Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two new isodaucane-type sesquiterpenoids, namely (1R,4S,5S,6R,7S,10R)-isodauc-6,7,10-triol, C15H28O3, (1), and (1R,4S,5S,6S,7S,10R)-isodauc-6,7,10-triol, (2), and a new eudesmane-type sesquiterpenoid, 1β,4β,5α-tri­hydroxy­eudesmane, (3), were obtained from the rhizomes of homalomena occulta with the aid of column chromatography. Their structures were elucidated based on extensive spectroscopic analyses, including 1D NMR, 2D NMR and HRESIMS. The structure of (1) was confirmed by single-crystal X-ray diffraction and the absolute configuration was assigned with respect to that of the precursor. The single-crystal structure reveals that adjacent mol­ecules of (1) embrace through two groups of inter­molecular O—H...O hydrogen bonds to generate a two-dimensional sheet with a 63-net topology. The three compounds were evaluated for their activity against lipopolysaccharide-induced production of nitro­gen oxide (NO) in RAW 264.7 cells, and (1) showed an inhibitory effect on NO production, with IC50 values of 5.7±0.22 µM.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013815/lf3081sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013815/lf3081Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618013815/lf3081sup3.pdf
NMR spectra

CCDC reference: 1870837

Computing details top

Data collection: FRAMBO (Bruker, 2004); cell refinement: FRAMBO (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1R,4S,5S,6R,7S,10R)-Isodauc-6,7,10-triol top
Crystal data top
C15H28O3Dx = 1.164 Mg m3
Mr = 256.37Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 1647 reflections
a = 6.4636 (6) Åθ = 4.2–71.9°
b = 12.9225 (12) ŵ = 0.62 mm1
c = 17.516 (2) ÅT = 293 K
V = 1463.1 (3) Å3Block, colourless
Z = 40.40 × 0.14 × 0.11 mm
F(000) = 568
Data collection top
Bruker Xcalibur Eos Gemini
diffractometer
1969 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
CCD plate scansθmax = 66.1°, θmin = 4.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 74
Tmin = 0.789, Tmax = 0.935k = 1514
8351 measured reflectionsl = 2019
2554 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1932P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.12 e Å3
2554 reflectionsΔρmin = 0.16 e Å3
170 parametersAbsolute structure: Flack x determined using 642 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7838 (5)0.1931 (3)0.3122 (2)0.0393 (9)
C20.5989 (6)0.1540 (3)0.3597 (2)0.0466 (10)
H2A0.48560.13340.32680.056*
H2B0.63900.09520.39090.056*
C30.5367 (6)0.2444 (3)0.4094 (2)0.0486 (10)
H3A0.63170.25310.45170.058*
H3B0.39760.23550.42910.058*
C40.5483 (6)0.3369 (3)0.3540 (2)0.0415 (9)
H40.41650.33850.32630.050*
C50.7177 (5)0.3089 (3)0.2946 (2)0.0375 (8)
H50.83750.35390.30320.045*
C60.6398 (6)0.3258 (3)0.2130 (2)0.0414 (9)
H60.54390.26950.20060.050*
C70.8138 (6)0.3275 (3)0.1501 (2)0.0452 (9)
C81.0105 (6)0.2697 (3)0.1724 (3)0.0502 (10)
H8A1.06760.30280.21740.060*
H8B1.11020.27830.13150.060*
C90.9903 (6)0.1542 (3)0.1890 (2)0.0499 (10)
H9A0.97400.11780.14100.060*
H9B1.11810.13030.21220.060*
C100.8120 (6)0.1249 (3)0.2410 (2)0.0425 (9)
H100.68410.12810.21110.051*
C110.5718 (6)0.4429 (3)0.3931 (2)0.0482 (10)
H110.58580.49470.35260.058*
C120.3774 (7)0.4700 (4)0.4380 (3)0.0700 (14)
H12A0.35660.41970.47760.105*
H12B0.26020.46980.40430.105*
H12C0.39270.53740.46030.105*
C130.7628 (7)0.4518 (3)0.4435 (3)0.0653 (13)
H13A0.74770.40750.48710.098*
H13B0.77850.52220.46020.098*
H13C0.88290.43140.41500.098*
C140.9815 (6)0.1934 (3)0.3611 (2)0.0505 (10)
H14A0.95840.23320.40650.076*
H14B1.09300.22350.33240.076*
H14C1.01660.12360.37480.076*
C150.7238 (8)0.2886 (4)0.0750 (2)0.0639 (13)
H15A0.60260.32800.06250.096*
H15B0.68750.21690.08000.096*
H15C0.82470.29640.03520.096*
O10.5287 (5)0.4215 (2)0.20694 (18)0.0571 (8)
H10.60200.46490.18600.086*
O20.8668 (5)0.4339 (2)0.13613 (17)0.0552 (8)
H20.95260.45300.16760.083*
O30.8466 (4)0.01860 (19)0.26237 (18)0.0514 (8)
H30.73500.01100.26690.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (19)0.0289 (18)0.052 (2)0.0012 (15)0.0026 (17)0.0012 (16)
C20.047 (2)0.0355 (19)0.057 (2)0.0028 (17)0.0002 (19)0.0069 (19)
C30.052 (2)0.040 (2)0.054 (2)0.0037 (19)0.006 (2)0.0045 (18)
C40.0363 (18)0.0366 (19)0.052 (2)0.0022 (16)0.0005 (17)0.0038 (17)
C50.0295 (17)0.0314 (18)0.051 (2)0.0034 (15)0.0017 (16)0.0007 (16)
C60.0420 (19)0.0282 (18)0.054 (2)0.0003 (16)0.0043 (17)0.0016 (17)
C70.051 (2)0.034 (2)0.051 (2)0.0061 (17)0.0018 (19)0.0005 (17)
C80.046 (2)0.043 (2)0.062 (2)0.0048 (18)0.007 (2)0.0006 (19)
C90.047 (2)0.039 (2)0.064 (3)0.0015 (18)0.003 (2)0.0049 (19)
C100.039 (2)0.0286 (17)0.060 (2)0.0001 (15)0.0035 (19)0.0002 (17)
C110.057 (2)0.034 (2)0.054 (2)0.0072 (18)0.006 (2)0.0025 (17)
C120.076 (3)0.060 (3)0.074 (3)0.021 (3)0.017 (3)0.003 (3)
C130.075 (3)0.050 (3)0.071 (3)0.010 (2)0.004 (3)0.015 (2)
C140.050 (2)0.038 (2)0.063 (3)0.0055 (18)0.011 (2)0.0007 (19)
C150.077 (3)0.060 (3)0.055 (3)0.010 (2)0.007 (2)0.006 (2)
O10.0601 (18)0.0451 (16)0.066 (2)0.0151 (14)0.0018 (16)0.0118 (14)
O20.0659 (19)0.0384 (15)0.0613 (19)0.0081 (14)0.0002 (16)0.0068 (14)
O30.0474 (15)0.0297 (13)0.077 (2)0.0022 (12)0.0027 (16)0.0018 (13)
Geometric parameters (Å, º) top
C1—C101.538 (5)C9—C101.517 (5)
C1—C141.538 (5)C9—H9A0.9700
C1—C21.542 (5)C9—H9B0.9700
C1—C51.586 (5)C10—O31.441 (4)
C2—C31.511 (5)C10—H100.9800
C2—H2A0.9700C11—C131.522 (5)
C2—H2B0.9700C11—C121.523 (5)
C3—C41.541 (5)C11—H110.9800
C3—H3A0.9700C12—H12A0.9600
C3—H3B0.9700C12—H12B0.9600
C4—C111.540 (5)C12—H12C0.9600
C4—C51.553 (5)C13—H13A0.9600
C4—H40.9800C13—H13B0.9600
C5—C61.532 (5)C13—H13C0.9600
C5—H50.9800C14—H14A0.9600
C6—O11.434 (4)C14—H14B0.9600
C6—C71.574 (5)C14—H14C0.9600
C6—H60.9800C15—H15A0.9600
C7—O21.439 (4)C15—H15B0.9600
C7—C151.524 (6)C15—H15C0.9600
C7—C81.525 (5)O1—H10.8200
C8—C91.527 (5)O2—H20.8200
C8—H8A0.9700O3—H30.8200
C8—H8B0.9700
C10—C1—C14110.7 (3)H8A—C8—H8B107.3
C10—C1—C2110.0 (3)C10—C9—C8115.0 (3)
C14—C1—C2110.1 (3)C10—C9—H9A108.5
C10—C1—C5114.6 (3)C8—C9—H9A108.5
C14—C1—C5109.3 (3)C10—C9—H9B108.5
C2—C1—C5101.8 (3)C8—C9—H9B108.5
C3—C2—C1105.3 (3)H9A—C9—H9B107.5
C3—C2—H2A110.7O3—C10—C9106.0 (3)
C1—C2—H2A110.7O3—C10—C1110.8 (3)
C3—C2—H2B110.7C9—C10—C1115.7 (3)
C1—C2—H2B110.7O3—C10—H10108.0
H2A—C2—H2B108.8C9—C10—H10108.0
C2—C3—C4103.0 (3)C1—C10—H10108.0
C2—C3—H3A111.2C13—C11—C12110.7 (4)
C4—C3—H3A111.2C13—C11—C4113.9 (3)
C2—C3—H3B111.2C12—C11—C4110.6 (3)
C4—C3—H3B111.2C13—C11—H11107.1
H3A—C3—H3B109.1C12—C11—H11107.1
C11—C4—C3114.5 (3)C4—C11—H11107.1
C11—C4—C5115.8 (3)C11—C12—H12A109.5
C3—C4—C5106.0 (3)C11—C12—H12B109.5
C11—C4—H4106.6H12A—C12—H12B109.5
C3—C4—H4106.6C11—C12—H12C109.5
C5—C4—H4106.6H12A—C12—H12C109.5
C6—C5—C4111.1 (3)H12B—C12—H12C109.5
C6—C5—C1113.9 (3)C11—C13—H13A109.5
C4—C5—C1106.2 (3)C11—C13—H13B109.5
C6—C5—H5108.5H13A—C13—H13B109.5
C4—C5—H5108.5C11—C13—H13C109.5
C1—C5—H5108.5H13A—C13—H13C109.5
O1—C6—C5110.9 (3)H13B—C13—H13C109.5
O1—C6—C7107.1 (3)C1—C14—H14A109.5
C5—C6—C7114.9 (3)C1—C14—H14B109.5
O1—C6—H6107.9H14A—C14—H14B109.5
C5—C6—H6107.9C1—C14—H14C109.5
C7—C6—H6107.9H14A—C14—H14C109.5
O2—C7—C15105.0 (3)H14B—C14—H14C109.5
O2—C7—C8108.2 (3)C7—C15—H15A109.5
C15—C7—C8112.2 (4)C7—C15—H15B109.5
O2—C7—C6107.6 (3)H15A—C15—H15B109.5
C15—C7—C6109.1 (3)C7—C15—H15C109.5
C8—C7—C6114.2 (3)H15A—C15—H15C109.5
C7—C8—C9117.2 (3)H15B—C15—H15C109.5
C7—C8—H8A108.0C6—O1—H1109.5
C9—C8—H8A108.0C7—O2—H2109.5
C7—C8—H8B108.0C10—O3—H3109.5
C9—C8—H8B108.0
C10—C1—C2—C3159.9 (3)C5—C6—C7—O296.0 (4)
C14—C1—C2—C377.8 (4)O1—C6—C7—C1585.8 (4)
C5—C1—C2—C338.0 (4)C5—C6—C7—C15150.6 (3)
C1—C2—C3—C442.7 (4)O1—C6—C7—C8147.8 (3)
C2—C3—C4—C11158.5 (3)C5—C6—C7—C824.2 (4)
C2—C3—C4—C529.5 (4)O2—C7—C8—C9179.3 (3)
C11—C4—C5—C6101.2 (4)C15—C7—C8—C963.9 (5)
C3—C4—C5—C6130.6 (3)C6—C7—C8—C960.9 (5)
C11—C4—C5—C1134.4 (3)C7—C8—C9—C1046.9 (5)
C3—C4—C5—C16.2 (4)C8—C9—C10—O3168.0 (3)
C10—C1—C5—C614.8 (4)C8—C9—C10—C144.8 (5)
C14—C1—C5—C6139.7 (3)C14—C1—C10—O363.0 (4)
C2—C1—C5—C6103.8 (3)C2—C1—C10—O358.9 (4)
C10—C1—C5—C4137.5 (3)C5—C1—C10—O3172.9 (3)
C14—C1—C5—C497.6 (3)C14—C1—C10—C957.6 (4)
C2—C1—C5—C418.8 (4)C2—C1—C10—C9179.5 (3)
C4—C5—C6—O143.4 (4)C5—C1—C10—C966.5 (4)
C1—C5—C6—O1163.3 (3)C3—C4—C11—C1358.4 (4)
C4—C5—C6—C7165.0 (3)C5—C4—C11—C1365.4 (4)
C1—C5—C6—C775.0 (4)C3—C4—C11—C1267.0 (4)
O1—C6—C7—O227.6 (4)C5—C4—C11—C12169.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.972.783 (4)172
O2—H2···O3ii0.821.982.791 (4)172
O1—H1···O20.821.962.518 (4)124
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
1H and 13C NMR data for compounds (1), (2) and (3) (δ in ppm and J in Hz)a top
Position(1)(2)b(3)
δ(H)δ(C)δ(H)δ(C)δ(H)δ(C)
147.849.73.79 (dd) (11.6, 4.4)72.4
21.64 m; 1.41 m39.61.61 m40.71.90 m; 1.46 m27.2
31.57 m; 1.37 m23.61.69 m; 1.36 m27.32.04 m; 1.39 m35.5
42.03 m50.61.88 m51.274.0
51.60 overlapped50.82.02 dd (7.8, 0.9)49.076.7
63.27 d (11.4)75.63.44 d (5.7)82.21.72 t (12.9); 1.53 m29.9
773.072.91.62 m37.8
81.83 m; 1.56 m33.91.98 dt (13.5, 3.1); 1.41 m36.11.46 m; 1.28 m23.4
91.79 m; 1.63 m28.72.15 m; 1.31 m29.31.78 dt (4.2, 13.3); 1.54 m32.6
103.54 dd (10.2, 6.0)74.54.04 d (10.3)77.042.0
111.80 m31.61.57 m33.01.44 m33.1
120.87 d (6.6)21.70.87 d (6.7)19.10.89 d (6.8)19.1
130.93 d (6.6)16.60.94 d (6.7)22.00.89 d (6.8)19.5
140.94 s18.80.94 s20.31.16 s14.9
151.22 s25.31.23 s30.61.15 s25.0
6-OH3.92 d (5.7)
Notes: (a) data were measured in MeOH-d4 at 600 MHz for (1), in acetone–d6 at 500 MHz for (2) and (3); (b) C-9 of (2) was overlapped by signals of solvent, and data was obtained from the correlation in HMBC spectrum.
TNO production inhibitory activity of (1), (2) and (3) presented as IC50M) top
CompoundIC50M)CompoundIC50M)
(1)5.7±0.22(3)>50
(2)>50Dexamethasone0.13±0.06
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds