Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Copper(II)–Schiff base complexes have attracted extensive inter­est due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric CuII complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3-{[(3-hy­droxy­prop­yl)imino]­meth­yl}-4-nitro­phenol (H2L) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single-crystal X-ray diffraction analysis and a photoluminescence study. The CuII atom is located on a centre of inversion and is coordinated by two imine N atoms, two phen­oxy O atoms in a mutual trans disposition and two hy­droxy O atoms in axial positions, forming an elongated octa­hedral geometry. In the crystal, inter­molecular O—H...O hydrogen bonds link the mol­ecules to form a one-dimensional chain structure and π–π contacts also connect the mol­ecules to form a three-dimensional structure. The solid-state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617005976/lf3053sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617005976/lf3053Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229617005976/lf3053Isup3.cdx
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617005976/lf3053sup4.pdf
IR spectra of complex (1) and H2L

CCDC reference: 1533191

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(3-{[(3-hydroxypropyl)imino]methyl}-4-nitrophenolato-κ3O,N,O')copper(II) top
Crystal data top
[Cu(C10H11N2O4)2]F(000) = 526
Mr = 509.95Dx = 1.667 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5788 (11) ÅCell parameters from 812 reflections
b = 6.2806 (5) Åθ = 3.7–22.9°
c = 15.8478 (19) ŵ = 1.14 mm1
β = 105.272 (12)°T = 292 K
V = 1015.76 (19) Å3Plate, green
Z = 20.25 × 0.15 × 0.06 mm
Data collection top
Rigaku OD Xcalibur Eos
diffractometer
1303 reflections with I > 2σ(I)
Detector resolution: 8.0667 pixels mm-1Rint = 0.046
ω scansθmax = 25.7°, θmin = 3.5°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015) based on expressions derived by Clark & Reid (1995)]
h = 129
Tmin = 0.823, Tmax = 0.947k = 75
3722 measured reflectionsl = 1819
1908 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0404P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1908 reflectionsΔρmax = 0.46 e Å3
152 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0000000.5000000.5000000.0286 (3)
O10.0989 (3)0.4425 (5)0.6702 (2)0.0460 (9)
H10.1761430.4164140.6740760.069*
O20.1378 (3)0.3461 (4)0.4671 (2)0.0330 (8)
O30.5874 (3)0.8420 (6)0.3669 (2)0.0552 (11)
O40.6111 (3)0.5323 (5)0.3162 (2)0.0539 (10)
N10.1206 (3)0.7498 (5)0.5363 (2)0.0248 (8)
N20.5543 (4)0.6560 (6)0.3538 (3)0.0365 (10)
C10.0895 (5)0.6305 (7)0.7191 (3)0.0414 (13)
H1A0.1278750.6014520.7806920.050*
H1B0.0023400.6634120.7117070.050*
C20.1560 (4)0.8230 (7)0.6936 (3)0.0359 (12)
H2A0.2475280.7887260.7001760.043*
H2B0.1528320.9373890.7340640.043*
C30.0980 (4)0.9032 (6)0.6012 (3)0.0312 (11)
H3A0.0045880.9254610.5918420.037*
H3B0.1375561.0387680.5936630.037*
C40.2233 (4)0.7797 (7)0.5107 (3)0.0268 (10)
H40.2686370.9056760.5285580.032*
C50.2773 (4)0.6396 (6)0.4570 (3)0.0245 (10)
C60.3836 (4)0.7086 (7)0.4286 (3)0.0286 (11)
H60.4145780.8466200.4413530.034*
C70.4442 (4)0.5766 (7)0.3818 (3)0.0295 (11)
C80.4019 (4)0.3672 (7)0.3639 (3)0.0328 (11)
H80.4434550.2774620.3329540.039*
C90.2984 (4)0.2962 (7)0.3925 (3)0.0309 (11)
H90.2698570.1568920.3798170.037*
C100.2332 (4)0.4250 (6)0.4404 (3)0.0256 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0254 (4)0.0264 (4)0.0368 (5)0.0030 (4)0.0132 (4)0.0020 (4)
O10.047 (2)0.0414 (19)0.052 (2)0.0018 (18)0.016 (2)0.0030 (17)
O20.0263 (17)0.0268 (16)0.049 (2)0.0049 (15)0.0164 (16)0.0047 (15)
O30.049 (2)0.056 (2)0.070 (3)0.020 (2)0.032 (2)0.001 (2)
O40.040 (2)0.065 (2)0.067 (3)0.004 (2)0.032 (2)0.002 (2)
N10.0221 (19)0.0233 (18)0.031 (2)0.0027 (18)0.0097 (17)0.0012 (17)
N20.026 (2)0.048 (3)0.038 (2)0.002 (2)0.013 (2)0.007 (2)
C10.045 (3)0.047 (3)0.035 (3)0.006 (3)0.015 (3)0.002 (2)
C20.034 (3)0.039 (3)0.036 (3)0.003 (2)0.010 (2)0.018 (2)
C30.032 (3)0.025 (2)0.041 (3)0.006 (2)0.017 (2)0.011 (2)
C40.026 (2)0.025 (2)0.028 (3)0.006 (2)0.004 (2)0.000 (2)
C50.023 (2)0.026 (2)0.024 (2)0.002 (2)0.007 (2)0.003 (2)
C60.026 (2)0.028 (2)0.031 (3)0.002 (2)0.005 (2)0.003 (2)
C70.020 (2)0.039 (3)0.030 (3)0.000 (2)0.008 (2)0.004 (2)
C80.029 (3)0.040 (3)0.031 (3)0.009 (2)0.010 (2)0.002 (2)
C90.031 (3)0.024 (2)0.037 (3)0.003 (2)0.009 (2)0.004 (2)
C100.018 (2)0.028 (2)0.027 (2)0.002 (2)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—O1i2.648 (4)C2—H2A0.9700
Cu1—O12.648 (4)C2—H2B0.9700
Cu1—O21.931 (3)C2—C31.516 (6)
Cu1—O2i1.931 (3)C3—H3A0.9700
Cu1—N12.008 (3)C3—H3B0.9700
Cu1—N1i2.008 (3)C4—H40.9300
O1—H10.8200C4—C51.443 (5)
O1—C11.431 (5)C5—C61.386 (6)
O2—C101.292 (5)C5—C101.428 (6)
O3—N21.221 (4)C6—H60.9300
O4—N21.228 (4)C6—C71.378 (5)
N1—C31.474 (5)C7—C81.394 (6)
N1—C41.269 (5)C8—H80.9300
N2—C71.441 (5)C8—C91.365 (6)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C9—C101.409 (5)
C1—C21.507 (6)
O1—Cu1—O1i180.0C1—C2—H2B108.5
O2i—Cu1—O1i94.75 (11)C1—C2—C3115.3 (4)
O2—Cu1—O194.75 (11)H2A—C2—H2B107.5
O2—Cu1—O1i85.25 (11)C3—C2—H2A108.5
O2i—Cu1—O185.25 (11)C3—C2—H2B108.5
O2—Cu1—O2i180.00 (9)N1—C3—C2111.0 (3)
O2—Cu1—N1i89.97 (12)N1—C3—H3A109.4
O2i—Cu1—N1i90.03 (12)N1—C3—H3B109.4
O2i—Cu1—N189.97 (12)C2—C3—H3A109.4
O2—Cu1—N190.03 (12)C2—C3—H3B109.4
N1i—Cu1—O1i76.37 (12)H3A—C3—H3B108.0
N1—Cu1—O176.37 (12)N1—C4—H4116.4
N1—Cu1—O1i103.63 (12)N1—C4—C5127.1 (4)
N1i—Cu1—O1103.63 (12)C5—C4—H4116.4
N1i—Cu1—N1180.0C6—C5—C4118.8 (4)
Cu1—O1—H1102.9C6—C5—C10119.3 (4)
C1—O1—Cu1112.0 (3)C10—C5—C4121.6 (4)
C1—O1—H1109.5C5—C6—H6119.4
C10—O2—Cu1127.4 (3)C7—C6—C5121.2 (4)
C3—N1—Cu1120.2 (3)C7—C6—H6119.4
C4—N1—Cu1123.8 (3)C6—C7—N2119.1 (4)
C4—N1—C3115.8 (4)C6—C7—C8120.5 (4)
O3—N2—O4122.2 (4)C8—C7—N2120.4 (4)
O3—N2—C7119.8 (4)C7—C8—H8120.6
O4—N2—C7118.0 (4)C9—C8—C7118.9 (4)
O1—C1—H1A108.7C9—C8—H8120.6
O1—C1—H1B108.7C8—C9—H9118.6
O1—C1—C2114.4 (4)C8—C9—C10122.7 (4)
H1A—C1—H1B107.6C10—C9—H9118.6
C2—C1—H1A108.7O2—C10—C5123.2 (4)
C2—C1—H1B108.7O2—C10—C9119.5 (4)
C1—C2—H2A108.5C9—C10—C5117.3 (4)
Cu1—O1—C1—C257.7 (5)C3—N1—C4—C5171.3 (4)
Cu1—O2—C10—C521.1 (6)C4—N1—C3—C292.6 (4)
Cu1—O2—C10—C9159.0 (3)C4—C5—C6—C7175.9 (4)
Cu1—N1—C3—C283.0 (4)C4—C5—C10—O24.4 (6)
Cu1—N1—C4—C54.1 (6)C4—C5—C10—C9175.5 (4)
O1—C1—C2—C364.3 (5)C5—C6—C7—N2180.0 (4)
O3—N2—C7—C64.5 (6)C5—C6—C7—C81.7 (7)
O3—N2—C7—C8177.3 (4)C6—C5—C10—O2177.7 (4)
O4—N2—C7—C6176.2 (4)C6—C5—C10—C92.3 (6)
O4—N2—C7—C82.0 (6)C6—C7—C8—C90.8 (7)
N1—C4—C5—C6173.8 (4)C7—C8—C9—C100.7 (7)
N1—C4—C5—C1012.9 (7)C8—C9—C10—O2178.5 (4)
N2—C7—C8—C9179.1 (4)C8—C9—C10—C51.4 (6)
C1—C2—C3—N168.0 (5)C10—C5—C6—C72.5 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4ii0.822.243.023 (4)160
Symmetry code: (ii) x+1, y+1, z+1.
The IR spectra of complex (1) and H2L1 (cm-1) top
Complexν(O—H)ν(C—H)ν(CN)ν(CC)ν(C—O)ν(C—NO2)
H2L13274, 35102922-2841166016031322, 12851523, 1371
(1)- , 35492955-2877162615941300, 12411481, 1349
Hydrogen-bond and short-contact geometry (Å, °) for complex (1) top
CgI···CgJCgI···CgJCgI_PerpCgJ_Perp
Cg1···Cg1ii3.801 (3)3.4584 (18)3.4584 (19)1-x,1-y,1-z
CgI is the plane number I, CgI···CgJ is the distance between ring centroids, CgI_Perp is the perpendicular distance of CgI on ring J, CgJ_Perp is the perpendicular distance of CgJ on ring I, Cg1 is the centroic of the C5–C10 ring.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds