Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Proton transfer to the sulfa drug sulfadiazine [systematic name: 4-amino-N-(pyrimidin-2-yl)benzene­sulfonamide] gave eight salt forms. These are the monohydrate and methanol hemisolvate forms of the chloride (2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium chloride monohydrate, C10H11N4O2S+·Cl·H2O, (I), and 2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium chloride methanol hemisolvate, C10H11N4O2S+·Cl·0.5CH3OH, (II)); a bromide monohydrate (2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium bromide monohydrate, C10H11N4O2S+·Br·H2O, (III)), which has a disordered water channel; a species containing the unusual tetra­iodide dianion [bis­(2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium) tetra­iodide, 2C10H11N4O2S+·I42−, (IV)], where the [I4]2− ion is located at a crystallographic inversion centre; a tetra­fluoro­borate monohydrate (2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium tetra­fluoro­borate monohydrate, C10H11N4O2S+·BF4·H2O, (V)); a nitrate (2-{[(4-aza­niumylphen­yl)sulfon­yl]aza­nid­yl}pyrimidin-1-ium nitrate, C10H11N4O2S+·NO3, (VI)); an ethane­sulfonate {4-[(pyrimidin-2-yl)sulfamo­yl]anilinium ethane­sulfonate, C10H11N4O2S+·C2H5SO3, (VII)}; and a dihydrate of the 4-hy­droxy­benzene­sulfonate {4-[(pyrimidin-2-yl)sul­fam­o­yl]anilinium 4-hy­droxy­benzene­sulfonate dihydrate, C10H11N4O2S+·HOC6H4SO3·2H2O, (VIII)}. All these structures feature alternate layers of cations and of anions where any solvent is associated with the anion layers. The two sulfonate salts are protonated at the aniline N atom and the amide N atom of sulfadiazine, a tautomeric form of the sulfadiazine cation that has not been crystallographically described before. All the other salt forms are instead protonated at the aniline group and on one N atom of the pyrimidine ring. Whilst all eight species are based upon hydrogen-bonded centrosymetric dimers with graph set R22(8), the two sulfonate structures also differ in that these dimers do not link into one-dimensional chains of cations through NH3-to-SO2 hydrogen-bonding inter­actions, whilst the other six species do. The chloride methanol hemisolvate and the tetra­iodide are isostructural and a packing analysis of the cation positions shows that the chloride monohydrate structure is also closely related to these.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018725/lg3144sup1.cif
Contains datablocks I, II, III, IV, V, VI, VII, VIII, global

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144Isup10.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144IIsup11.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144IIIsup12.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144IVsup13.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144Vsup14.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144Vsup6.hkl
Contains datablock V

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144VIsup15.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144VIsup7.hkl
Contains datablock VI

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144VIIsup16.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144VIIsup8.hkl
Contains datablock VII

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018725/lg3144VIIIsup17.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018725/lg3144VIIIsup9.hkl
Contains datablock VIII

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614018725/lg3144sup18.pdf
IR spectra for compounds (I)-(VIII)

CCDC references: 1019825; 1019826; 1019827; 1019828; 1019829; 1019830; 1019831; 1019832

Introduction top

Sulfadiazine [systematic name: 4-amino-N-(pyrimidin-2-yl)benzene­sulfonamide] is a sulfonamide anti­biotic which is often used in the form of a AgI complex within a topical cream (Fisher et al., 2003). Although crystal structures of both sulfadiazine and its AgI complex have been known for some time (Kokila et al., 1995; Cook & Turner, 1975) and despite the general inter­est in modifying physicochemical properties of Active Pharmaceutical Ingredients (APIs) by salt formation (Stahl & Wermuth, 2008), it is only recently that Englert and co-workers described the first structures of salt forms containing protonated sulfadiazine cations (Pan et al., 2013). That study on two solvated forms of sulfadiazine hydro­chloride used charge-density measurements to probe the unusual protonation behaviour of sulfadiazine – which was shown to form cations by protonating two N atoms of the aniline group and the pyrimidine ring whilst leaving the amide N atom unprotonated and formally carrying a negative charge. This is contrary to what may be expected based on pKa values and to what has been observed for cations of the related sulfonamide drug sulfamethazine (Smith & Wermuth, 2013a,b; Lu et al., 2008), where the weakly basic aniline group remains neutral as a NH2 species. In order to further examine this feature, we extend the number of sulfadiazine salt structues known by presenting eight new structures, viz. compounds (I)–(VIII) (see Scheme).

Experimental top

Synthesis and crystallization top

Following the method of Buist et al. (2013), chloride methanol hemisolvate (II) was prepared by adding acetyl chloride (1 ml) to a methanol solution (4 ml) of sulfadiazine (0.226 g). Crystals were grown directly from the reaction mixture by slow evaporation of the solvent. All other compounds were obtained by adding the appropriate acid to aqueous solutions of sulfadiazine in water, filtering to obtain clear solutions, and then allowing slow evaporation of the solvent to promote crystal growth. Solid-state IR spectra were measured with an A2 Technologies ATR instrument and have been deposited as Supporting information.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. For all eight title structures, H atoms bound to C atoms were placed in the expected geometric position and treated in riding modes, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). With the exceptions noted below, H atoms bound to O or N atoms were placed as found and refined isotropically. For all hydrates, the O—H and H···H distances of the water molecules were restrained to 0.88 (1) and 1.33 (2) Å, respectively. Similarly, the O—H distance of the methanol solvent molecule in (II) was restrained to 0.88 (1) Å and the aza­nium N–H distances in (VII) were restrained to 0.91 (1) Å. For (I), (II) and (III), the solvent H atoms were also given displacement parameters such that Uiso(H) = 1.2Ueq(O). For (I), atoms H2W and H3W have site-occupancy factors of 0.5. For tetra­iodide (IV), it was found neccessary to set Uiso(H) = 1.2Ueq(N) for the H atoms bound to N atoms. For (III), the water molecule was found to be disordered over several sites that formed a channel. In the final structure, after numerous trial calculations, this was modeled as four O-atom sites. These were constrained to have equal displacement parameters and their individual site-occupancy parameters were allowed to refine independently but were constrained to total unity. This gave final values of 0.453 (10), 0.248 (10), 0.161 (6) and 0.139 (4) for O1W, O2W, O3W and O4W, respectively. For these disordered sites, H atoms could only be placed on the major component, i.e. O1W. For the amide H atom in (III), Uiso(H) values were set at 1.2Ueq(N) and for the anilinium groups in (III) and (VII) they were set at 1.5Ueq(N).

Results and discussion top

Two chloride-containing salt phases were prepared, a chloride monohydrate, (I) (Fig. 1), obtained from aqueous solution and a methanol hemisolvate, (II) (Fig. 2), obtained by reacting sulfadiazine with acetyl chloride in methanol [see Buist et al. (2014) for another example of using these reagents to obtain differently solvated forms of APIs]. Methanol hemisolvate (II) is isostructural with the ethanol and ethyl­englycol solvates described previously by Pan et al. (2013). All three isostructural forms feature a solvent molecule at a crystallographic inversion centre. For methanol hemisolvate (II) and ethanol species this results in a disordered solvent site with half-occupancy atoms. Chloride monohydrate (I) also has a very similar structure, as can be shown by constructing 20-molecule overlays in Mercury (Macrae et al., 2008; Allen, 2002). These confirm that all four chloride forms have 20 out of 20 cation positions in common (when software option `ignore smallest molecular components' is selected and 30% geometric tolerances are allowed). For (I), the smaller solvent size means that two water molecules can be accommodated at the solvent site with no O-atom disorder. The H atoms of the water molecule are, however, disordered, with H2W and H3W being alternative sites both with site-occupancy factors of 0.5. These disordered H atoms take part in water-to-water hydrogen-bond contacts which give polymeric chains of connected water molecules that extend parallel to the crystallographic a direction. The remaining well-ordered H atom, H1W, forms a hydrogen bond to the chloride ion. The three organic solvates cannot form similar hydrogen-bonded solvent chains and instead form single hydrogen bonds to chloride. See Tables 2–9 for full details of the hydrogen bonding for compounds (I)–(VIII). Together, the water molecules and the chloride ions in (I) lie in sheets parallel to the ac plane. The V-shaped cations pack to give double layers and thus alternating layers of cations and solvent/halide ions exist along the crystallographic b direction (Fig. 3). Layer structures are seen for all the other structures herein.

Reactions with aqueous HBr and HI gave the bromide monohydrate, (III) (Fig. 4), and the tetra­iodide, (IV) (Fig. 5). Both retain the layered structure described above, but perhaps anti-intuitively, the hydrated structure with the simple bromide counter-ion is not isostructural with the chloride phases, whereas the anhydrous structure containing [I4]2- is isostructural with the solvated chloride structures (Fig. 6), allowing only for a small increase in unit-cell size. This can again be shown by 20 out of 20 sulfadiazine cations having matching positions in a Mercury overlay. Although there are many species of polyiodide known, the [I4]2- anion is a rare and thus much sought after variant (Weclawik et al., 2013; Svensson & Kloo, 2003). Inter­estingly, a templating approach using a sulfonamide very closely related to sulfadiazine has recently been shown to allow access to tetra­iodide species (Pan & Englert, 2014). In (IV), the [I4]2- ion is nearly linear [I2i—I2—I1 = 174.992 (16)°; symmetry code: (i) -x-1, -y+1, -z+2] and the I-to-I bonding is asymmetric, with a short central bond [I2—I2i = 2.7623 (6) Å] and two longer terminal bonds [I1—I2 = 3.3647 (4) Å]. Despite the large difference, both I-to-I distances are within the range routinely considered to denote bonding inter­actions and this is a fairly typical geometry for the [I4]2- ion (Svensson & Kloo, 2003; Pan & Englert, 2014). The [I4]2- ion lies on a crystallographic inversion centre – and the similarity of the structure to the solvated chloride species is possible as the central I2 unit occupies the space taken by solvent in the chloride structures, whilst the terminal I atoms take up the positions occupied by the chloride ions. Note that the water molecules in the hydro­bromide are disordered in channels parallel to the crystallographic b direction, such disorder is often seen for other channel hydrates. In bromide monohydrate (III), the water molecule has been modelled as split over four sites and these have been constrained to have a total occupancy of 1. H atoms could only be included for one of these sites, O1W, which is the water O-atom site with the largest occupancy [45.3 (10)%].

All these halide structures feature protonation at one of the pyrimidine ring N atoms and at the aniline group. This allows centrosymmetric hydrogen-bonded dimers to form which can be described using the R22(8) graph set (Bernstein et al., 1995) (Fig. 7). For the ethelenglycol solvate of the hydro­chloride salt, Pan et al. (2013) suggested that the unusual protonation of the aniline group was adopted as alternatives would disturb this energetically favourable dimeric inter­action. This arguement is strengthened by the persistence of the same dimeric unit through the halide structures presented here and indeed by the existence of the same dimeric unit in the hydrated tetra­fluoro­borate, (V) (Fig. 8), and nitrate, (VI) (Fig. 9), salt structures. These two structures also retain the fundamental layering structure of the halide species, compare Fig. 3 with Fig. 10. The –NH3+ group of all the halide species acts as a threefold hydrogen-bond donor. Two of the hydrogen bonds are to halide ions and thus link the cation layers to the anion layers, but the third hydrogen bond is formed with an O atom of the SO2 fragment. This third hydrogen bond links the cationic dimers into a one-dimensional chain (Fig. 11). The NO3 structure (VI) is very similar with the simple change that the –NH3+ group forms bifurcated hydrogen bonds with O atoms of the anions, whilst the structure of the BF4- species (V) differs slightly in that one –NH3+ H atom, H3N, forms a hydrogen bond with a water molecule acting as the acceptor. Of structures (I) to (VI), this is the only direct sulfadiazine-to-solvent hydrogen bond.

The final two structures, (VII) and (VIII) both have sulfonate-based anions, viz. ethane­sulfonate in (VII) (Fig. 12) and 4-hy­droxy­benzene­sulfonate in (VIII) (Fig. 13), and both are structurally different from the other species. In the sulfonate salts, the sulfadiazine is protonated at the aniline and amide N atoms and not at either of the pyrimidine ring N atoms. Despite this difference in tautomeric form, the R22(8) dimer of cations motif is retained. The dimeric structure is retained as the pyrimidine ring simply switches roles from hydrogen-bonding donor to hydrogen-bonding acceptor, whilst the amide group becomes the donor rather than the acceptor. Change to tautomeric form with retention of the same dimeric motif has also been described for related sulfonamides (Gelbrich et al. 2007) and indeed can be seen when comparing the structure of neutral sulfadiazine with that of its salt forms (Pan et al., 2013). In the latter case, change in tautomeric form was accompanied by change in molecular conformation. In particular, rotation about the S—C bond varied by approximately 35° between the amide-protonated species and the ring-protonated species. A similar division is not seen herein, with the dihedral angle between the planes defined by atoms N2/S1/C4 and the C1–C6 aromatic ring varying from 43.75 (10) to 64.13 (7)° for compounds (I)–(VI) and being 51.44 (14) and 60.12 (11)° for (VII) and (VIII), respectively. Elacqua et al. (2013) reported that neutral and anionic forms of sulfadiazine were differentiated by S—N bond distances, with neutral species having distances of 1.61–1.65 Å and anions distances of 1.56–1.60 Å. The cationic sulfadiazines (I)–(VI) have distances inter­mediate to these values [range 1.5941 (17)–1.6061 (12) Å], whilst the amide-protonated species (VII) and (VIII) have longer bond lengths [1.633 (3) and 1.6422 (19) Å, respectively]. The adjacent N—C bonds are also slightly longer for (VII) and (VIII) [1.388 (4) and 1.386 (3) Å, respectively] than they are for the ring-protonated species (I)–(VI) [range 1.337 (3)–1.347 (5) Å]. Structures (VII) and (VIII) also differ from the other sulfadiazine salts as the SO2 unit takes no part in hydrogen bonding and thus individual dimers do not connect through hydrogen bonding and so the polymeric motif described in Fig. 11 is absent. Instead, in ethane­sulfonate salt (VII), the three H atoms of the –NH3+ group all donate hydrogen bonds to O atoms of the sulfonate group and in the 4-hy­droxy­benzene­sulfonate dihydrate (VIII), the –NH3+ group acts as a hydrogen-bond donor to two water molecules and to one O atom of a sulfonate group. Although layered structures are retained, they are not the same as seen for the other species (Fig. 14). Only sulfonate-based anions appear to support sulfadiazine cations with the amide-protonated tautomeric form, but it is not obvious as to why this should be. As BF4- is a relatively poor hydrogen-bond acceptor, it may be that the tetra­hedral shape of the sulfonate group together with its nature as a good and thus prefered hydrogen-bond acceptor is the key. However, whilst the structure of (VII), where ethane­sulfonate forms multiple hydrogen-bonding inter­actions with the RNH3+ group of the sulfadiazine cation may support such a connection, the structure of dihydrate (VIII), where the sulfonate mostly inter­acts with water molecules, does not.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Buist et al. (2013, 2014); Cook & Turner (1975); Elacqua et al. (2013); Fisher et al. (2003); Gelbrich et al. (2007); Kokila et al. (1995); Lu et al. (2008); Macrae et al. (2008); Pan & Englert (2014); Pan et al. (2013); Smith & Wermuth (2013a, 2013b); Stahl & Wermuth (2008); Svensson & Kloo (2003); Weclawik et al. (2013).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2013) for (I), (II); CrysAlis PRO (Oxford Diffraction, 2010) for (III), (IV), (V), (VI), (VII), (VIII). Cell refinement: CrystalClear-SM Expert (Rigaku, 2013) for (I), (II); CrysAlis PRO (Oxford Diffraction, 2010) for (III), (IV), (V), (VI), (VII), (VIII). Data reduction: CrystalClear-SM Expert (Rigaku, 2013) for (I), (II); CrysAlis PRO (Oxford Diffraction, 2010) for (III), (IV), (V), (VI), (VII), (VIII). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I), (II); SHELXS97 (Sheldrick, 2008) for (III), (IV), (V), (VI), (VII), (VIII). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008) for (I), (II), (V), (VI), (VII); ORTEP-3 for Windows (Farrugia, 2012) for (III), (VIII); ORTEP-3 for Windows (Farrugia, 2012) and X-SEED (Barbour, 2001) for (IV). For all compounds, software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with non-H atoms shown as 50% probability displacement ellipsoids. Sites H2W and H3W are disordered and both have site-occupancy factors of 0.5.
[Figure 2] Fig. 2. The molecular structure of (II), with non-H atoms shown as 50% probability displacement ellipsoids. All atoms of the methanol solvent molecule have site-occupancy factors of 0.5.
[Figure 3] Fig. 3. The packing of (I), viewed down the a axis. Note the bilayer of V-shaped cations seperated by layers of chloride ions and water molecules. Here and in other figures, Cl = green, S = yellow, O = red and N = blue.
[Figure 4] Fig. 4. The molecular structure of (III), with non-H atoms shown as 50% probability displacement ellipsoids. O1W, O2W, O3W and O4W represent the partially occupied sites used to model a water molecule that is disordered in a channel parallel to the crystallographic b axis.
[Figure 5] Fig. 5. The molecular structure of (IV), with non-H atoms shown as 50% probability displacement ellipsoids. The contents of the asymmetric unit have been expanded to show a complete [I4]2- ion. [Symmetry code: (i) -x-1, -y+1, -z+2.]
[Figure 6] Fig. 6. Packing diagram for (IV), viewed down the a axis. The central two I atoms of each I4 unit occupy equivalent structural sites to the solvent molecules in the chloride solvate structures.
[Figure 7] Fig. 7. The centrosymmetric dimer which is robust enough to be found in all structures discussed herein. This example is drawn from structure (VI) and here the two cations are related by the symmetry operation (-x+1, -y, -z+2).
[Figure 8] Fig. 8. The molecular structure of (V), with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 9] Fig. 9. The molecular structure of (VI) with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 10] Fig. 10. The packing of (V), viewed down the a axis. Although not part of the isostructural group formed by the chloride and [I4]2- salts, the main stuctural features of bilayers of V-shaped cations seperated by layers of anions and water molecules is retained.
[Figure 11] Fig. 11. Part of the one-dimensional hydrogen-bonded chain of cations, drawn here for structure (II). The same supramolecular motif is found in structures (I)–(VI). Here the view is down the a axis and the chain extends along the 011 diagonal.
[Figure 12] Fig. 12. The molecular structure of (VII), with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 13] Fig. 13. The molecular structure of (VIII), with non-H atoms shown as 50% probability displacement ellipsoids.
[Figure 14] Fig. 14. Packing diagram for (VII), viewed down the a axis, showing the alternating layer structure.
(I) 2-{[(4-Azaniumylphenyl)sulfonyl]azanidyl}pyrimidinium chloride monohydrate top
Crystal data top
C10H11N4O2S+·Cl·H2OZ = 2
Mr = 304.75F(000) = 316
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4118 (4) ÅCell parameters from 56264 reflections
b = 11.5632 (8) Åθ = 3.1–27.5°
c = 11.7430 (8) ŵ = 0.45 mm1
α = 109.462 (7)°T = 100 K
β = 94.399 (6)°Plate, yellow
γ = 102.509 (7)°0.06 × 0.02 × 0.01 mm
V = 667.51 (8) Å3
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3000 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.025
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
profile data from ω–scansh = 77
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
k = 1414
Tmin = 0.897, Tmax = 1.000l = 1514
8329 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.4781P]
where P = (Fo2 + 2Fc2)/3
3000 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.51 e Å3
5 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H11N4O2S+·Cl·H2Oγ = 102.509 (7)°
Mr = 304.75V = 667.51 (8) Å3
Triclinic, P1Z = 2
a = 5.4118 (4) ÅMo Kα radiation
b = 11.5632 (8) ŵ = 0.45 mm1
c = 11.7430 (8) ÅT = 100 K
α = 109.462 (7)°0.06 × 0.02 × 0.01 mm
β = 94.399 (6)°
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3000 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
2752 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.025
8329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0295 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.51 e Å3
3000 reflectionsΔρmin = 0.38 e Å3
197 parameters
Special details top

Experimental. NCS collection 2013ncs0582

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. One H atom of water molecule positioned as disordered over two sites.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl11.26745 (6)1.00601 (3)0.85165 (3)0.01651 (10)
S10.16642 (6)0.43185 (3)0.23791 (3)0.01025 (9)
O10.07441 (19)0.33435 (9)0.19198 (9)0.0140 (2)
O20.3914 (2)0.39099 (10)0.20278 (9)0.0155 (2)
O1W1.2540 (3)0.98671 (16)0.55066 (15)0.0458 (4)
H1W1.277 (6)1.013 (3)0.6311 (9)0.069*
H2W1.411 (4)1.019 (5)0.541 (4)0.069*0.50
H3W1.122 (8)1.017 (5)0.540 (4)0.069*0.50
N10.1521 (2)0.84971 (11)0.04582 (11)0.0129 (2)
N20.1647 (2)0.48996 (11)0.38226 (10)0.0119 (2)
N30.3056 (2)0.64473 (11)0.57102 (11)0.0117 (2)
N40.5611 (2)0.64491 (12)0.41730 (11)0.0146 (2)
C10.1482 (3)0.74771 (13)0.09422 (12)0.0111 (3)
C20.3230 (3)0.67568 (13)0.06079 (12)0.0128 (3)
H20.43770.69130.00710.015*
C30.3268 (3)0.58038 (13)0.10742 (12)0.0122 (3)
H30.44900.53180.08810.015*
C40.1518 (3)0.55606 (12)0.18235 (12)0.0101 (3)
C50.0265 (3)0.62670 (13)0.21399 (13)0.0133 (3)
H50.14670.60830.26440.016*
C60.0256 (3)0.72526 (13)0.17032 (13)0.0133 (3)
H60.14260.77640.19240.016*
C70.3486 (3)0.59269 (13)0.45379 (12)0.0111 (3)
C80.4704 (3)0.74805 (13)0.65421 (13)0.0141 (3)
H80.43540.78230.73500.017*
C90.6903 (3)0.80354 (14)0.62089 (14)0.0167 (3)
H90.81210.87650.67690.020*
C100.7250 (3)0.74683 (14)0.50033 (14)0.0169 (3)
H100.87630.78350.47560.020*
H1N0.310 (4)0.906 (2)0.070 (2)0.029 (5)*
H2N0.034 (4)0.8936 (19)0.0730 (18)0.022 (5)*
H3N0.118 (4)0.814 (2)0.038 (2)0.027 (5)*
H4N0.162 (4)0.6042 (19)0.5895 (18)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01210 (17)0.01286 (17)0.02310 (19)0.00332 (12)0.00203 (13)0.00472 (13)
S10.01084 (17)0.01154 (16)0.00981 (16)0.00382 (12)0.00344 (11)0.00467 (12)
O10.0147 (5)0.0131 (5)0.0124 (5)0.0010 (4)0.0021 (4)0.0039 (4)
O20.0162 (5)0.0198 (5)0.0164 (5)0.0102 (4)0.0081 (4)0.0095 (4)
O1W0.0516 (10)0.0450 (9)0.0401 (8)0.0006 (8)0.0041 (7)0.0226 (7)
N10.0132 (6)0.0118 (6)0.0143 (6)0.0032 (5)0.0023 (4)0.0055 (5)
N20.0113 (5)0.0143 (6)0.0097 (5)0.0021 (4)0.0028 (4)0.0043 (4)
N30.0108 (6)0.0138 (5)0.0115 (5)0.0032 (4)0.0033 (4)0.0056 (4)
N40.0122 (6)0.0174 (6)0.0147 (6)0.0023 (5)0.0039 (4)0.0070 (5)
C10.0113 (6)0.0102 (6)0.0104 (6)0.0012 (5)0.0002 (5)0.0035 (5)
C20.0116 (6)0.0153 (6)0.0120 (6)0.0032 (5)0.0041 (5)0.0053 (5)
C30.0105 (6)0.0143 (6)0.0128 (6)0.0054 (5)0.0040 (5)0.0045 (5)
C40.0099 (6)0.0105 (6)0.0096 (6)0.0019 (5)0.0010 (5)0.0040 (5)
C50.0119 (6)0.0158 (6)0.0133 (6)0.0038 (5)0.0049 (5)0.0057 (5)
C60.0118 (6)0.0146 (6)0.0146 (6)0.0055 (5)0.0039 (5)0.0048 (5)
C70.0105 (6)0.0131 (6)0.0121 (6)0.0049 (5)0.0025 (5)0.0064 (5)
C80.0166 (7)0.0129 (6)0.0131 (6)0.0048 (5)0.0018 (5)0.0046 (5)
C90.0158 (7)0.0139 (6)0.0172 (7)0.0001 (5)0.0002 (5)0.0044 (5)
C100.0132 (7)0.0178 (7)0.0198 (7)0.0010 (5)0.0037 (5)0.0087 (6)
Geometric parameters (Å, º) top
S1—O21.4397 (10)N4—C71.3484 (18)
S1—O11.4530 (10)C1—C21.387 (2)
S1—N21.6034 (12)C1—C61.3886 (19)
S1—C41.7777 (14)C2—C31.387 (2)
O1W—H1W0.880 (10)C2—H20.9500
O1W—H2W0.881 (10)C3—C41.3886 (18)
O1W—H3W0.882 (10)C3—H30.9500
N1—C11.4671 (17)C4—C51.3893 (19)
N1—H2N0.91 (2)C5—C61.396 (2)
N1—H3N0.91 (2)C5—H50.9500
N1—H1N0.91 (2)C6—H60.9500
N2—C71.3421 (18)C8—C91.374 (2)
N3—C81.3431 (19)C8—H80.9500
N3—C71.3670 (18)C9—C101.394 (2)
N3—H4N0.90 (2)C9—H90.9500
N4—C101.3324 (19)C10—H100.9500
O2—S1—O1115.44 (6)C3—C2—H2120.7
O2—S1—N2115.82 (6)C2—C3—C4119.88 (13)
O1—S1—N2103.55 (6)C2—C3—H3120.1
O2—S1—C4106.80 (6)C4—C3—H3120.1
O1—S1—C4108.83 (6)C3—C4—C5121.48 (13)
N2—S1—C4105.90 (6)C3—C4—S1117.44 (11)
H1W—O1W—H2W99 (2)C5—C4—S1121.08 (10)
H1W—O1W—H3W98 (2)C4—C5—C6118.77 (13)
H2W—O1W—H3W125 (6)C4—C5—H5120.6
C1—N1—H2N112.3 (13)C6—C5—H5120.6
C1—N1—H3N108.3 (14)C1—C6—C5119.24 (13)
H2N—N1—H3N109.1 (18)C1—C6—H6120.4
C1—N1—H1N109.2 (14)C5—C6—H6120.4
H2N—N1—H1N107.9 (18)N2—C7—N4124.87 (13)
H3N—N1—H1N110.1 (18)N2—C7—N3114.71 (12)
C7—N2—S1120.21 (10)N4—C7—N3120.42 (13)
C8—N3—C7122.26 (12)N3—C8—C9119.12 (13)
C8—N3—H4N122.0 (13)N3—C8—H8120.4
C7—N3—H4N115.7 (13)C9—C8—H8120.4
C10—N4—C7117.14 (13)C8—C9—C10116.37 (13)
C2—C1—C6121.98 (13)C8—C9—H9121.8
C2—C1—N1117.47 (12)C10—C9—H9121.8
C6—C1—N1120.55 (12)N4—C10—C9124.70 (13)
C1—C2—C3118.60 (12)N4—C10—H10117.7
C1—C2—H2120.7C9—C10—H10117.7
O2—S1—N2—C759.45 (13)S1—C4—C5—C6178.43 (10)
O1—S1—N2—C7173.14 (11)C2—C1—C6—C50.5 (2)
C4—S1—N2—C758.69 (12)N1—C1—C6—C5179.38 (12)
C6—C1—C2—C31.5 (2)C4—C5—C6—C11.7 (2)
N1—C1—C2—C3178.65 (12)S1—N2—C7—N49.0 (2)
C1—C2—C3—C42.2 (2)S1—N2—C7—N3170.47 (10)
C2—C3—C4—C51.1 (2)C10—N4—C7—N2179.79 (13)
C2—C3—C4—S1179.56 (10)C10—N4—C7—N30.8 (2)
O2—S1—C4—C37.27 (13)C8—N3—C7—N2179.80 (13)
O1—S1—C4—C3117.98 (11)C8—N3—C7—N40.3 (2)
N2—S1—C4—C3131.25 (11)C7—N3—C8—C90.2 (2)
O2—S1—C4—C5172.08 (11)N3—C8—C9—C100.2 (2)
O1—S1—C4—C562.68 (13)C7—N4—C10—C90.8 (2)
N2—S1—C4—C548.09 (13)C8—C9—C10—N40.3 (2)
C3—C4—C5—C60.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.91 (2)2.27 (2)3.1484 (13)161.8 (19)
N1—H2N···Cl1ii0.91 (2)2.27 (2)3.1795 (13)176.0 (18)
N1—H3N···O1iii0.91 (2)1.99 (2)2.8243 (16)150.2 (19)
N3—H4N···N2iv0.90 (2)1.98 (2)2.8763 (17)175.9 (19)
N3—H4N···O1iv0.90 (2)2.54 (2)3.0962 (15)121.1 (16)
O1W—H1W···Cl10.88 (1)2.62 (1)3.4607 (17)160 (3)
O1W—H2W···O1Wv0.88 (1)2.18 (2)2.995 (4)153 (4)
O1W—H3W···O1Wi0.88 (1)2.21 (2)3.030 (4)155 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+3, y+2, z+1.
(II) 2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium chloride methanol hemisolvate top
Crystal data top
C10H11N4O2S+·Cl·0.5CH4OZ = 2
Mr = 302.76F(000) = 314
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6468 (2) ÅCell parameters from 10881 reflections
b = 11.2749 (4) Åθ = 3.5–27.5°
c = 11.8363 (8) ŵ = 0.45 mm1
α = 64.254 (5)°T = 100 K
β = 79.361 (6)°Block, light yellow
γ = 77.687 (6)°0.09 × 0.06 × 0.05 mm
V = 659.53 (6) Å3
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3028 independent reflections
Radiation source: Rotating Anode2804 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
profile data from ω–scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
h = 77
Tmin = 0.819, Tmax = 1.000k = 1414
11731 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.5228P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
C10H11N4O2S+·Cl·0.5CH4Oγ = 77.687 (6)°
Mr = 302.76V = 659.53 (6) Å3
Triclinic, P1Z = 2
a = 5.6468 (2) ÅMo Kα radiation
b = 11.2749 (4) ŵ = 0.45 mm1
c = 11.8363 (8) ÅT = 100 K
α = 64.254 (5)°0.09 × 0.06 × 0.05 mm
β = 79.361 (6)°
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
2804 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.029
11731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
3028 reflectionsΔρmin = 0.43 e Å3
201 parameters
Special details top

Experimental. Collected by NCS as 2013ncs0086.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Methanol disordered about i.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.40767 (6)0.72559 (3)0.22516 (3)0.01372 (10)
Cl10.75329 (6)0.38116 (4)0.14375 (3)0.01880 (10)
O10.65919 (19)0.68725 (10)0.18505 (10)0.0176 (2)
O20.2257 (2)0.70618 (10)0.16657 (10)0.0186 (2)
N10.3079 (2)1.31394 (12)0.05936 (13)0.0161 (3)
N20.3892 (2)0.64417 (12)0.37570 (11)0.0150 (2)
N30.1813 (2)0.55649 (12)0.57023 (12)0.0150 (2)
N40.0209 (2)0.74149 (13)0.41155 (12)0.0183 (3)
C70.1794 (3)0.65129 (14)0.44874 (13)0.0147 (3)
C80.0120 (3)0.54958 (15)0.65718 (14)0.0172 (3)
H80.00510.48330.74100.021*
C90.2192 (3)0.63983 (16)0.62264 (15)0.0195 (3)
H90.36030.63830.68080.023*
C100.2123 (3)0.73386 (16)0.49799 (15)0.0204 (3)
H100.35440.79720.47270.024*
C40.3707 (3)0.89860 (14)0.18623 (13)0.0143 (3)
C30.5466 (3)0.95072 (15)0.21162 (14)0.0167 (3)
H30.68120.89340.25470.020*
C20.5231 (3)1.08797 (15)0.17307 (14)0.0168 (3)
H20.63861.12530.19170.020*
C10.3284 (3)1.16919 (14)0.10703 (13)0.0144 (3)
C60.1533 (3)1.11789 (14)0.08048 (14)0.0160 (3)
H60.02211.17550.03460.019*
C50.1735 (3)0.98098 (15)0.12211 (14)0.0159 (3)
H50.05340.94360.10690.019*
O30.7639 (6)0.1624 (4)0.4251 (3)0.0507 (8)0.50
H1H0.794 (12)0.216 (5)0.345 (2)0.076*0.50
C110.9255 (11)0.0552 (5)0.4402 (5)0.0568 (13)0.50
H11A1.08870.07580.43390.085*0.50
H11B0.91920.02530.37460.085*0.50
H11C0.88890.01550.52340.085*0.50
H1N0.428 (4)1.339 (2)0.0828 (19)0.024 (5)*
H2N0.319 (4)1.351 (2)0.022 (2)0.033 (6)*
H3N0.156 (5)1.349 (2)0.085 (2)0.038 (6)*
H4N0.316 (4)0.497 (2)0.5888 (19)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01316 (17)0.01214 (17)0.01348 (17)0.00231 (12)0.00062 (12)0.00321 (13)
Cl10.01368 (17)0.01857 (18)0.02504 (19)0.00376 (13)0.00072 (13)0.01025 (15)
O10.0154 (5)0.0164 (5)0.0167 (5)0.0003 (4)0.0013 (4)0.0050 (4)
O20.0206 (5)0.0163 (5)0.0185 (5)0.0053 (4)0.0052 (4)0.0044 (4)
N10.0145 (6)0.0136 (6)0.0184 (6)0.0026 (5)0.0008 (5)0.0050 (5)
N20.0131 (6)0.0139 (6)0.0142 (6)0.0025 (4)0.0002 (4)0.0026 (5)
N30.0134 (6)0.0140 (6)0.0151 (6)0.0021 (5)0.0011 (5)0.0039 (5)
N40.0148 (6)0.0181 (6)0.0182 (6)0.0011 (5)0.0015 (5)0.0047 (5)
C70.0138 (6)0.0135 (6)0.0165 (7)0.0034 (5)0.0017 (5)0.0054 (5)
C80.0167 (7)0.0175 (7)0.0167 (7)0.0060 (5)0.0011 (5)0.0061 (6)
C90.0139 (7)0.0234 (7)0.0203 (7)0.0038 (6)0.0017 (5)0.0090 (6)
C100.0141 (7)0.0216 (7)0.0227 (8)0.0001 (6)0.0022 (6)0.0077 (6)
C40.0133 (6)0.0127 (6)0.0141 (6)0.0026 (5)0.0007 (5)0.0035 (5)
C30.0137 (6)0.0166 (7)0.0175 (7)0.0019 (5)0.0035 (5)0.0043 (5)
C20.0141 (6)0.0172 (7)0.0187 (7)0.0046 (5)0.0024 (5)0.0058 (6)
C10.0141 (6)0.0125 (6)0.0143 (6)0.0025 (5)0.0015 (5)0.0042 (5)
C60.0129 (6)0.0158 (7)0.0172 (7)0.0010 (5)0.0026 (5)0.0050 (5)
C50.0130 (6)0.0166 (7)0.0168 (7)0.0033 (5)0.0016 (5)0.0053 (5)
O30.0399 (17)0.062 (2)0.0376 (17)0.0020 (15)0.0035 (14)0.0118 (16)
C110.073 (4)0.034 (2)0.064 (3)0.013 (2)0.003 (3)0.020 (2)
Geometric parameters (Å, º) top
S1—O21.4407 (11)C9—H90.9500
S1—O11.4481 (11)C10—H100.9500
S1—N21.6061 (12)C4—C31.391 (2)
S1—C41.7725 (14)C4—C51.392 (2)
N1—C11.4625 (18)C3—C21.394 (2)
N1—H1N0.91 (2)C3—H30.9500
N1—H2N0.86 (2)C2—C11.387 (2)
N1—H3N0.92 (3)C2—H20.9500
N2—C71.3413 (19)C1—C61.388 (2)
N3—C81.3449 (19)C6—C51.387 (2)
N3—C71.3697 (19)C6—H60.9500
N3—H4N0.89 (2)C5—H50.9500
N4—C101.333 (2)O3—C111.314 (6)
N4—C71.3461 (19)O3—H1H0.886 (10)
C8—C91.371 (2)C11—H11A0.9800
C8—H80.9500C11—H11B0.9800
C9—C101.393 (2)C11—H11C0.9800
O2—S1—O1116.27 (7)C8—C9—H9121.7
O2—S1—N2113.94 (7)C10—C9—H9121.7
O1—S1—N2103.29 (6)N4—C10—C9124.82 (14)
O2—S1—C4106.85 (7)N4—C10—H10117.6
O1—S1—C4106.51 (7)C9—C10—H10117.6
N2—S1—C4109.69 (7)C3—C4—C5121.26 (13)
C1—N1—H1N112.2 (13)C3—C4—S1119.87 (11)
C1—N1—H2N111.2 (15)C5—C4—S1118.70 (11)
H1N—N1—H2N106.9 (19)C4—C3—C2119.21 (13)
C1—N1—H3N109.9 (15)C4—C3—H3120.4
H1N—N1—H3N111.3 (19)C2—C3—H3120.4
H2N—N1—H3N105 (2)C1—C2—C3118.95 (13)
C7—N2—S1121.68 (10)C1—C2—H2120.5
C8—N3—C7122.36 (13)C3—C2—H2120.5
C8—N3—H4N120.9 (14)C2—C1—C6122.10 (13)
C7—N3—H4N116.7 (14)C2—C1—N1119.86 (13)
C10—N4—C7116.95 (13)C6—C1—N1118.01 (13)
N2—C7—N4125.45 (13)C5—C6—C1118.78 (13)
N2—C7—N3114.12 (13)C5—C6—H6120.6
N4—C7—N3120.43 (13)C1—C6—H6120.6
N3—C8—C9118.82 (14)C6—C5—C4119.67 (14)
N3—C8—H8120.6C6—C5—H5120.2
C9—C8—H8120.6C4—C5—H5120.2
C8—C9—C10116.63 (14)C11—O3—H1H104 (4)
O2—S1—N2—C751.72 (14)N2—S1—C4—C366.90 (13)
O1—S1—N2—C7178.76 (12)O2—S1—C4—C56.20 (13)
C4—S1—N2—C768.00 (13)O1—S1—C4—C5131.09 (12)
S1—N2—C7—N412.9 (2)N2—S1—C4—C5117.77 (12)
S1—N2—C7—N3167.34 (10)C5—C4—C3—C20.6 (2)
C10—N4—C7—N2179.34 (14)S1—C4—C3—C2175.85 (11)
C10—N4—C7—N30.4 (2)C4—C3—C2—C11.9 (2)
C8—N3—C7—N2179.11 (13)C3—C2—C1—C61.4 (2)
C8—N3—C7—N40.6 (2)C3—C2—C1—N1176.48 (13)
C7—N3—C8—C90.6 (2)C2—C1—C6—C50.4 (2)
N3—C8—C9—C100.4 (2)N1—C1—C6—C5178.33 (13)
C7—N4—C10—C90.2 (2)C1—C6—C5—C41.7 (2)
C8—C9—C10—N40.2 (2)C3—C4—C5—C61.2 (2)
O2—S1—C4—C3169.13 (11)S1—C4—C5—C6174.09 (11)
O1—S1—C4—C344.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.91 (2)2.30 (2)3.2088 (14)174.1 (18)
N1—H2N···Cl1ii0.86 (2)2.70 (2)3.2151 (13)119.8 (18)
N1—H2N···O1ii0.86 (2)2.13 (2)2.8701 (18)144 (2)
N1—H3N···Cl1iii0.92 (3)2.25 (3)3.1417 (14)163 (2)
N3—H4N···N2iv0.89 (2)2.01 (2)2.8957 (18)175.4 (19)
N3—H4N···O1iv0.89 (2)2.59 (2)3.1218 (16)119.6 (16)
O3—H1H···Cl10.89 (1)2.31 (2)3.170 (3)163 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x1, y+1, z; (iv) x+1, y+1, z+1.
(III) 2-{[(4-Azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium bromide monohydrate top
Crystal data top
C10H11N4O2S+·Br·H2OF(000) = 704
Mr = 349.21Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4492 reflections
a = 11.9420 (3) Åθ = 3.2–29.8°
b = 5.6295 (2) ŵ = 3.09 mm1
c = 21.0659 (6) ÅT = 123 K
β = 98.380 (3)°Plate, colourless
V = 1401.09 (7) Å30.30 × 0.22 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3353 independent reflections
Radiation source: fine-focus sealed tube2868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.0°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1515
Tmin = 0.616, Tmax = 1.000k = 67
8186 measured reflectionsl = 2527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.9997P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.46 e Å3
5 restraintsΔρmin = 0.52 e Å3
Crystal data top
C10H11N4O2S+·Br·H2OV = 1401.09 (7) Å3
Mr = 349.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9420 (3) ŵ = 3.09 mm1
b = 5.6295 (2) ÅT = 123 K
c = 21.0659 (6) Å0.30 × 0.22 × 0.04 mm
β = 98.380 (3)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2868 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 1.000Rint = 0.024
8186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0295 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
3353 reflectionsΔρmin = 0.52 e Å3
203 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.401273 (18)0.49939 (4)0.747817 (10)0.01647 (8)
S10.76326 (4)0.82481 (10)1.03211 (2)0.01199 (12)
O10.74525 (12)0.5931 (3)1.05768 (8)0.0183 (3)
O20.76800 (13)1.0205 (3)1.07703 (8)0.0162 (3)
N10.37146 (16)0.9984 (4)0.82655 (9)0.0137 (4)
H1N0.360 (2)0.870 (5)0.8004 (13)0.021*
H2N0.310 (3)1.006 (4)0.8447 (14)0.021*
H3N0.378 (2)1.127 (5)0.8058 (13)0.021*
N20.87783 (14)0.8530 (3)1.00155 (9)0.0131 (4)
N30.99972 (14)0.7555 (3)0.93244 (9)0.0129 (4)
H4N1.0374 (18)0.871 (3)0.9527 (11)0.015*
N40.83362 (16)0.5297 (3)0.92931 (10)0.0181 (4)
C40.64922 (16)0.8809 (4)0.97023 (10)0.0118 (4)
C30.56750 (17)0.7068 (4)0.95621 (10)0.0131 (4)
H30.57460.55960.97850.016*
C20.47470 (17)0.7483 (4)0.90921 (10)0.0138 (4)
H20.41640.63320.90020.017*
C10.46949 (17)0.9603 (4)0.87620 (10)0.0116 (4)
C60.55169 (17)1.1346 (4)0.88907 (10)0.0146 (4)
H60.54641.27830.86520.017*
C50.64198 (18)1.0956 (4)0.93754 (11)0.0153 (4)
H50.69801.21440.94820.018*
C70.90044 (17)0.7083 (4)0.95472 (10)0.0129 (4)
C100.86942 (19)0.4047 (5)0.88206 (12)0.0217 (5)
H100.82290.27800.86380.026*
C90.9693 (2)0.4467 (4)0.85792 (12)0.0201 (5)
H90.99120.35320.82430.024*
C81.03513 (18)0.6303 (4)0.88507 (10)0.0156 (5)
H81.10470.66800.87050.019*
O1W0.8026 (5)0.0239 (18)0.7626 (4)0.0386 (16)0.453 (10)
H1W0.826 (8)0.122 (6)0.759 (5)0.058*0.45
H2W0.830 (9)0.088 (16)0.730 (4)0.058*0.45
O2W0.8094 (12)0.082 (3)0.7675 (8)0.0386 (16)0.248 (10)
O3W0.8131 (13)0.141 (3)0.7321 (9)0.0386 (16)0.161 (6)
O4W0.7780 (11)0.300 (3)0.7019 (8)0.0386 (16)0.139 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01972 (12)0.01516 (13)0.01408 (12)0.00096 (8)0.00096 (8)0.00103 (8)
S10.0089 (2)0.0151 (3)0.0120 (2)0.0023 (2)0.00132 (17)0.0010 (2)
O10.0135 (7)0.0192 (8)0.0213 (9)0.0033 (6)0.0004 (6)0.0081 (7)
O20.0128 (7)0.0225 (9)0.0138 (8)0.0027 (6)0.0033 (6)0.0046 (6)
N10.0112 (8)0.0162 (10)0.0131 (9)0.0013 (7)0.0000 (7)0.0021 (8)
N20.0093 (8)0.0150 (10)0.0154 (9)0.0025 (7)0.0033 (6)0.0017 (7)
N30.0105 (8)0.0136 (9)0.0145 (9)0.0018 (7)0.0017 (6)0.0008 (7)
N40.0156 (9)0.0180 (11)0.0208 (10)0.0057 (7)0.0033 (7)0.0036 (8)
C40.0098 (9)0.0141 (11)0.0117 (10)0.0000 (8)0.0021 (7)0.0001 (8)
C30.0135 (10)0.0116 (11)0.0141 (10)0.0018 (8)0.0017 (8)0.0035 (8)
C20.0116 (9)0.0127 (11)0.0170 (11)0.0043 (8)0.0024 (8)0.0005 (8)
C10.0093 (9)0.0162 (11)0.0094 (10)0.0005 (8)0.0014 (7)0.0004 (8)
C60.0168 (10)0.0118 (11)0.0149 (11)0.0016 (8)0.0019 (8)0.0018 (8)
C50.0140 (10)0.0129 (11)0.0185 (11)0.0052 (8)0.0008 (8)0.0010 (9)
C70.0115 (9)0.0119 (11)0.0151 (11)0.0001 (8)0.0011 (7)0.0029 (8)
C100.0209 (11)0.0205 (12)0.0235 (13)0.0062 (10)0.0027 (9)0.0061 (10)
C90.0219 (11)0.0197 (13)0.0194 (12)0.0007 (9)0.0052 (9)0.0070 (9)
C80.0127 (10)0.0188 (12)0.0155 (11)0.0025 (8)0.0030 (8)0.0021 (9)
O1W0.0258 (17)0.037 (5)0.053 (3)0.003 (3)0.0057 (17)0.018 (3)
O2W0.0258 (17)0.037 (5)0.053 (3)0.003 (3)0.0057 (17)0.018 (3)
O3W0.0258 (17)0.037 (5)0.053 (3)0.003 (3)0.0057 (17)0.018 (3)
O4W0.0258 (17)0.037 (5)0.053 (3)0.003 (3)0.0057 (17)0.018 (3)
Geometric parameters (Å, º) top
S1—O11.4394 (17)C2—C11.378 (3)
S1—O21.4480 (16)C2—H20.9500
S1—N21.6026 (18)C1—C61.387 (3)
S1—C41.771 (2)C6—C51.390 (3)
N1—C11.468 (3)C6—H60.9500
N1—H1N0.91 (3)C5—H50.9500
N1—H2N0.88 (3)C10—C91.384 (3)
N1—H3N0.85 (3)C10—H100.9500
N2—C71.337 (3)C9—C81.372 (3)
N3—C81.340 (3)C9—H90.9500
N3—C71.363 (3)C8—H80.9500
N3—H4N0.869 (10)O1W—H1W0.876 (10)
N4—C101.339 (3)O1W—H2W0.877 (10)
N4—C71.345 (3)O2W—O3W1.46 (2)
C4—C31.384 (3)O2W—O4Wi1.46 (2)
C4—C51.387 (3)O3W—O4W1.14 (2)
C3—C21.394 (3)O4W—O2Wii1.46 (2)
C3—H30.9500
O1—S1—O2116.03 (10)C1—C2—H2120.8
O1—S1—N2115.02 (10)C3—C2—H2120.8
O2—S1—N2103.46 (9)C2—C1—C6122.39 (19)
O1—S1—C4107.23 (10)C2—C1—N1117.33 (18)
O2—S1—C4107.34 (10)C6—C1—N1120.27 (19)
N2—S1—C4107.26 (10)C1—C6—C5118.9 (2)
C1—N1—H1N110.5 (16)C1—C6—H6120.6
C1—N1—H2N109.2 (19)C5—C6—H6120.6
H1N—N1—H2N104 (2)C4—C5—C6119.2 (2)
C1—N1—H3N111.6 (18)C4—C5—H5120.4
H1N—N1—H3N113 (3)C6—C5—H5120.4
H2N—N1—H3N109 (2)N2—C7—N4125.2 (2)
C7—N2—S1120.81 (15)N2—C7—N3114.51 (18)
C8—N3—C7122.61 (19)N4—C7—N3120.2 (2)
C8—N3—H4N124.3 (17)N4—C10—C9124.7 (2)
C7—N3—H4N113.1 (17)N4—C10—H10117.7
C10—N4—C7117.0 (2)C9—C10—H10117.7
C3—C4—C5121.32 (18)C8—C9—C10116.6 (2)
C3—C4—S1118.25 (16)C8—C9—H9121.7
C5—C4—S1120.42 (15)C10—C9—H9121.7
C4—C3—C2119.7 (2)N3—C8—C9118.9 (2)
C4—C3—H3120.2N3—C8—H8120.6
C2—C3—H3120.2C9—C8—H8120.6
C1—C2—C3118.46 (19)H1W—O1W—H2W99 (2)
O1—S1—N2—C755.99 (19)N1—C1—C6—C5178.3 (2)
O2—S1—N2—C7176.45 (16)C3—C4—C5—C61.0 (3)
C4—S1—N2—C763.17 (19)S1—C4—C5—C6179.84 (18)
O1—S1—C4—C30.9 (2)C1—C6—C5—C42.0 (3)
O2—S1—C4—C3126.17 (18)S1—N2—C7—N40.6 (3)
N2—S1—C4—C3123.19 (18)S1—N2—C7—N3178.80 (14)
O1—S1—C4—C5178.30 (18)C10—N4—C7—N2179.2 (2)
O2—S1—C4—C553.0 (2)C10—N4—C7—N30.1 (3)
N2—S1—C4—C557.6 (2)C8—N3—C7—N2179.16 (19)
C5—C4—C3—C21.2 (3)C8—N3—C7—N40.2 (3)
S1—C4—C3—C2177.92 (17)C7—N4—C10—C90.1 (4)
C4—C3—C2—C12.4 (3)N4—C10—C9—C80.1 (4)
C3—C2—C1—C61.5 (3)C7—N3—C8—C90.2 (3)
C3—C2—C1—N1179.4 (2)C10—C9—C8—N30.1 (3)
C2—C1—C6—C50.8 (3)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.91 (3)2.44 (3)3.308 (2)159 (2)
N1—H2N···O2iii0.88 (3)2.01 (3)2.810 (3)150 (3)
N1—H2N···Br1iv0.88 (3)2.95 (3)3.4022 (18)114 (2)
N1—H3N···Br1v0.85 (3)2.46 (3)3.317 (2)178 (2)
N3—H4N···N2vi0.87 (1)2.02 (1)2.887 (2)179 (2)
N3—H4N···O2vi0.87 (1)2.57 (2)3.080 (2)119 (2)
Symmetry codes: (iii) x+1, y+2, z+2; (iv) x+1/2, y+1/2, z+3/2; (v) x, y+1, z; (vi) x+2, y+2, z+2.
(IV) Bis(2-{[(4-azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium) tetraiodide top
Crystal data top
2C10H11N4O2S+·I42Z = 1
Mr = 1010.18F(000) = 474
Triclinic, P1Dx = 2.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7792 (4) ÅCell parameters from 3604 reflections
b = 12.0002 (7) Åθ = 3.3–29.4°
c = 12.5214 (9) ŵ = 4.38 mm1
α = 61.964 (7)°T = 123 K
β = 87.745 (5)°Plate, red
γ = 76.426 (5)°0.25 × 0.15 × 0.02 mm
V = 742.51 (9) Å3
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube2996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 29.4°, θmin = 3.3°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
h = 77
Tmin = 0.523, Tmax = 0.905k = 1615
7055 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0159P)2]
where P = (Fo2 + 2Fc2)/3
3595 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
2C10H11N4O2S+·I42γ = 76.426 (5)°
Mr = 1010.18V = 742.51 (9) Å3
Triclinic, P1Z = 1
a = 5.7792 (4) ÅMo Kα radiation
b = 12.0002 (7) ŵ = 4.38 mm1
c = 12.5214 (9) ÅT = 123 K
α = 61.964 (7)°0.25 × 0.15 × 0.02 mm
β = 87.745 (5)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3595 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
2996 reflections with I > 2σ(I)
Tmin = 0.523, Tmax = 0.905Rint = 0.033
7055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.66 e Å3
3595 reflectionsΔρmin = 0.93 e Å3
184 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.24113 (4)0.47686 (3)0.64525 (2)0.01501 (8)
I20.41230 (5)0.49574 (3)0.89742 (3)0.02602 (9)
S10.10433 (17)1.04954 (10)0.73009 (8)0.0122 (2)
O10.2872 (5)1.1182 (3)0.6759 (2)0.0165 (6)
O20.1411 (5)1.1268 (3)0.6924 (2)0.0157 (6)
N10.1784 (6)0.6688 (4)0.5445 (3)0.0127 (7)
H1N0.317 (7)0.617 (4)0.567 (4)0.015*
H2N0.169 (7)0.714 (4)0.468 (4)0.015*
H3N0.042 (7)0.632 (4)0.563 (3)0.015*
N20.1152 (5)0.9858 (3)0.8748 (3)0.0117 (7)
N30.5180 (5)0.8604 (3)0.9033 (3)0.0140 (7)
N40.3154 (6)0.8837 (3)1.0623 (3)0.0122 (7)
H4N0.175 (7)0.920 (4)1.083 (3)0.015*
C10.1645 (6)0.7559 (4)0.5968 (3)0.0111 (8)
C20.3396 (7)0.8239 (4)0.5738 (3)0.0142 (8)
H20.46660.81230.52650.017*
C30.3271 (7)0.9083 (4)0.6202 (3)0.0128 (8)
H30.44880.95330.60800.015*
C40.1344 (6)0.9274 (4)0.6853 (3)0.0114 (8)
C50.0410 (6)0.8603 (4)0.7065 (3)0.0142 (8)
H50.17180.87430.75070.017*
C60.0248 (7)0.7721 (4)0.6625 (3)0.0144 (8)
H60.14230.72390.67760.017*
C70.3204 (7)0.9096 (4)0.9434 (3)0.0119 (8)
C80.7027 (7)0.7845 (4)0.9855 (4)0.0179 (9)
H80.84170.74680.95960.022*
C90.7061 (7)0.7567 (4)1.1064 (4)0.0185 (9)
H90.84430.70361.16070.022*
C100.5050 (7)0.8081 (4)1.1447 (4)0.0152 (9)
H100.49810.79131.22670.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01540 (15)0.01568 (15)0.01591 (15)0.00270 (10)0.00046 (10)0.00950 (11)
I20.03577 (19)0.02479 (18)0.02029 (17)0.01282 (14)0.00720 (12)0.01083 (14)
S10.0154 (5)0.0133 (5)0.0099 (5)0.0035 (4)0.0020 (4)0.0073 (4)
O10.0222 (16)0.0174 (16)0.0158 (15)0.0127 (12)0.0074 (11)0.0097 (13)
O20.0175 (15)0.0151 (16)0.0119 (15)0.0021 (12)0.0028 (10)0.0067 (12)
N10.0110 (18)0.0147 (19)0.0125 (18)0.0005 (14)0.0018 (13)0.0081 (15)
N20.0132 (17)0.0140 (18)0.0094 (16)0.0020 (13)0.0005 (12)0.0074 (14)
N30.0132 (18)0.0166 (19)0.0118 (18)0.0009 (14)0.0011 (12)0.0076 (15)
N40.0144 (18)0.0147 (19)0.0114 (17)0.0054 (14)0.0027 (13)0.0089 (15)
C10.012 (2)0.011 (2)0.0091 (19)0.0011 (15)0.0016 (14)0.0063 (16)
C20.014 (2)0.017 (2)0.013 (2)0.0025 (16)0.0046 (15)0.0091 (17)
C30.011 (2)0.017 (2)0.012 (2)0.0057 (16)0.0021 (14)0.0076 (17)
C40.011 (2)0.012 (2)0.0093 (19)0.0020 (15)0.0018 (14)0.0040 (16)
C50.010 (2)0.022 (2)0.012 (2)0.0035 (16)0.0032 (14)0.0097 (18)
C60.011 (2)0.017 (2)0.016 (2)0.0061 (16)0.0014 (15)0.0080 (18)
C70.015 (2)0.010 (2)0.012 (2)0.0041 (15)0.0003 (14)0.0060 (16)
C80.016 (2)0.018 (2)0.019 (2)0.0030 (17)0.0023 (16)0.0100 (19)
C90.017 (2)0.019 (2)0.017 (2)0.0013 (17)0.0020 (16)0.0078 (18)
C100.018 (2)0.015 (2)0.013 (2)0.0064 (17)0.0000 (15)0.0065 (17)
Geometric parameters (Å, º) top
I1—I23.3647 (4)C1—C61.376 (5)
I2—I2i2.7623 (6)C1—C21.384 (5)
S1—O11.443 (3)C2—C31.373 (5)
S1—O21.455 (3)C2—H20.9500
S1—N21.598 (3)C3—C41.394 (5)
S1—C41.771 (4)C3—H30.9500
N1—C11.460 (5)C4—C51.382 (5)
N1—H1N0.85 (4)C5—C61.388 (5)
N1—H2N0.84 (4)C5—H50.9500
N1—H3N0.96 (4)C6—H60.9500
N2—C71.347 (5)C8—C91.388 (5)
N3—C81.334 (5)C8—H80.9500
N3—C71.350 (5)C9—C101.364 (5)
N4—C101.353 (5)C9—H90.9500
N4—C71.371 (5)C10—H100.9500
N4—H4N0.91 (4)
I2i—I2—I1174.992 (16)C2—C3—C4119.5 (3)
O1—S1—O2115.97 (17)C2—C3—H3120.3
O1—S1—N2114.37 (16)C4—C3—H3120.3
O2—S1—N2103.10 (16)C5—C4—C3121.0 (4)
O1—S1—C4107.10 (17)C5—C4—S1120.1 (3)
O2—S1—C4105.90 (16)C3—C4—S1118.7 (3)
N2—S1—C4110.06 (17)C4—C5—C6119.5 (4)
C1—N1—H1N107 (3)C4—C5—H5120.2
C1—N1—H2N108 (3)C6—C5—H5120.2
H1N—N1—H2N107 (4)C1—C6—C5118.7 (3)
C1—N1—H3N110 (2)C1—C6—H6120.6
H1N—N1—H3N118 (4)C5—C6—H6120.6
H2N—N1—H3N106 (3)N2—C7—N3125.1 (4)
C7—N2—S1120.8 (3)N2—C7—N4114.0 (3)
C8—N3—C7116.5 (3)N3—C7—N4120.8 (3)
C10—N4—C7122.3 (3)N3—C8—C9124.6 (4)
C10—N4—H4N122 (2)N3—C8—H8117.7
C7—N4—H4N116 (2)C9—C8—H8117.7
C6—C1—C2122.2 (4)C10—C9—C8117.9 (4)
C6—C1—N1119.6 (3)C10—C9—H9121.0
C2—C1—N1118.1 (3)C8—C9—H9121.0
C3—C2—C1119.0 (4)N4—C10—C9117.9 (4)
C3—C2—H2120.5N4—C10—H10121.1
C1—C2—H2120.5C9—C10—H10121.1
O1—S1—N2—C750.9 (3)S1—C4—C5—C6174.9 (3)
O2—S1—N2—C7177.7 (3)C2—C1—C6—C50.4 (6)
C4—S1—N2—C769.7 (3)N1—C1—C6—C5176.9 (3)
C6—C1—C2—C31.4 (6)C4—C5—C6—C11.2 (6)
N1—C1—C2—C3178.7 (4)S1—N2—C7—N312.7 (5)
C1—C2—C3—C42.4 (6)S1—N2—C7—N4167.5 (3)
C2—C3—C4—C51.6 (6)C8—N3—C7—N2178.6 (4)
C2—C3—C4—S1173.2 (3)C8—N3—C7—N41.2 (5)
O1—S1—C4—C5169.1 (3)C10—N4—C7—N2179.5 (3)
O2—S1—C4—C544.7 (3)C10—N4—C7—N30.3 (5)
N2—S1—C4—C566.0 (3)C7—N3—C8—C91.9 (6)
O1—S1—C4—C35.8 (4)N3—C8—C9—C101.6 (6)
O2—S1—C4—C3130.1 (3)C7—N4—C10—C90.1 (5)
N2—S1—C4—C3119.1 (3)C8—C9—C10—N40.5 (6)
C3—C4—C5—C60.2 (6)
Symmetry code: (i) x1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I1ii0.85 (4)2.64 (4)3.482 (4)172 (4)
N1—H2N···O2iii0.84 (4)2.00 (4)2.798 (4)158 (4)
N1—H3N···I10.96 (4)2.59 (4)3.524 (3)165 (3)
N4—H4N···N2iv0.91 (4)2.00 (4)2.906 (5)174 (4)
Symmetry codes: (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x, y+2, z+2.
(V) 2-{[(4-Azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium tetrafluoroborate monohydrate top
Crystal data top
C10H11N4O2S+·BF4·H2OF(000) = 728
Mr = 356.11Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4378 reflections
a = 5.8539 (1) Åθ = 3.4–29.8°
b = 11.3629 (3) ŵ = 0.30 mm1
c = 21.2080 (6) ÅT = 123 K
β = 90.982 (2)°Fragment, light yellow
V = 1410.49 (6) Å30.20 × 0.12 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3549 independent reflections
Radiation source: fine-focus sealed tube2955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 29.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 77
Tmin = 0.874, Tmax = 1.000k = 1511
8710 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.6973P]
where P = (Fo2 + 2Fc2)/3
3549 reflections(Δ/σ)max = 0.003
232 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.46 e Å3
Crystal data top
C10H11N4O2S+·BF4·H2OV = 1410.49 (6) Å3
Mr = 356.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8539 (1) ŵ = 0.30 mm1
b = 11.3629 (3) ÅT = 123 K
c = 21.2080 (6) Å0.20 × 0.12 × 0.05 mm
β = 90.982 (2)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3549 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2955 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.024
8710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3549 reflectionsΔρmin = 0.46 e Å3
232 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21736 (6)0.24493 (3)1.039691 (17)0.01188 (10)
F10.15946 (17)0.20817 (10)0.74824 (5)0.0301 (3)
F20.09745 (19)0.18041 (11)0.82770 (5)0.0312 (3)
F30.2036 (2)0.15335 (12)0.72644 (6)0.0434 (3)
F40.13039 (17)0.33817 (10)0.76257 (5)0.0273 (3)
O10.44811 (18)0.27762 (10)1.05680 (5)0.0175 (2)
O20.05509 (19)0.25011 (10)1.09069 (5)0.0164 (2)
O1W0.4027 (2)0.41744 (12)0.76066 (6)0.0245 (3)
N10.0902 (2)0.55457 (13)0.82772 (7)0.0143 (3)
N20.1822 (2)0.11597 (11)1.01075 (6)0.0120 (3)
N30.2260 (2)0.01928 (12)0.93253 (6)0.0126 (3)
N40.4790 (2)0.14123 (12)0.93657 (6)0.0156 (3)
C10.0140 (2)0.47962 (14)0.88004 (7)0.0117 (3)
C20.2045 (3)0.49308 (14)0.90438 (8)0.0157 (3)
H20.30520.55010.88750.019*
C30.2735 (2)0.42144 (14)0.95408 (7)0.0145 (3)
H30.42450.42760.97090.017*
C40.1225 (2)0.34096 (13)0.97914 (7)0.0115 (3)
C50.0992 (2)0.33031 (14)0.95543 (7)0.0143 (3)
H50.20300.27650.97370.017*
C60.1662 (2)0.39939 (14)0.90476 (7)0.0143 (3)
H60.31570.39190.88700.017*
C70.2996 (2)0.08243 (14)0.95992 (7)0.0114 (3)
C80.3297 (3)0.06628 (15)0.88228 (7)0.0153 (3)
H80.27550.13760.86410.018*
C90.5143 (3)0.00977 (15)0.85782 (8)0.0177 (3)
H90.59340.04050.82270.021*
C100.5806 (3)0.09446 (16)0.88665 (8)0.0184 (3)
H100.70710.13540.86970.022*
B10.0703 (3)0.21971 (18)0.76723 (9)0.0183 (4)
H1N0.030 (4)0.5713 (19)0.8011 (10)0.029 (6)*
H2N0.133 (3)0.623 (2)0.8436 (9)0.025 (5)*
H3N0.206 (4)0.520 (2)0.8040 (11)0.040 (6)*
H4N0.103 (3)0.0515 (17)0.9493 (9)0.023 (5)*
H1W0.5492 (16)0.407 (2)0.7599 (12)0.060 (8)*
H2W0.355 (4)0.3449 (11)0.7561 (12)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01499 (17)0.00899 (19)0.01162 (19)0.00181 (13)0.00057 (13)0.00011 (15)
F10.0210 (5)0.0234 (6)0.0456 (7)0.0003 (4)0.0106 (5)0.0098 (5)
F20.0366 (6)0.0335 (7)0.0236 (6)0.0045 (5)0.0003 (4)0.0068 (5)
F30.0405 (7)0.0512 (8)0.0388 (7)0.0177 (6)0.0144 (5)0.0141 (6)
F40.0243 (5)0.0253 (6)0.0322 (6)0.0070 (4)0.0003 (4)0.0046 (5)
O10.0184 (5)0.0145 (6)0.0194 (6)0.0038 (4)0.0066 (4)0.0021 (5)
O20.0242 (6)0.0122 (6)0.0131 (5)0.0013 (4)0.0037 (4)0.0010 (5)
O1W0.0182 (6)0.0221 (7)0.0331 (7)0.0004 (5)0.0037 (5)0.0056 (6)
N10.0184 (6)0.0114 (7)0.0132 (7)0.0001 (5)0.0005 (5)0.0014 (6)
N20.0154 (6)0.0079 (6)0.0128 (6)0.0026 (5)0.0016 (5)0.0002 (5)
N30.0143 (6)0.0100 (6)0.0135 (6)0.0008 (5)0.0010 (5)0.0010 (5)
N40.0149 (6)0.0153 (7)0.0166 (7)0.0036 (5)0.0026 (5)0.0006 (6)
C10.0165 (7)0.0098 (7)0.0087 (7)0.0011 (6)0.0011 (5)0.0001 (6)
C20.0166 (7)0.0122 (8)0.0182 (8)0.0046 (6)0.0018 (6)0.0010 (7)
C30.0131 (6)0.0134 (8)0.0169 (8)0.0031 (6)0.0013 (5)0.0006 (7)
C40.0146 (7)0.0090 (7)0.0110 (7)0.0002 (5)0.0009 (5)0.0012 (6)
C50.0136 (7)0.0133 (8)0.0160 (7)0.0033 (6)0.0020 (5)0.0010 (7)
C60.0123 (6)0.0155 (8)0.0152 (7)0.0009 (6)0.0002 (5)0.0003 (7)
C70.0122 (6)0.0097 (7)0.0122 (7)0.0005 (5)0.0023 (5)0.0006 (6)
C80.0202 (7)0.0123 (8)0.0135 (7)0.0025 (6)0.0001 (6)0.0007 (7)
C90.0198 (7)0.0193 (9)0.0142 (8)0.0023 (6)0.0037 (6)0.0017 (7)
C100.0157 (7)0.0218 (9)0.0179 (8)0.0019 (6)0.0032 (6)0.0020 (7)
B10.0155 (8)0.0201 (10)0.0194 (9)0.0029 (7)0.0023 (6)0.0027 (8)
Geometric parameters (Å, º) top
S1—O11.4413 (11)N4—C101.334 (2)
S1—O21.4528 (11)N4—C71.3463 (19)
S1—N21.6006 (13)C1—C21.379 (2)
S1—C41.7675 (16)C1—C61.384 (2)
F1—B11.404 (2)C2—C31.386 (2)
F2—B11.365 (2)C2—H20.9500
F3—B11.396 (2)C3—C41.384 (2)
F4—B11.395 (2)C3—H30.9500
O1W—H1W0.867 (10)C4—C51.389 (2)
O1W—H2W0.877 (9)C5—C61.382 (2)
N1—C11.463 (2)C5—H50.9500
N1—H1N0.93 (2)C6—H60.9500
N1—H2N0.88 (2)C8—C91.367 (2)
N1—H3N0.92 (2)C8—H80.9500
N2—C71.3433 (18)C9—C101.385 (2)
N3—C81.3460 (19)C9—H90.9500
N3—C71.360 (2)C10—H100.9500
N3—H4N0.89 (2)
O1—S1—O2115.10 (7)C3—C4—C5121.16 (14)
O1—S1—N2116.50 (7)C3—C4—S1119.46 (11)
O2—S1—N2103.96 (7)C5—C4—S1119.30 (12)
O1—S1—C4107.78 (7)C6—C5—C4118.88 (14)
O2—S1—C4108.33 (7)C6—C5—H5120.6
N2—S1—C4104.47 (7)C4—C5—H5120.6
H1W—O1W—H2W100.6 (17)C5—C6—C1119.49 (14)
C1—N1—H1N110.8 (13)C5—C6—H6120.3
C1—N1—H2N107.8 (13)C1—C6—H6120.3
H1N—N1—H2N106.0 (18)N2—C7—N4124.56 (14)
C1—N1—H3N112.4 (15)N2—C7—N3114.91 (13)
H1N—N1—H3N108.2 (19)N4—C7—N3120.52 (13)
H2N—N1—H3N111.5 (19)N3—C8—C9118.98 (15)
C7—N2—S1120.22 (11)N3—C8—H8120.5
C8—N3—C7122.10 (13)C9—C8—H8120.5
C8—N3—H4N122.3 (13)C8—C9—C10116.84 (15)
C7—N3—H4N115.6 (13)C8—C9—H9121.6
C10—N4—C7117.11 (14)C10—C9—H9121.6
C2—C1—C6122.02 (14)N4—C10—C9124.44 (15)
C2—C1—N1119.22 (14)N4—C10—H10117.8
C6—C1—N1118.73 (13)C9—C10—H10117.8
C1—C2—C3118.40 (14)F2—B1—F4110.92 (15)
C1—C2—H2120.8F2—B1—F3110.39 (15)
C3—C2—H2120.8F4—B1—F3109.46 (15)
C4—C3—C2120.00 (14)F2—B1—F1109.54 (14)
C4—C3—H3120.0F4—B1—F1108.13 (14)
C2—C3—H3120.0F3—B1—F1108.33 (15)
O1—S1—N2—C755.37 (14)S1—C4—C5—C6174.93 (12)
O2—S1—N2—C7176.88 (12)C4—C5—C6—C11.8 (2)
C4—S1—N2—C763.38 (13)C2—C1—C6—C50.1 (2)
C6—C1—C2—C31.7 (2)N1—C1—C6—C5178.09 (14)
N1—C1—C2—C3179.84 (14)S1—N2—C7—N412.5 (2)
C1—C2—C3—C41.7 (2)S1—N2—C7—N3168.26 (11)
C2—C3—C4—C50.1 (2)C10—N4—C7—N2178.32 (15)
C2—C3—C4—S1176.70 (12)C10—N4—C7—N30.9 (2)
O1—S1—C4—C35.16 (15)C8—N3—C7—N2178.12 (13)
O2—S1—C4—C3130.29 (13)C8—N3—C7—N41.2 (2)
N2—S1—C4—C3119.36 (13)C7—N3—C8—C90.3 (2)
O1—S1—C4—C5178.00 (12)N3—C8—C9—C100.8 (2)
O2—S1—C4—C552.87 (14)C7—N4—C10—C90.2 (2)
N2—S1—C4—C557.48 (14)C8—C9—C10—N41.1 (3)
C3—C4—C5—C61.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F3i0.93 (2)1.92 (2)2.7912 (17)156.0 (19)
N1—H2N···O2ii0.88 (2)2.05 (2)2.8196 (19)144.7 (18)
N1—H3N···O1W0.92 (2)1.87 (3)2.7762 (19)166 (2)
N3—H4N···N2iii0.89 (2)2.02 (2)2.9092 (17)176.8 (19)
N3—H4N···O2iii0.89 (2)2.58 (2)3.1307 (17)121.2 (15)
O1W—H1W···F4iv0.87 (1)2.03 (1)2.8790 (15)165 (2)
O1W—H2W···F10.88 (1)1.94 (1)2.7863 (17)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+2; (iii) x, y, z+2; (iv) x1, y, z.
(VI) 2-{[(4-Azaniumylphenyl)sulfonyl]azanidyl}pyrimidin-1-ium nitrate top
Crystal data top
C10H11N4O2S+·NO3Z = 2
Mr = 313.30F(000) = 324
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4705 (4) ÅCell parameters from 3307 reflections
b = 10.1235 (7) Åθ = 3.4–29.4°
c = 11.9956 (8) ŵ = 0.29 mm1
α = 86.708 (6)°T = 123 K
β = 85.489 (6)°Fragment, light yellow
γ = 74.394 (7)°0.26 × 0.15 × 0.06 mm
V = 637.40 (8) Å3
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2977 independent reflections
Radiation source: fine-focus sealed tube2429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 67
Tmin = 0.897, Tmax = 1.000k = 1313
7390 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.4298P]
where P = (Fo2 + 2Fc2)/3
2977 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H11N4O2S+·NO3γ = 74.394 (7)°
Mr = 313.30V = 637.40 (8) Å3
Triclinic, P1Z = 2
a = 5.4705 (4) ÅMo Kα radiation
b = 10.1235 (7) ŵ = 0.29 mm1
c = 11.9956 (8) ÅT = 123 K
α = 86.708 (6)°0.26 × 0.15 × 0.06 mm
β = 85.489 (6)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
2977 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2429 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.026
7390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.78 e Å3
2977 reflectionsΔρmin = 0.38 e Å3
206 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31611 (10)0.07161 (5)0.77390 (4)0.01458 (14)
O10.5490 (3)0.18213 (14)0.76593 (12)0.0182 (3)
O20.0876 (3)0.10972 (16)0.75678 (12)0.0215 (3)
O30.0278 (3)0.5197 (2)0.26381 (18)0.0504 (6)
O40.3521 (3)0.50354 (18)0.24688 (14)0.0311 (4)
O50.1819 (3)0.45362 (15)0.40662 (12)0.0207 (3)
N10.3888 (4)0.35138 (19)0.41482 (15)0.0169 (4)
N20.3246 (3)0.00844 (18)0.89180 (14)0.0159 (4)
N30.2015 (3)0.16323 (19)1.01576 (14)0.0166 (4)
N40.0507 (3)0.17178 (19)0.86457 (14)0.0187 (4)
N50.1690 (4)0.49396 (19)0.30339 (16)0.0222 (4)
C10.3766 (4)0.2491 (2)0.50395 (16)0.0147 (4)
C20.2027 (4)0.1732 (2)0.49778 (17)0.0159 (4)
H20.09790.18690.43640.019*
C30.1839 (4)0.0768 (2)0.58262 (16)0.0154 (4)
H30.06230.02550.58100.018*
C40.3440 (4)0.0559 (2)0.66987 (16)0.0132 (4)
C50.5219 (4)0.1303 (2)0.67457 (17)0.0158 (4)
H50.63230.11390.73410.019*
C60.5361 (4)0.2292 (2)0.59076 (17)0.0160 (4)
H60.65420.28250.59310.019*
C70.1540 (4)0.1084 (2)0.92134 (16)0.0154 (4)
C80.0485 (4)0.2791 (2)1.05659 (17)0.0192 (4)
H80.08460.31391.12350.023*
C90.1597 (4)0.3466 (2)1.00104 (19)0.0227 (5)
H90.27240.42931.02730.027*
C100.1989 (4)0.2886 (2)0.90410 (19)0.0229 (5)
H100.34100.33540.86340.027*
H1N0.528 (6)0.392 (3)0.419 (2)0.041 (8)*
H2N0.253 (6)0.417 (3)0.415 (2)0.041 (9)*
H3N0.408 (5)0.307 (3)0.346 (2)0.035 (8)*
H4N0.336 (5)0.119 (3)1.046 (2)0.026 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0165 (3)0.0174 (3)0.0102 (2)0.00517 (19)0.00247 (18)0.00136 (18)
O10.0222 (8)0.0169 (7)0.0139 (7)0.0022 (6)0.0027 (6)0.0002 (6)
O20.0239 (9)0.0264 (8)0.0180 (8)0.0135 (7)0.0056 (6)0.0061 (6)
O30.0225 (10)0.0633 (14)0.0593 (14)0.0107 (9)0.0046 (9)0.0348 (11)
O40.0343 (10)0.0356 (10)0.0215 (9)0.0050 (8)0.0109 (7)0.0052 (7)
O50.0255 (9)0.0217 (8)0.0147 (7)0.0060 (6)0.0035 (6)0.0020 (6)
N10.0210 (10)0.0149 (9)0.0139 (9)0.0034 (8)0.0004 (7)0.0008 (7)
N20.0170 (9)0.0200 (9)0.0093 (8)0.0020 (7)0.0033 (6)0.0007 (7)
N30.0158 (9)0.0205 (9)0.0117 (8)0.0018 (7)0.0023 (7)0.0026 (7)
N40.0166 (9)0.0235 (9)0.0136 (8)0.0012 (7)0.0032 (7)0.0025 (7)
N50.0188 (10)0.0213 (9)0.0223 (10)0.0003 (8)0.0016 (8)0.0040 (8)
C10.0160 (10)0.0138 (9)0.0114 (9)0.0001 (8)0.0019 (8)0.0003 (7)
C20.0163 (11)0.0191 (10)0.0122 (9)0.0044 (8)0.0033 (8)0.0017 (8)
C30.0135 (10)0.0200 (10)0.0138 (10)0.0067 (8)0.0007 (8)0.0001 (8)
C40.0121 (10)0.0145 (9)0.0115 (9)0.0012 (7)0.0002 (7)0.0002 (7)
C50.0138 (10)0.0194 (10)0.0140 (10)0.0031 (8)0.0042 (8)0.0015 (8)
C60.0146 (10)0.0166 (10)0.0176 (10)0.0050 (8)0.0004 (8)0.0021 (8)
C70.0154 (10)0.0205 (10)0.0103 (9)0.0061 (8)0.0007 (8)0.0026 (8)
C80.0240 (12)0.0193 (10)0.0135 (10)0.0050 (9)0.0010 (8)0.0001 (8)
C90.0231 (12)0.0202 (11)0.0205 (11)0.0011 (9)0.0001 (9)0.0004 (9)
C100.0192 (11)0.0254 (11)0.0204 (11)0.0005 (9)0.0025 (9)0.0047 (9)
Geometric parameters (Å, º) top
S1—O21.4365 (15)N4—C71.346 (3)
S1—O11.4527 (15)C1—C21.382 (3)
S1—N21.5941 (17)C1—C61.382 (3)
S1—C41.771 (2)C2—C31.386 (3)
O3—N51.228 (3)C2—H20.9500
O4—N51.233 (2)C3—C41.388 (3)
O5—N51.284 (2)C3—H30.9500
N1—C11.455 (3)C4—C51.388 (3)
N1—H1N0.96 (3)C5—C61.390 (3)
N1—H2N0.85 (3)C5—H50.9500
N1—H3N0.95 (3)C6—H60.9500
N2—C71.341 (3)C8—C91.363 (3)
N3—C81.338 (3)C8—H80.9500
N3—C71.362 (3)C9—C101.389 (3)
N3—H4N0.85 (3)C9—H90.9500
N4—C101.330 (3)C10—H100.9500
O2—S1—O1115.35 (9)C3—C2—H2120.5
O2—S1—N2115.72 (9)C2—C3—C4119.55 (19)
O1—S1—N2103.48 (9)C2—C3—H3120.2
O2—S1—C4107.13 (9)C4—C3—H3120.2
O1—S1—C4107.81 (9)C3—C4—C5121.34 (19)
N2—S1—C4106.87 (9)C3—C4—S1117.43 (15)
C1—N1—H1N113.7 (17)C5—C4—S1121.22 (15)
C1—N1—H2N112 (2)C4—C5—C6118.94 (18)
H1N—N1—H2N107 (3)C4—C5—H5120.5
C1—N1—H3N107.0 (17)C6—C5—H5120.5
H1N—N1—H3N109 (2)C1—C6—C5119.34 (19)
H2N—N1—H3N109 (2)C1—C6—H6120.3
C7—N2—S1120.20 (14)C5—C6—H6120.3
C8—N3—C7122.28 (19)N2—C7—N4124.84 (19)
C8—N3—H4N122.6 (17)N2—C7—N3114.98 (18)
C7—N3—H4N115.1 (17)N4—C7—N3120.18 (19)
C10—N4—C7117.29 (19)N3—C8—C9119.2 (2)
O3—N5—O4122.2 (2)N3—C8—H8120.4
O3—N5—O5118.7 (2)C9—C8—H8120.4
O4—N5—O5119.15 (19)C8—C9—C10116.7 (2)
C2—C1—C6121.87 (19)C8—C9—H9121.7
C2—C1—N1117.73 (18)C10—C9—H9121.7
C6—C1—N1120.40 (19)N4—C10—C9124.3 (2)
C1—C2—C3118.92 (18)N4—C10—H10117.8
C1—C2—H2120.5C9—C10—H10117.8
O2—S1—N2—C761.49 (19)S1—C4—C5—C6179.99 (15)
O1—S1—N2—C7171.35 (16)C2—C1—C6—C50.1 (3)
C4—S1—N2—C757.69 (18)N1—C1—C6—C5179.59 (18)
C6—C1—C2—C31.6 (3)C4—C5—C6—C11.2 (3)
N1—C1—C2—C3178.85 (18)S1—N2—C7—N48.6 (3)
C1—C2—C3—C41.8 (3)S1—N2—C7—N3170.79 (14)
C2—C3—C4—C50.5 (3)C10—N4—C7—N2178.8 (2)
C2—C3—C4—S1178.48 (15)C10—N4—C7—N30.6 (3)
O2—S1—C4—C311.74 (19)C8—N3—C7—N2179.64 (19)
O1—S1—C4—C3112.98 (16)C8—N3—C7—N41.0 (3)
N2—S1—C4—C3136.34 (16)C7—N3—C8—C91.3 (3)
O2—S1—C4—C5169.27 (16)N3—C8—C9—C100.2 (3)
O1—S1—C4—C566.01 (18)C7—N4—C10—C91.8 (3)
N2—S1—C4—C544.67 (19)C8—C9—C10—N41.4 (4)
C3—C4—C5—C61.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.96 (3)1.85 (3)2.803 (3)171 (3)
N1—H1N···O4i0.96 (3)2.42 (3)2.968 (3)116 (2)
N1—H2N···O30.85 (3)2.31 (3)2.912 (3)128 (3)
N1—H2N···O50.85 (3)2.32 (3)3.021 (3)140 (3)
N1—H3N···O1ii0.95 (3)1.85 (3)2.784 (2)166 (3)
N3—H4N···N2iii0.85 (3)2.06 (3)2.911 (3)176 (2)
N3—H4N···O1iii0.85 (3)2.55 (3)3.085 (2)122 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
(VII) 4-[(Pyrimidin-2-yl)sulfamoyl]anilinium ethanesulfonate top
Crystal data top
C10H11N4O2S+·C2H5O3SF(000) = 752
Mr = 360.41Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2991 reflections
a = 5.5269 (4) Åθ = 3.4–28.7°
b = 34.979 (3) ŵ = 0.36 mm1
c = 8.4395 (6) ÅT = 123 K
β = 93.102 (7)°Needle, colourless
V = 1629.2 (2) Å30.4 × 0.03 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3515 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 27.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 77
Tmin = 0.908, Tmax = 1.000k = 4344
19991 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.6311P]
where P = (Fo2 + 2Fc2)/3
3515 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H11N4O2S+·C2H5O3SV = 1629.2 (2) Å3
Mr = 360.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5269 (4) ŵ = 0.36 mm1
b = 34.979 (3) ÅT = 123 K
c = 8.4395 (6) Å0.4 × 0.03 × 0.02 mm
β = 93.102 (7)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3515 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2212 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.104
19991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.35 e Å3
3515 reflectionsΔρmin = 0.41 e Å3
222 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28192 (13)0.44093 (2)0.77910 (9)0.0177 (2)
S20.00973 (13)0.27930 (2)0.23275 (9)0.0181 (2)
O10.4676 (4)0.45420 (6)0.8902 (2)0.0224 (5)
O20.0371 (4)0.44002 (6)0.8241 (2)0.0213 (5)
O30.1498 (4)0.24673 (6)0.2104 (3)0.0282 (6)
O40.0356 (4)0.30107 (7)0.3739 (3)0.0271 (6)
O50.2670 (3)0.26823 (6)0.2301 (3)0.0222 (5)
N10.4972 (5)0.28671 (8)0.5241 (3)0.0215 (6)
H1N0.452 (6)0.2671 (7)0.586 (3)0.032*
H2N0.656 (2)0.2841 (10)0.505 (4)0.032*
H3N0.420 (5)0.2818 (9)0.428 (2)0.032*
N20.3082 (5)0.46787 (8)0.6229 (3)0.0184 (6)
N30.0015 (5)0.43804 (8)0.4667 (3)0.0224 (6)
N40.2795 (4)0.48159 (7)0.3562 (3)0.0184 (6)
C10.4512 (5)0.32414 (9)0.5930 (4)0.0166 (7)
C20.2449 (5)0.32892 (9)0.6757 (4)0.0189 (7)
H20.13880.30810.69190.023*
C30.1965 (5)0.36487 (9)0.7345 (4)0.0180 (7)
H30.05380.36900.79010.022*
C40.3537 (5)0.39464 (9)0.7130 (4)0.0155 (7)
C50.5653 (5)0.38924 (9)0.6337 (4)0.0186 (7)
H50.67500.40980.62170.022*
C60.6134 (5)0.35368 (9)0.5727 (4)0.0183 (7)
H60.75630.34950.51750.022*
C70.1892 (5)0.46205 (9)0.4759 (4)0.0167 (7)
C80.1070 (6)0.43437 (10)0.3223 (4)0.0261 (8)
H80.24360.41790.31030.031*
C90.0331 (6)0.45291 (9)0.1902 (4)0.0232 (8)
H90.11360.44970.08870.028*
C100.1660 (6)0.47650 (9)0.2140 (4)0.0218 (8)
H100.22470.48970.12540.026*
C110.0402 (6)0.30986 (10)0.0676 (4)0.0294 (9)
H11A0.07930.33100.07520.035*
H11B0.01280.29530.03050.035*
C120.2942 (6)0.32674 (12)0.0553 (5)0.0443 (11)
H12A0.41360.30600.04500.066*
H12B0.31120.34340.03800.066*
H12C0.32150.34170.15100.066*
H4N0.442 (6)0.4822 (10)0.627 (4)0.031 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (4)0.0175 (4)0.0167 (4)0.0018 (3)0.0050 (3)0.0007 (4)
S20.0156 (4)0.0213 (5)0.0172 (4)0.0003 (3)0.0003 (3)0.0022 (4)
O10.0268 (12)0.0252 (13)0.0152 (12)0.0049 (10)0.0015 (9)0.0029 (10)
O20.0216 (11)0.0223 (13)0.0208 (13)0.0024 (10)0.0084 (9)0.0009 (10)
O30.0204 (12)0.0280 (14)0.0354 (15)0.0057 (10)0.0078 (10)0.0004 (12)
O40.0238 (12)0.0355 (15)0.0220 (13)0.0042 (11)0.0002 (10)0.0100 (11)
O50.0139 (11)0.0300 (14)0.0228 (13)0.0032 (10)0.0025 (9)0.0052 (10)
N10.0216 (15)0.0196 (16)0.0230 (17)0.0020 (13)0.0036 (13)0.0039 (13)
N20.0195 (14)0.0184 (16)0.0176 (15)0.0054 (13)0.0032 (12)0.0020 (12)
N30.0243 (15)0.0229 (16)0.0202 (16)0.0062 (13)0.0036 (12)0.0001 (13)
N40.0216 (14)0.0168 (15)0.0173 (15)0.0011 (11)0.0064 (11)0.0017 (12)
C10.0151 (16)0.0192 (18)0.0150 (17)0.0037 (13)0.0051 (13)0.0029 (14)
C20.0184 (17)0.0160 (18)0.0219 (18)0.0018 (14)0.0027 (14)0.0019 (15)
C30.0163 (16)0.0204 (18)0.0179 (18)0.0006 (14)0.0049 (13)0.0028 (15)
C40.0164 (16)0.0158 (17)0.0141 (17)0.0006 (13)0.0009 (13)0.0011 (14)
C50.0172 (16)0.0197 (18)0.0189 (18)0.0050 (14)0.0017 (13)0.0012 (15)
C60.0135 (16)0.0231 (19)0.0186 (18)0.0003 (14)0.0040 (13)0.0029 (15)
C70.0181 (16)0.0156 (18)0.0168 (18)0.0037 (13)0.0055 (13)0.0021 (14)
C80.0251 (18)0.027 (2)0.026 (2)0.0061 (15)0.0014 (15)0.0049 (16)
C90.0280 (18)0.026 (2)0.0154 (18)0.0035 (15)0.0004 (14)0.0002 (15)
C100.0316 (19)0.0203 (19)0.0141 (18)0.0043 (15)0.0071 (14)0.0009 (15)
C110.0266 (19)0.035 (2)0.026 (2)0.0025 (16)0.0045 (15)0.0090 (17)
C120.034 (2)0.054 (3)0.045 (3)0.0042 (19)0.0019 (19)0.021 (2)
Geometric parameters (Å, º) top
S1—O21.425 (2)C2—C31.383 (4)
S1—O11.430 (2)C2—H20.9500
S1—N21.633 (3)C3—C41.375 (4)
S1—C41.765 (3)C3—H30.9500
S2—O31.447 (2)C4—C51.391 (4)
S2—O41.447 (2)C5—C61.377 (4)
S2—O51.475 (2)C5—H50.9500
S2—C111.766 (3)C6—H60.9500
N1—C11.460 (4)C8—C91.371 (4)
N1—H1N0.905 (10)C8—H80.9500
N1—H2N0.902 (10)C9—C101.381 (4)
N1—H3N0.913 (10)C9—H90.9500
N2—C71.388 (4)C10—H100.9500
N2—H4N0.89 (3)C11—C121.521 (5)
N3—C71.334 (4)C11—H11A0.9900
N3—C81.335 (4)C11—H11B0.9900
N4—C101.336 (4)C12—H12A0.9800
N4—C71.338 (4)C12—H12B0.9800
C1—C21.379 (4)C12—H12C0.9800
C1—C61.385 (4)
O2—S1—O1119.39 (13)C3—C4—S1119.9 (2)
O2—S1—N2110.80 (13)C5—C4—S1119.1 (2)
O1—S1—N2104.48 (14)C6—C5—C4119.1 (3)
O2—S1—C4107.25 (14)C6—C5—H5120.4
O1—S1—C4109.85 (13)C4—C5—H5120.4
N2—S1—C4104.06 (14)C5—C6—C1119.2 (3)
O3—S2—O4112.99 (14)C5—C6—H6120.4
O3—S2—O5111.87 (13)C1—C6—H6120.4
O4—S2—O5111.13 (13)N3—C7—N4126.8 (3)
O3—S2—C11107.77 (15)N3—C7—N2118.3 (3)
O4—S2—C11107.73 (16)N4—C7—N2115.0 (3)
O5—S2—C11104.87 (14)N3—C8—C9123.9 (3)
C1—N1—H1N113 (2)N3—C8—H8118.0
C1—N1—H2N111 (2)C9—C8—H8118.0
H1N—N1—H2N109 (3)C8—C9—C10115.8 (3)
C1—N1—H3N116 (2)C8—C9—H9122.1
H1N—N1—H3N104 (3)C10—C9—H9122.1
H2N—N1—H3N104 (3)N4—C10—C9122.8 (3)
C7—N2—S1125.4 (2)N4—C10—H10118.6
C7—N2—H4N118 (2)C9—C10—H10118.6
S1—N2—H4N113 (2)C12—C11—S2113.1 (2)
C7—N3—C8115.0 (3)C12—C11—H11A109.0
C10—N4—C7115.7 (3)S2—C11—H11A109.0
C2—C1—C6122.1 (3)C12—C11—H11B109.0
C2—C1—N1118.5 (3)S2—C11—H11B109.0
C6—C1—N1119.5 (3)H11A—C11—H11B107.8
C1—C2—C3118.2 (3)C11—C12—H12A109.5
C1—C2—H2120.9C11—C12—H12B109.5
C3—C2—H2120.9H12A—C12—H12B109.5
C4—C3—C2120.4 (3)C11—C12—H12C109.5
C4—C3—H3119.8H12A—C12—H12C109.5
C2—C3—H3119.8H12B—C12—H12C109.5
C3—C4—C5121.0 (3)
O2—S1—N2—C760.0 (3)C4—C5—C6—C10.5 (4)
O1—S1—N2—C7170.2 (2)C2—C1—C6—C51.6 (5)
C4—S1—N2—C755.0 (3)N1—C1—C6—C5178.0 (3)
C6—C1—C2—C32.4 (4)C8—N3—C7—N41.6 (5)
N1—C1—C2—C3177.1 (3)C8—N3—C7—N2178.8 (3)
C1—C2—C3—C41.3 (4)C10—N4—C7—N30.8 (4)
C2—C3—C4—C50.8 (5)C10—N4—C7—N2179.6 (3)
C2—C3—C4—S1176.6 (2)S1—N2—C7—N315.1 (4)
O2—S1—C4—C39.6 (3)S1—N2—C7—N4164.5 (2)
O1—S1—C4—C3121.6 (2)C7—N3—C8—C91.1 (5)
N2—S1—C4—C3127.1 (3)N3—C8—C9—C100.1 (5)
O2—S1—C4—C5167.8 (2)C7—N4—C10—C90.5 (4)
O1—S1—C4—C561.1 (3)C8—C9—C10—N40.8 (5)
N2—S1—C4—C550.3 (3)O3—S2—C11—C1264.5 (3)
C3—C4—C5—C61.7 (5)O4—S2—C11—C1257.7 (3)
S1—C4—C5—C6175.7 (2)O5—S2—C11—C12176.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.91 (1)2.05 (1)2.929 (4)164 (3)
N1—H2N···O4ii0.90 (1)2.17 (2)2.980 (4)149 (3)
N1—H2N···O3iii0.90 (1)2.26 (3)2.705 (3)110 (2)
N1—H3N···O50.91 (1)1.89 (1)2.801 (3)176 (3)
N2—H4N···N4iv0.89 (3)1.99 (3)2.882 (4)174 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
(VIII) 4-[(Pyrimidin-2-yl)sulfamoyl]anilinium 4-hydroxybenzenesulfonate dihydrate top
Crystal data top
C10H11N4O2S+·C6H5O4S·2H2OF(000) = 960
Mr = 460.48Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3724 reflections
a = 18.5872 (5) Åθ = 3.3–29.5°
b = 5.9733 (2) ŵ = 0.32 mm1
c = 18.6850 (5) ÅT = 123 K
β = 104.858 (3)°Fragment, light yellow
V = 2005.17 (10) Å30.20 × 0.12 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4695 independent reflections
Radiation source: fine-focus sealed tube3638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 28.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2424
Tmin = 0.968, Tmax = 1.000k = 76
9653 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0407P)2 + 1.8769P]
where P = (Fo2 + 2Fc2)/3
4695 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.80 e Å3
6 restraintsΔρmin = 0.44 e Å3
Crystal data top
C10H11N4O2S+·C6H5O4S·2H2OV = 2005.17 (10) Å3
Mr = 460.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.5872 (5) ŵ = 0.32 mm1
b = 5.9733 (2) ÅT = 123 K
c = 18.6850 (5) Å0.20 × 0.12 × 0.05 mm
β = 104.858 (3)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
4695 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3638 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 1.000Rint = 0.029
9653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.80 e Å3
4695 reflectionsΔρmin = 0.44 e Å3
307 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65276 (3)0.85852 (10)0.14183 (3)0.01721 (14)
S20.04915 (3)0.16965 (10)0.11296 (3)0.02095 (15)
O10.67885 (9)0.6329 (3)0.14790 (9)0.0228 (4)
O20.69403 (9)1.0264 (3)0.11393 (9)0.0220 (4)
O1W0.74103 (10)1.3663 (3)0.49790 (10)0.0294 (4)
O30.24507 (11)0.2558 (3)0.41461 (10)0.0307 (4)
O2W0.38462 (10)0.1557 (3)0.45248 (10)0.0253 (4)
O40.09613 (10)0.1048 (3)0.06496 (9)0.0245 (4)
O50.01741 (10)0.3925 (3)0.09516 (10)0.0296 (4)
O60.00589 (11)0.0033 (3)0.11685 (10)0.0361 (5)
N10.60917 (12)1.1632 (4)0.43098 (11)0.0184 (4)
N20.56951 (11)0.8768 (3)0.08478 (11)0.0192 (4)
N30.45276 (10)0.7612 (3)0.02182 (10)0.0184 (4)
N40.51699 (11)0.5802 (3)0.13473 (11)0.0239 (5)
C10.62078 (12)1.0873 (4)0.36057 (12)0.0167 (5)
C20.64836 (13)0.8753 (4)0.35556 (13)0.0216 (5)
H20.65980.77910.39740.026*
C30.65925 (13)0.8042 (4)0.28801 (13)0.0205 (5)
H30.67790.65840.28310.025*
C40.64263 (12)0.9487 (4)0.22827 (12)0.0153 (4)
C50.61737 (13)1.1644 (4)0.23418 (13)0.0201 (5)
H50.60841.26370.19310.024*
C60.60549 (13)1.2328 (4)0.30103 (13)0.0200 (5)
H60.58701.37870.30600.024*
C70.51075 (12)0.7306 (4)0.08101 (12)0.0166 (5)
C80.39652 (13)0.6169 (4)0.01531 (13)0.0211 (5)
H80.35440.63010.02590.025*
C90.39741 (14)0.4498 (4)0.06624 (14)0.0253 (5)
H90.35770.34570.06050.030*
C100.45878 (14)0.4411 (4)0.12597 (14)0.0270 (6)
H100.45990.33080.16290.032*
C110.10841 (13)0.1923 (4)0.20342 (12)0.0184 (5)
C120.16396 (14)0.0356 (4)0.22862 (14)0.0249 (5)
H120.16990.08490.19750.030*
C130.21102 (14)0.0540 (4)0.29930 (14)0.0258 (5)
H130.24940.05280.31660.031*
C140.20137 (13)0.2292 (4)0.34422 (13)0.0228 (5)
C150.14535 (15)0.3837 (5)0.31933 (15)0.0313 (6)
H150.13870.50280.35070.038*
C160.09883 (15)0.3653 (4)0.24877 (14)0.0290 (6)
H160.06030.47190.23160.035*
H1N0.6528 (17)1.235 (5)0.4588 (16)0.032 (8)*
H2N0.5995 (17)1.043 (6)0.4561 (17)0.045 (9)*
H3N0.5680 (19)1.260 (5)0.4221 (17)0.046 (9)*
H4N0.5636 (16)0.987 (5)0.0532 (16)0.034 (8)*
H1H0.292 (2)0.181 (7)0.419 (2)0.088 (15)*
H1W0.742 (2)1.482 (4)0.5266 (16)0.071 (13)*
H2W0.7630 (18)1.420 (5)0.4655 (14)0.065 (12)*
H3W0.4165 (14)0.081 (4)0.4344 (17)0.051 (10)*
H4W0.4001 (19)0.295 (2)0.452 (2)0.078 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0145 (3)0.0194 (3)0.0167 (3)0.0008 (2)0.0023 (2)0.0025 (2)
S20.0188 (3)0.0259 (3)0.0179 (3)0.0040 (2)0.0044 (2)0.0013 (2)
O10.0218 (9)0.0222 (9)0.0228 (8)0.0042 (7)0.0029 (7)0.0054 (7)
O20.0187 (8)0.0270 (9)0.0205 (8)0.0046 (7)0.0056 (7)0.0020 (7)
O1W0.0253 (10)0.0363 (11)0.0280 (10)0.0046 (8)0.0093 (8)0.0074 (9)
O30.0248 (10)0.0409 (11)0.0237 (9)0.0013 (9)0.0016 (8)0.0093 (8)
O2W0.0226 (9)0.0245 (10)0.0273 (9)0.0003 (8)0.0037 (7)0.0032 (8)
O40.0312 (10)0.0257 (9)0.0182 (8)0.0000 (8)0.0091 (7)0.0001 (7)
O50.0229 (9)0.0340 (10)0.0305 (9)0.0065 (8)0.0041 (8)0.0040 (8)
O60.0373 (11)0.0453 (12)0.0258 (9)0.0218 (9)0.0082 (8)0.0038 (9)
N10.0186 (10)0.0190 (10)0.0185 (10)0.0004 (9)0.0062 (8)0.0008 (9)
N20.0166 (10)0.0211 (10)0.0169 (9)0.0022 (8)0.0012 (8)0.0041 (8)
N30.0156 (9)0.0193 (10)0.0193 (9)0.0011 (8)0.0027 (8)0.0014 (8)
N40.0217 (11)0.0232 (10)0.0255 (11)0.0026 (9)0.0035 (9)0.0072 (9)
C10.0127 (10)0.0186 (11)0.0180 (11)0.0005 (9)0.0027 (8)0.0024 (9)
C20.0248 (12)0.0208 (12)0.0185 (11)0.0048 (10)0.0041 (9)0.0051 (10)
C30.0238 (12)0.0149 (11)0.0224 (12)0.0048 (9)0.0050 (10)0.0000 (9)
C40.0121 (10)0.0172 (11)0.0159 (10)0.0004 (9)0.0021 (8)0.0007 (9)
C50.0237 (12)0.0186 (11)0.0180 (11)0.0045 (10)0.0053 (9)0.0035 (9)
C60.0262 (13)0.0135 (11)0.0214 (11)0.0048 (9)0.0079 (10)0.0003 (9)
C70.0161 (11)0.0159 (11)0.0179 (11)0.0010 (9)0.0043 (9)0.0017 (9)
C80.0175 (11)0.0232 (12)0.0218 (12)0.0007 (10)0.0038 (9)0.0037 (10)
C90.0202 (12)0.0225 (12)0.0339 (14)0.0061 (10)0.0079 (10)0.0011 (11)
C100.0249 (13)0.0244 (13)0.0314 (13)0.0019 (11)0.0070 (11)0.0087 (11)
C110.0169 (11)0.0211 (12)0.0174 (11)0.0024 (9)0.0050 (9)0.0028 (9)
C120.0254 (13)0.0248 (13)0.0252 (12)0.0035 (11)0.0075 (10)0.0079 (10)
C130.0207 (12)0.0280 (13)0.0277 (13)0.0066 (11)0.0042 (10)0.0002 (11)
C140.0198 (12)0.0286 (13)0.0194 (11)0.0058 (10)0.0042 (9)0.0064 (10)
C150.0320 (15)0.0299 (14)0.0301 (14)0.0051 (12)0.0046 (11)0.0141 (11)
C160.0292 (14)0.0272 (14)0.0280 (13)0.0079 (11)0.0026 (11)0.0056 (11)
Geometric parameters (Å, º) top
S1—O11.4271 (17)C1—C61.383 (3)
S1—O21.4390 (17)C2—C31.395 (3)
S1—N21.6422 (19)C2—H20.9500
S1—C41.758 (2)C3—C41.382 (3)
S2—O61.4413 (19)C3—H30.9500
S2—O41.4557 (18)C4—C51.386 (3)
S2—O51.4597 (19)C5—C61.385 (3)
S2—C111.770 (2)C5—H50.9500
O1W—H1W0.873 (10)C6—H60.9500
O1W—H2W0.874 (10)C8—C91.376 (3)
O3—C141.366 (3)C8—H80.9500
O3—H1H0.96 (4)C9—C101.377 (3)
O2W—H3W0.875 (10)C9—H90.9500
O2W—H4W0.880 (10)C10—H100.9500
N1—C11.459 (3)C11—C161.376 (3)
N1—H1N0.95 (3)C11—C121.384 (3)
N1—H2N0.90 (3)C12—C131.389 (3)
N1—H3N0.94 (3)C12—H120.9500
N2—C71.386 (3)C13—C141.382 (4)
N2—H4N0.87 (3)C13—H130.9500
N3—C81.336 (3)C14—C151.380 (4)
N3—C71.344 (3)C15—C161.383 (3)
N4—C71.330 (3)C15—H150.9500
N4—C101.340 (3)C16—H160.9500
C1—C21.378 (3)
O1—S1—O2119.01 (10)C5—C4—S1118.46 (17)
O1—S1—N2111.03 (10)C6—C5—C4118.8 (2)
O2—S1—N2102.68 (10)C6—C5—H5120.6
O1—S1—C4109.32 (10)C4—C5—H5120.6
O2—S1—C4108.18 (10)C1—C6—C5119.5 (2)
N2—S1—C4105.72 (10)C1—C6—H6120.2
O6—S2—O4113.15 (11)C5—C6—H6120.2
O6—S2—O5112.94 (12)N4—C7—N3127.5 (2)
O4—S2—O5111.94 (11)N4—C7—N2118.2 (2)
O6—S2—C11106.29 (11)N3—C7—N2114.3 (2)
O4—S2—C11106.50 (11)N3—C8—C9122.3 (2)
O5—S2—C11105.31 (11)N3—C8—H8118.8
H1W—O1W—H2W101 (2)C9—C8—H8118.8
C14—O3—H1H109 (3)C8—C9—C10116.6 (2)
H3W—O2W—H4W103 (2)C8—C9—H9121.7
C1—N1—H1N109.4 (17)C10—C9—H9121.7
C1—N1—H2N109 (2)N4—C10—C9123.4 (2)
H1N—N1—H2N109 (3)N4—C10—H10118.3
C1—N1—H3N109.5 (19)C9—C10—H10118.3
H1N—N1—H3N111 (3)C16—C11—C12120.1 (2)
H2N—N1—H3N109 (3)C16—C11—S2119.87 (19)
C7—N2—S1126.17 (17)C12—C11—S2120.04 (18)
C7—N2—H4N118.7 (19)C11—C12—C13120.2 (2)
S1—N2—H4N115 (2)C11—C12—H12119.9
C8—N3—C7115.5 (2)C13—C12—H12119.9
C7—N4—C10114.5 (2)C14—C13—C12119.3 (2)
C2—C1—C6121.7 (2)C14—C13—H13120.4
C2—C1—N1119.4 (2)C12—C13—H13120.4
C6—C1—N1118.9 (2)O3—C14—C15117.2 (2)
C1—C2—C3118.9 (2)O3—C14—C13122.3 (2)
C1—C2—H2120.5C15—C14—C13120.4 (2)
C3—C2—H2120.5C14—C15—C16120.1 (2)
C4—C3—C2119.1 (2)C14—C15—H15120.0
C4—C3—H3120.4C16—C15—H15120.0
C2—C3—H3120.4C11—C16—C15119.9 (2)
C3—C4—C5121.8 (2)C11—C16—H16120.1
C3—C4—S1119.76 (17)C15—C16—H16120.1
O1—S1—N2—C742.5 (2)S1—N2—C7—N410.8 (3)
O2—S1—N2—C7170.77 (19)S1—N2—C7—N3169.56 (17)
C4—S1—N2—C775.9 (2)C7—N3—C8—C90.8 (3)
C6—C1—C2—C31.7 (4)N3—C8—C9—C101.6 (4)
N1—C1—C2—C3180.0 (2)C7—N4—C10—C90.6 (4)
C1—C2—C3—C40.5 (4)C8—C9—C10—N42.3 (4)
C2—C3—C4—C51.8 (4)O6—S2—C11—C1699.8 (2)
C2—C3—C4—S1177.68 (18)O4—S2—C11—C16139.3 (2)
O1—S1—C4—C30.2 (2)O5—S2—C11—C1620.3 (2)
O2—S1—C4—C3131.21 (19)O6—S2—C11—C1279.8 (2)
N2—S1—C4—C3119.37 (19)O4—S2—C11—C1241.1 (2)
O1—S1—C4—C5179.72 (17)O5—S2—C11—C12160.1 (2)
O2—S1—C4—C549.3 (2)C16—C11—C12—C131.0 (4)
N2—S1—C4—C560.1 (2)S2—C11—C12—C13179.4 (2)
C3—C4—C5—C62.9 (4)C11—C12—C13—C140.5 (4)
S1—C4—C5—C6176.64 (18)C12—C13—C14—O3179.2 (2)
C2—C1—C6—C50.6 (4)C12—C13—C14—C150.3 (4)
N1—C1—C6—C5179.0 (2)O3—C14—C15—C16179.6 (3)
C4—C5—C6—C11.6 (4)C13—C14—C15—C160.7 (4)
C10—N4—C7—N32.2 (4)C12—C11—C16—C150.7 (4)
C10—N4—C7—N2178.2 (2)S2—C11—C16—C15179.7 (2)
C8—N3—C7—N42.9 (4)C14—C15—C16—C110.1 (4)
C8—N3—C7—N2177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.95 (3)1.80 (3)2.733 (3)170 (3)
N1—H2N···O2Wi0.90 (3)2.04 (3)2.873 (3)154 (3)
N1—H2N···O5ii0.90 (3)2.32 (3)2.793 (3)113 (2)
N1—H3N···O6iii0.94 (3)1.88 (3)2.780 (3)159 (3)
N2—H4N···N3iv0.87 (3)2.03 (3)2.897 (3)179 (3)
O3—H1H···O2W0.96 (4)1.69 (4)2.578 (3)153 (4)
O1W—H1W···O3v0.87 (1)1.89 (1)2.760 (3)173 (3)
O1W—H2W···O2vi0.87 (1)1.96 (1)2.834 (3)175 (3)
O2W—H3W···O5vii0.88 (1)1.85 (1)2.722 (3)172 (3)
O2W—H4W···O4ii0.88 (1)1.88 (1)2.737 (2)163 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+2, z; (v) x+1, y+2, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H11N4O2S+·Cl·H2OC10H11N4O2S+·Cl·0.5CH4OC10H11N4O2S+·Br·H2O2C10H11N4O2S+·I42
Mr304.75302.76349.211010.18
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/nTriclinic, P1
Temperature (K)100100123123
a, b, c (Å)5.4118 (4), 11.5632 (8), 11.7430 (8)5.6468 (2), 11.2749 (4), 11.8363 (8)11.9420 (3), 5.6295 (2), 21.0659 (6)5.7792 (4), 12.0002 (7), 12.5214 (9)
α, β, γ (°)109.462 (7), 94.399 (6), 102.509 (7)64.254 (5), 79.361 (6), 77.687 (6)90, 98.380 (3), 9061.964 (7), 87.745 (5), 76.426 (5)
V3)667.51 (8)659.53 (6)1401.09 (7)742.51 (9)
Z2241
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.450.453.094.38
Crystal size (mm)0.06 × 0.02 × 0.010.09 × 0.06 × 0.050.30 × 0.22 × 0.040.25 × 0.15 × 0.02
Data collection
DiffractometerRigaku Saturn724+ (2x2 bin mode)
diffractometer
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
Oxford Diffraction Xcalibur E
diffractometer
Oxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2013)
Multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Analytical
[CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.897, 1.0000.819, 1.0000.616, 1.0000.523, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
8329, 3000, 2752 11731, 3028, 2804 8186, 3353, 2868 7055, 3595, 2996
Rint0.0250.0290.0240.033
(sin θ/λ)max1)0.6490.6490.6610.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 1.05 0.031, 0.082, 1.04 0.029, 0.072, 1.06 0.032, 0.062, 1.04
No. of reflections3000302833533595
No. of parameters197201203184
No. of restraints5150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.380.40, 0.430.46, 0.520.66, 0.93


(V)(VI)(VII)(VIII)
Crystal data
Chemical formulaC10H11N4O2S+·BF4·H2OC10H11N4O2S+·NO3C10H11N4O2S+·C2H5O3SC10H11N4O2S+·C6H5O4S·2H2O
Mr356.11313.30360.41460.48
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/cMonoclinic, P21/n
Temperature (K)123123123123
a, b, c (Å)5.8539 (1), 11.3629 (3), 21.2080 (6)5.4705 (4), 10.1235 (7), 11.9956 (8)5.5269 (4), 34.979 (3), 8.4395 (6)18.5872 (5), 5.9733 (2), 18.6850 (5)
α, β, γ (°)90, 90.982 (2), 9086.708 (6), 85.489 (6), 74.394 (7)90, 93.102 (7), 9090, 104.858 (3), 90
V3)1410.49 (6)637.40 (8)1629.2 (2)2005.17 (10)
Z4244
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.300.290.360.32
Crystal size (mm)0.20 × 0.12 × 0.050.26 × 0.15 × 0.060.4 × 0.03 × 0.020.20 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur E
diffractometer
Oxford Diffraction Xcalibur E
diffractometer
Oxford Diffraction Xcalibur E
diffractometer
Oxford Diffraction Xcalibur E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.874, 1.0000.897, 1.0000.908, 1.0000.968, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8710, 3549, 2955 7390, 2977, 2429 19991, 3515, 2212 9653, 4695, 3638
Rint0.0240.0260.1040.029
(sin θ/λ)max1)0.6820.6610.6390.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.03 0.045, 0.110, 1.04 0.055, 0.112, 1.01 0.048, 0.113, 1.03
No. of reflections3549297735154695
No. of parameters232206222307
No. of restraints3036
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.460.78, 0.380.35, 0.410.80, 0.44

Computer programs: CrystalClear-SM Expert (Rigaku, 2013), CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.91 (2)2.27 (2)3.1484 (13)161.8 (19)
N1—H2N···Cl1ii0.91 (2)2.27 (2)3.1795 (13)176.0 (18)
N1—H3N···O1iii0.91 (2)1.99 (2)2.8243 (16)150.2 (19)
N3—H4N···N2iv0.90 (2)1.98 (2)2.8763 (17)175.9 (19)
N3—H4N···O1iv0.90 (2)2.54 (2)3.0962 (15)121.1 (16)
O1W—H1W···Cl10.880 (10)2.621 (14)3.4607 (17)160 (3)
O1W—H2W···O1Wv0.881 (10)2.18 (2)2.995 (4)153 (4)
O1W—H3W···O1Wi0.882 (10)2.21 (2)3.030 (4)155 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+3, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.91 (2)2.30 (2)3.2088 (14)174.1 (18)
N1—H2N···Cl1ii0.86 (2)2.70 (2)3.2151 (13)119.8 (18)
N1—H2N···O1ii0.86 (2)2.13 (2)2.8701 (18)144 (2)
N1—H3N···Cl1iii0.92 (3)2.25 (3)3.1417 (14)163 (2)
N3—H4N···N2iv0.89 (2)2.01 (2)2.8957 (18)175.4 (19)
N3—H4N···O1iv0.89 (2)2.59 (2)3.1218 (16)119.6 (16)
O3—H1H···Cl10.886 (10)2.31 (2)3.170 (3)163 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x1, y+1, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.91 (3)2.44 (3)3.308 (2)159 (2)
N1—H2N···O2i0.88 (3)2.01 (3)2.810 (3)150 (3)
N1—H2N···Br1ii0.88 (3)2.95 (3)3.4022 (18)114 (2)
N1—H3N···Br1iii0.85 (3)2.46 (3)3.317 (2)178 (2)
N3—H4N···N2iv0.869 (10)2.019 (10)2.887 (2)179 (2)
N3—H4N···O2iv0.869 (10)2.57 (2)3.080 (2)119 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···I1i0.85 (4)2.64 (4)3.482 (4)172 (4)
N1—H2N···O2ii0.84 (4)2.00 (4)2.798 (4)158 (4)
N1—H3N···I10.96 (4)2.59 (4)3.524 (3)165 (3)
N4—H4N···N2iii0.91 (4)2.00 (4)2.906 (5)174 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···F3i0.93 (2)1.92 (2)2.7912 (17)156.0 (19)
N1—H2N···O2ii0.88 (2)2.05 (2)2.8196 (19)144.7 (18)
N1—H3N···O1W0.92 (2)1.87 (3)2.7762 (19)166 (2)
N3—H4N···N2iii0.89 (2)2.02 (2)2.9092 (17)176.8 (19)
N3—H4N···O2iii0.89 (2)2.58 (2)3.1307 (17)121.2 (15)
O1W—H1W···F4iv0.867 (10)2.032 (12)2.8790 (15)165 (2)
O1W—H2W···F10.877 (9)1.937 (11)2.7863 (17)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z+2; (iii) x, y, z+2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.96 (3)1.85 (3)2.803 (3)171 (3)
N1—H1N···O4i0.96 (3)2.42 (3)2.968 (3)116 (2)
N1—H2N···O30.85 (3)2.31 (3)2.912 (3)128 (3)
N1—H2N···O50.85 (3)2.32 (3)3.021 (3)140 (3)
N1—H3N···O1ii0.95 (3)1.85 (3)2.784 (2)166 (3)
N3—H4N···N2iii0.85 (3)2.06 (3)2.911 (3)176 (2)
N3—H4N···O1iii0.85 (3)2.55 (3)3.085 (2)122 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (VII) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.905 (10)2.048 (14)2.929 (4)164 (3)
N1—H2N···O4ii0.902 (10)2.169 (19)2.980 (4)149 (3)
N1—H2N···O3iii0.902 (10)2.26 (3)2.705 (3)110 (2)
N1—H3N···O50.913 (10)1.890 (11)2.801 (3)176 (3)
N2—H4N···N4iv0.89 (3)1.99 (3)2.882 (4)174 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (VIII) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1W0.95 (3)1.80 (3)2.733 (3)170 (3)
N1—H2N···O2Wi0.90 (3)2.04 (3)2.873 (3)154 (3)
N1—H2N···O5ii0.90 (3)2.32 (3)2.793 (3)113 (2)
N1—H3N···O6iii0.94 (3)1.88 (3)2.780 (3)159 (3)
N2—H4N···N3iv0.87 (3)2.03 (3)2.897 (3)179 (3)
O3—H1H···O2W0.96 (4)1.69 (4)2.578 (3)153 (4)
O1W—H1W···O3v0.873 (10)1.892 (12)2.760 (3)173 (3)
O1W—H2W···O2vi0.874 (10)1.962 (10)2.834 (3)175 (3)
O2W—H3W···O5vii0.875 (10)1.852 (11)2.722 (3)172 (3)
O2W—H4W···O4ii0.880 (10)1.883 (14)2.737 (2)163 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+2, z; (v) x+1, y+2, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds