (3) | 0.047 (3) | 0.035 (3) | 0.006 (3) | 0.015 (3) | 0.002 (2) |
C2 | 0.034 (3) | 0.039 (3) | 0.036 (3) | 0.003 (2) | 0.010 (2) | −0.018 (2) |
C3 | 0.032 (3) | 0.025 (2) | 0.041 (3) | −0.006 (2) | 0.017 (2) | −0.011 (2) |
C4 | 0.026 (2) | 0.025 (2) | 0.028 (3) | −0.006 (2) | 0.004 (2) | 0.000 (2) |
C5 | 0.023 (2) | 0.026 (2) | 0.024 (2) | 0.002 (2) | 0.007 (2) | −0.003 (2) |
C6 | 0.026 (2) | 0.028 (2) | 0.031 (3) | −0.002 (2) | 0.005 (2) | 0.003 (2) |
C7 | 0.020 (2) | 0.039 (3) | 0.030 (3) | 0.000 (2) | 0.008 (2) | 0.004 (2) |
C8 | 0.029 (3) | 0.040 (3) | 0.031 (3) | 0.009 (2) | 0.010 (2) | −0.002 (2) |
C9 | 0.031 (3) | 0.024 (2) | 0.037 (3) | −0.003 (2) | 0.009 (2) | −0.004 (2) |
C10 | 0.018 (2) | 0.028 (2) | 0.027 (2) | 0.002 (2) | 0.000 (2) | 0.002 (2) |
Geometric parameters (Å, º) top
Cu1—O1i | 2.648 (4) | C2—H2A | 0.9700 |
Cu1—O1 | 2.648 (4) | C2—H2B | 0.9700 |
Cu1—O2 | 1.931 (3) | C2—C3 | 1.516 (6) |
Cu1—O2i | 1.931 (3) | C3—H3A | 0.9700 |
Cu1—N1 | 2.008 (3) | C3—H3B | 0.9700 |
Cu1—N1i | 2.008 (3) | C4—H4 | 0.9300 |
O1—H1 | 0.8200 | C4—C5 | 1.443 (5) |
O1—C1 | 1.431 (5) | C5—C6 | 1.386 (6) |
O2—C10 | 1.292 (5) | C5—C10 | 1.428 (6) |
O3—N2 | 1.221 (4) | C6—H6 | 0.9300 |
O4—N2 | 1.228 (4) | C6—C7 | 1.378 (5) |
N1—C3 | 1.474 (5) | C7—C8 | 1.394 (6) |
N1—C4 | 1.269 (5) | C8—H8 | 0.9300 |
N2—C7 | 1.441 (5) | C8—C9 | 1.365 (6) |
C1—H1A | 0.9700 | C9—H9 | 0.9300 |
C1—H1B | 0.9700 | C9—C10 | 1.409 (5) |
C1—C2 | 1.507 (6) | | |
| | | |
O1—Cu1—O1i | 180.0 | C1—C2—H2B | 108.5 |
O2i—Cu1—O1i | 94.75 (11) | C1—C2—C3 | 115.3 (4) |
O2—Cu1—O1 | 94.75 (11) | H2A—C2—H2B | 107.5 |
O2—Cu1—O1i | 85.25 (11) | C3—C2—H2A | 108.5 |
O2i—Cu1—O1 | 85.25 (11) | C3—C2—H2B | 108.5 |
O2—Cu1—O2i | 180.00 (9) | N1—C3—C2 | 111.0 (3) |
O2—Cu1—N1i | 89.97 (12) | N1—C3—H3A | 109.4 |
O2i—Cu1—N1i | 90.03 (12) | N1—C3—H3B | 109.4 |
O2i—Cu1—N1 | 89.97 (12) | C2—C3—H3A | 109.4 |
O2—Cu1—N1 | 90.03 (12) | C2—C3—H3B | 109.4 |
N1i—Cu1—O1i | 76.37 (12) | H3A—C3—H3B | 108.0 |
N1—Cu1—O1 | 76.37 (12) | N1—C4—H4 | 116.4 |
N1—Cu1—O1i | 103.63 (12) | N1—C4—C5 | 127.1 (4) |
N1i—Cu1—O1 | 103.63 (12) | C5—C4—H4 | 116.4 |
N1i—Cu1—N1 | 180.0 | C6—C5—C4 | 118.8 (4) |
Cu1—O1—H1 | 102.9 | C6—C5—C10 | 119.3 (4) |
C1—O1—Cu1 | 112.0 (3) | C10—C5—C4 | 121.6 (4) |
C1—O1—H1 | 109.5 | C5—C6—H6 | 119.4 |
C10—O2—Cu1 | 127.4 (3) | C7—C6—C5 | 121.2 (4) |
C3—N1—Cu1 | 120.2 (3) | C7—C6—H6 | 119.4 |
C4—N1—Cu1 | 123.8 (3) | C6—C7—N2 | 119.1 (4) |
C4—N1—C3 | 115.8 (4) | C6—C7—C8 | 120.5 (4) |
O3—N2—O4 | 122.2 (4) | C8—C7—N2 | 120.4 (4) |
O3—N2—C7 | 119.8 (4) | C7—C8—H8 | 120.6 |
O4—N2—C7 | 118.0 (4) | C9—C8—C7 | 118.9 (4) |
O1—C1—H1A | 108.7 | C9—C8—H8 | 120.6 |
O1—C1—H1B | 108.7 | C8—C9—H9 | 118.6 |
O1—C1—C2 | 114.4 (4) | C8—C9—C10 | 122.7 (4) |
H1A—C1—H1B | 107.6 | C10—C9—H9 | 118.6 |
C2—C1—H1A | 108.7 | O2—C10—C5 | 123.2 (4) |
C2—C1—H1B | 108.7 | O2—C10—C9 | 119.5 (4) |
C1—C2—H2A | 108.5 | C9—C10—C5 | 117.3 (4) |
| | | |
Cu1—O1—C1—C2 | −57.7 (5) | C3—N1—C4—C5 | 171.3 (4) |
Cu1—O2—C10—C5 | 21.1 (6) | C4—N1—C3—C2 | −92.6 (4) |
Cu1—O2—C10—C9 | −159.0 (3) | C4—C5—C6—C7 | 175.9 (4) |
Cu1—N1—C3—C2 | 83.0 (4) | C4—C5—C10—O2 | 4.4 (6) |
Cu1—N1—C4—C5 | −4.1 (6) | C4—C5—C10—C9 | −175.5 (4) |
O1—C1—C2—C3 | 64.3 (5) | C5—C6—C7—N2 | 180.0 (4) |
O3—N2—C7—C6 | −4.5 (6) | C5—C6—C7—C8 | −1.7 (7) |
O3—N2—C7—C8 | 177.3 (4) | C6—C5—C10—O2 | 177.7 (4) |
O4—N2—C7—C6 | 176.2 (4) | C6—C5—C10—C9 | −2.3 (6) |
O4—N2—C7—C8 | −2.0 (6) | C6—C7—C8—C9 | 0.8 (7) |
N1—C4—C5—C6 | 173.8 (4) | C7—C8—C9—C10 | −0.7 (7) |
N1—C4—C5—C10 | −12.9 (7) | C8—C9—C10—O2 | −178.5 (4) |
N2—C7—C8—C9 | 179.1 (4) | C8—C9—C10—C5 | 1.4 (6) |
C1—C2—C3—N1 | −68.0 (5) | C10—C5—C6—C7 | 2.5 (6) |
Symmetry code: (i) −x, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4ii | 0.82 | 2.24 | 3.023 (4) | 160 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
The IR spectra of complex (1) and H2L1 (cm-1) topComplex | ν(O—H) | ν(C—H) | ν(C═N) | ν(C═C) | ν(C—O) | ν(C—NO2) |
H2L1 | 3274, 3510 | 2922-2841 | 1660 | 1603 | 1322, 1285 | 1523, 1371 |
(1) | - , 3549 | 2955-2877 | 1626 | 1594 | 1300, 1241 | 1481, 1349 |
Hydrogen-bond and short-contact geometry (Å, °) for complex (1) topCgI···CgJ | CgI···CgJ | CgI_Perp | CgJ_Perp | |
Cg1···Cg1ii | 3.801 (3) | 3.4584 (18) | 3.4584 (19) | 1-x,1-y,1-z |
CgI is the plane number I,
CgI···CgJ is the distance between ring centroids,
CgI_Perp is the perpendicular distance of CgI on ring J,
CgJ_Perp is the perpendicular distance of CgJ on ring I,
Cg1 is the centroic of the C5–C10 ring. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.