Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Three polymorphs of bis­(nitrito-κN)[tris­(2-amino­eth­yl)amine-κ4N,N′,N′′,N′′′]cobalt(III) chloride, [Co(NO2)2(C6H18N4)]Cl, have been structurally characterized in the 100–300 K temperature range. Two ortho­rhom­bic polymorphs are related by a solid-state enanti­otropic order–disorder k2 phase transition at ca 152 K. The third, monoclinic, polymorph crystallizes as a nonmerohedral twin. In the structure of the high-temperature (300 K) ortho­rhom­bic polymorph, the CoIII complex cation resides on a crystallographic mirror plane, whereas the Cl anion occupies a crystallographic twofold axis. In the unit cell of the monoclinic polymorph, the cationic CoIII complex is in a general position, whose charge is balanced by two halves of two Cl anions, each residing on a crystallographic twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961501270X/lg3170sup1.cif
Contains datablocks pbcm, pbca, a2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961501270X/lg3170pbcmsup2.hkl
Contains datablock pbcm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961501270X/lg3170pbcasup3.hkl
Contains datablock pbca

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961501270X/lg3170a2sup4.hkl
Contains datablock a2

CCDC references: 1050739; 1050740; 1050741

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT-Plus (Bruker, 2014); data reduction: SAINT-Plus (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

(pbcm) Bis(nitrito-κN)[tris(2-aminoethyl)amine-κ4N,N',N'',N''']cobalt(III) chloride top
Crystal data top
[Co(NO2)2(C6H18N4)]ClDx = 1.775 Mg m3
Mr = 332.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 9933 reflections
a = 8.4892 (1) Åθ = 2.4–26.4°
b = 12.1555 (2) ŵ = 1.61 mm1
c = 12.0631 (2) ÅT = 300 K
V = 1244.80 (3) Å3Block, orange
Z = 40.22 × 0.2 × 0.12 mm
F(000) = 688
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1339 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs1293 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.022
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.4°
0.5° ω and 0.5° φ scansh = 1010
Absorption correction: multi-scan
(SADABS2014; Krause et al., 2015)
k = 1515
Tmin = 0.341, Tmax = 0.430l = 1515
25379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.5979P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1339 reflectionsΔρmax = 0.47 e Å3
96 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.72722 (3)0.63251 (2)0.75000.01735 (9)
Cl11.03578 (6)0.75000.50000.03053 (13)
N20.95694 (19)0.64590 (13)0.75000.0223 (3)
H2A0.98570.69830.70260.027*0.5
H2B0.98960.66540.81730.027*0.5
N30.72223 (14)0.62018 (10)0.58872 (10)0.0258 (3)
H3A0.63270.64880.56330.031*
H3B0.80170.65840.56000.031*
N10.75791 (18)0.47226 (13)0.75000.0222 (3)
O10.70138 (18)0.84023 (10)0.66206 (10)0.0469 (3)
N40.70746 (19)0.78937 (13)0.75000.0244 (4)
N50.4950 (2)0.63174 (13)0.75000.0286 (4)
O20.42082 (15)0.63656 (12)0.66216 (11)0.0514 (4)
C10.9312 (2)0.44485 (17)0.75000.0285 (4)
H1A0.96130.41990.82340.034*0.5
H1B0.95000.38500.69850.034*0.5
C30.68122 (19)0.43054 (12)0.64690 (13)0.0309 (3)
H3C0.56750.43330.65420.037*
H3D0.71220.35490.63320.037*
C40.73445 (19)0.50344 (13)0.55273 (13)0.0335 (3)
H4A0.84250.48640.53310.040*
H4B0.66870.49110.48820.040*
C21.0323 (3)0.5411 (2)0.7182 (2)0.0301 (7)0.5
H2C1.13380.53500.75460.036*0.5
H2D1.04990.54020.63870.036*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01923 (14)0.01594 (14)0.01689 (15)0.00010 (9)0.0000.000
Cl10.0317 (3)0.0340 (3)0.0259 (2)0.0000.0000.00322 (19)
N20.0237 (8)0.0216 (8)0.0217 (8)0.0016 (6)0.0000.000
N30.0310 (6)0.0267 (6)0.0196 (6)0.0015 (5)0.0018 (5)0.0004 (5)
N10.0237 (8)0.0172 (7)0.0257 (9)0.0006 (6)0.0000.000
O10.0777 (9)0.0267 (6)0.0364 (7)0.0099 (6)0.0069 (6)0.0104 (5)
N40.0228 (8)0.0207 (8)0.0295 (9)0.0023 (6)0.0000.000
N50.0242 (8)0.0252 (8)0.0364 (10)0.0012 (7)0.0000.000
O20.0297 (6)0.0766 (10)0.0479 (8)0.0036 (6)0.0131 (6)0.0065 (6)
C10.0270 (10)0.0225 (9)0.0360 (11)0.0056 (8)0.0000.000
C30.0338 (7)0.0229 (7)0.0359 (8)0.0034 (6)0.0057 (7)0.0081 (6)
C40.0433 (9)0.0326 (8)0.0245 (8)0.0005 (6)0.0031 (6)0.0097 (6)
C20.0238 (12)0.0277 (13)0.039 (2)0.0044 (10)0.0068 (10)0.0003 (10)
Geometric parameters (Å, º) top
Co1—N21.9570 (16)O1—N41.2289 (14)
Co1—N3i1.9517 (12)N4—O1i1.2289 (14)
Co1—N31.9517 (12)N5—O2i1.2339 (15)
Co1—N11.9653 (17)N5—O21.2339 (15)
Co1—N41.9141 (16)C1—H1A0.9700
Co1—N51.9716 (18)C1—H1B0.9700
N2—H2A0.8900C1—C21.500 (3)
N2—H2B0.8900C3—H3C0.9700
N2—C21.477 (3)C3—H3D0.9700
N3—H3A0.8900C3—C41.510 (2)
N3—H3B0.8900C4—H4A0.9700
N3—C41.4876 (19)C4—H4B0.9700
N1—C11.508 (2)C2—H2C0.9700
N1—C3i1.4926 (17)C2—H2D0.9700
N1—C31.4926 (17)
N2—Co1—N187.15 (7)C3—N1—C3i112.87 (16)
N2—Co1—N5175.50 (7)O1i—N4—Co1120.32 (9)
N3i—Co1—N291.60 (4)O1—N4—Co1120.32 (9)
N3—Co1—N291.60 (4)O1i—N4—O1119.36 (18)
N3i—Co1—N3170.84 (7)O2i—N5—Co1120.66 (9)
N3—Co1—N185.80 (4)O2—N5—Co1120.66 (9)
N3i—Co1—N185.80 (4)O2i—N5—O2118.35 (19)
N3i—Co1—N588.74 (4)N1—C1—H1A109.1
N3—Co1—N588.74 (4)N1—C1—H1B109.1
N1—Co1—N597.35 (7)H1A—C1—H1B107.8
N4—Co1—N290.25 (7)C2—C1—N1112.68 (17)
N4—Co1—N394.28 (4)C2—C1—H1A109.1
N4—Co1—N3i94.28 (4)C2—C1—H1B109.1
N4—Co1—N1177.41 (7)N1—C3—H3C110.3
N4—Co1—N585.24 (7)N1—C3—H3D110.3
Co1—N2—H2A109.4N1—C3—C4107.28 (12)
Co1—N2—H2B109.4H3C—C3—H3D108.5
H2A—N2—H2B108.0C4—C3—H3C110.3
C2—N2—Co1111.08 (14)C4—C3—H3D110.3
C2—N2—H2A109.4N3—C4—C3108.63 (12)
C2—N2—H2B109.4N3—C4—H4A110.0
Co1—N3—H3A109.4N3—C4—H4B110.0
Co1—N3—H3B109.4C3—C4—H4A110.0
H3A—N3—H3B108.0C3—C4—H4B110.0
C4—N3—Co1111.27 (9)H4A—C4—H4B108.3
C4—N3—H3A109.4N2—C2—C1111.01 (19)
C4—N3—H3B109.4N2—C2—H2C109.4
C1—N1—Co1110.38 (12)N2—C2—H2D109.4
C3—N1—Co1106.20 (9)C1—C2—H2C109.4
C3i—N1—Co1106.20 (9)C1—C2—H2D109.4
C3i—N1—C1110.51 (10)H2C—C2—H2D108.0
C3—N1—C1110.51 (10)
Co1—N2—C2—C128.8 (2)N1—C3—C4—N345.72 (16)
Co1—N3—C4—C322.78 (15)C1—N1—C3—C472.68 (16)
Co1—N1—C1—C216.11 (12)C3—N1—C1—C2101.07 (17)
Co1—N1—C3—C447.04 (14)C3i—N1—C1—C2133.28 (15)
N1—C1—C2—N229.3 (2)C3i—N1—C3—C4163.01 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.892.563.3382 (7)147
N2—H2B···Cl1i0.892.463.3382 (7)168
N3—H3A···O20.892.162.7151 (18)120
N3—H3B···Cl10.892.393.2742 (13)173
Symmetry code: (i) x, y, z+3/2.
(pbca) Bis(nitrito-κN)[tris(2-aminoethyl)amine-κ4N,N',N'',N''']cobalt(III) chloride top
Crystal data top
[Co(NO2)2(C6H18N4)]ClDx = 1.822 Mg m3
Mr = 332.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9947 reflections
a = 16.7032 (6) Åθ = 3.0–26.4°
b = 12.0743 (4) ŵ = 1.65 mm1
c = 12.0288 (4) ÅT = 100 K
V = 2425.96 (14) Å3Block, orange
Z = 80.27 × 0.2 × 0.12 mm
F(000) = 1376
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2277 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.021
0.5° ω and 0.5° φ scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS2014; Krause et al., 2015)
h = 2020
Tmin = 0.322, Tmax = 0.430k = 1515
49052 measured reflectionsl = 1515
2475 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.7351P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2475 reflectionsΔρmax = 0.44 e Å3
163 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.63574 (2)0.36734 (2)0.25510 (2)0.00590 (7)
O10.64362 (5)0.15880 (7)0.16448 (7)0.01557 (18)
O20.79136 (5)0.36189 (7)0.16599 (7)0.01750 (19)
O30.65149 (5)0.15776 (7)0.34258 (7)0.01518 (18)
O40.79157 (5)0.35893 (7)0.34358 (7)0.01741 (19)
N10.62188 (6)0.52908 (9)0.25711 (6)0.0082 (2)
N20.51891 (6)0.35622 (8)0.25260 (6)0.0088 (2)
H2A0.50390.30120.20530.011*
H2B0.50080.33870.32170.011*
N30.63816 (5)0.38214 (8)0.09294 (8)0.00964 (19)
H3A0.68340.34980.06610.012*
H3B0.59540.34610.06320.012*
N40.64472 (6)0.20922 (9)0.25413 (6)0.0091 (2)
N50.75374 (7)0.36565 (8)0.25509 (6)0.0104 (2)
N60.63834 (5)0.37710 (7)0.41703 (8)0.00917 (19)
H6A0.59760.33610.44590.011*
H6B0.68530.34850.44250.011*
C10.53413 (7)0.55850 (9)0.25567 (8)0.0101 (2)
H1A0.52580.62280.20600.012*
H1B0.51720.58030.33150.012*
C20.48252 (6)0.46250 (9)0.21619 (9)0.0122 (2)
H2C0.42790.46950.24750.015*
H2D0.47830.46400.13410.015*
C30.66379 (6)0.57144 (9)0.15573 (8)0.0111 (2)
H3C0.72250.56550.16500.013*
H3D0.65000.65010.14280.013*
C40.63614 (6)0.50079 (9)0.05839 (9)0.0123 (2)
H4A0.58110.52190.03660.015*
H4B0.67190.51250.00620.015*
C50.65963 (6)0.56942 (9)0.36251 (9)0.0104 (2)
H5A0.64360.64690.37750.012*
H5B0.71870.56630.35670.012*
C60.63052 (6)0.49387 (9)0.45511 (9)0.0115 (2)
H6C0.66300.50570.52300.014*
H6D0.57390.51050.47290.014*
Cl10.47975 (2)0.25197 (2)0.00029 (2)0.01040 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00676 (11)0.00528 (11)0.00567 (11)0.00004 (5)0.00015 (4)0.00014 (4)
O10.0236 (4)0.0114 (4)0.0117 (4)0.0018 (3)0.0020 (3)0.0041 (3)
O20.0124 (4)0.0241 (5)0.0159 (4)0.0012 (3)0.0053 (3)0.0023 (3)
O30.0221 (4)0.0111 (4)0.0123 (4)0.0020 (3)0.0001 (3)0.0037 (3)
O40.0116 (4)0.0246 (5)0.0160 (4)0.0005 (3)0.0052 (3)0.0017 (3)
N10.0082 (4)0.0077 (5)0.0086 (5)0.0003 (3)0.0001 (3)0.0002 (3)
N20.0100 (5)0.0079 (5)0.0086 (5)0.0001 (4)0.0005 (3)0.0001 (3)
N30.0114 (5)0.0097 (4)0.0078 (5)0.0001 (3)0.0001 (3)0.0001 (3)
N40.0072 (5)0.0094 (5)0.0106 (5)0.0000 (4)0.0001 (3)0.0005 (3)
N50.0108 (5)0.0075 (5)0.0129 (5)0.0009 (3)0.0001 (3)0.0003 (3)
N60.0105 (5)0.0087 (4)0.0082 (5)0.0006 (3)0.0003 (3)0.0001 (3)
C10.0093 (5)0.0079 (5)0.0130 (5)0.0024 (4)0.0004 (3)0.0002 (3)
C20.0108 (5)0.0104 (5)0.0154 (5)0.0015 (4)0.0025 (4)0.0004 (4)
C30.0127 (5)0.0094 (5)0.0111 (5)0.0024 (4)0.0026 (4)0.0029 (4)
C40.0178 (5)0.0103 (5)0.0087 (5)0.0005 (4)0.0011 (4)0.0024 (4)
C50.0117 (5)0.0089 (5)0.0106 (5)0.0024 (4)0.0018 (4)0.0016 (4)
C60.0158 (5)0.0106 (5)0.0082 (5)0.0003 (4)0.0009 (4)0.0027 (4)
Cl10.01074 (15)0.01112 (15)0.00934 (15)0.00040 (8)0.00013 (8)0.00088 (9)
Geometric parameters (Å, º) top
Co1—N11.9667 (11)N6—H6A0.9100
Co1—N21.9563 (11)N6—H6B0.9100
Co1—N31.9591 (10)N6—C61.4881 (14)
Co1—N41.9151 (11)C1—H1A0.9900
Co1—N51.9712 (11)C1—H1B0.9900
Co1—N61.9519 (10)C1—C21.5207 (15)
O1—N41.2386 (12)C2—H2C0.9900
O2—N51.2432 (12)C2—H2D0.9900
O3—N41.2373 (12)C3—H3C0.9900
O4—N51.2405 (12)C3—H3D0.9900
N1—C11.5082 (14)C3—C41.5205 (15)
N1—C31.4962 (13)C4—H4A0.9900
N1—C51.4974 (13)C4—H4B0.9900
N2—H2A0.9100C5—H5A0.9900
N2—H2B0.9100C5—H5B0.9900
N2—C21.4860 (14)C5—C61.5197 (15)
N3—H3A0.9100C6—H6C0.9900
N3—H3B0.9100C6—H6D0.9900
N3—C41.4921 (14)
N1—Co1—N597.35 (4)H6A—N6—H6B108.0
N2—Co1—N187.19 (4)C6—N6—Co1111.25 (7)
N2—Co1—N390.67 (3)C6—N6—H6A109.4
N2—Co1—N5175.39 (4)C6—N6—H6B109.4
N3—Co1—N185.65 (4)N1—C1—H1A109.2
N3—Co1—N588.87 (3)N1—C1—H1B109.2
N4—Co1—N1177.71 (4)N1—C1—C2112.03 (9)
N4—Co1—N290.55 (4)H1A—C1—H1B107.9
N4—Co1—N394.78 (4)C2—C1—H1A109.2
N4—Co1—N584.91 (4)C2—C1—H1B109.2
N4—Co1—N693.70 (3)N2—C2—C1109.53 (8)
N6—Co1—N186.01 (3)N2—C2—H2C109.8
N6—Co1—N292.39 (3)N2—C2—H2D109.8
N6—Co1—N3170.96 (5)C1—C2—H2C109.8
N6—Co1—N588.76 (3)C1—C2—H2D109.8
C1—N1—Co1110.37 (7)H2C—C2—H2D108.2
C3—N1—Co1105.92 (7)N1—C3—H3C110.3
C3—N1—C1111.39 (8)N1—C3—H3D110.3
C3—N1—C5112.45 (9)N1—C3—C4107.09 (8)
C5—N1—Co1106.49 (7)H3C—C3—H3D108.6
C5—N1—C1110.02 (8)C4—C3—H3C110.3
Co1—N2—H2A109.5C4—C3—H3D110.3
Co1—N2—H2B109.5N3—C4—C3108.50 (9)
H2A—N2—H2B108.1N3—C4—H4A110.0
C2—N2—Co1110.69 (7)N3—C4—H4B110.0
C2—N2—H2A109.5C3—C4—H4A110.0
C2—N2—H2B109.5C3—C4—H4B110.0
Co1—N3—H3A109.4H4A—C4—H4B108.4
Co1—N3—H3B109.4N1—C5—H5A110.3
H3A—N3—H3B108.0N1—C5—H5B110.3
C4—N3—Co1111.37 (7)N1—C5—C6106.89 (8)
C4—N3—H3A109.4H5A—C5—H5B108.6
C4—N3—H3B109.4C6—C5—H5A110.3
O1—N4—Co1119.62 (7)C6—C5—H5B110.3
O3—N4—Co1120.18 (7)N6—C6—C5108.36 (9)
O3—N4—O1120.21 (11)N6—C6—H6C110.0
O2—N5—Co1120.38 (7)N6—C6—H6D110.0
O4—N5—Co1120.66 (7)C5—C6—H6C110.0
O4—N5—O2118.68 (11)C5—C6—H6D110.0
Co1—N6—H6A109.4H6C—C6—H6D108.4
Co1—N6—H6B109.4
Co1—N1—C1—C218.41 (9)N1—C5—C6—N646.66 (11)
Co1—N1—C3—C448.30 (9)C1—N1—C3—C471.73 (11)
Co1—N1—C5—C646.48 (9)C1—N1—C5—C673.14 (11)
Co1—N2—C2—C132.84 (10)C3—N1—C1—C298.96 (10)
Co1—N3—C4—C320.92 (10)C3—N1—C5—C6162.06 (8)
Co1—N6—C6—C524.92 (10)C5—N1—C1—C2135.64 (9)
N1—C1—C2—N233.37 (11)C5—N1—C3—C4164.23 (8)
N1—C3—C4—N345.28 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.912.583.3564 (8)144
N2—H2B···Cl1i0.912.433.3121 (8)163
N3—H3A···O20.912.172.7165 (12)118
N3—H3B···Cl10.912.373.2756 (9)176
N6—H6A···Cl1i0.912.333.2305 (9)170
N6—H6B···O40.912.142.7165 (12)120
Symmetry code: (i) x, y+1/2, z+1/2.
(a2) Bis(nitrito-κN)[tris(2-aminoethyl)amine-κ4N,N',N'',N''']cobalt(III) chloride top
Crystal data top
[Co(NO2)2(C6H18N4)]ClF(000) = 688
Mr = 332.64Dx = 1.777 Mg m3
Monoclinic, A2Mo Kα radiation, λ = 0.71073 Å
a = 8.856 (4) ÅCell parameters from 4064 reflections
b = 11.950 (5) Åθ = 3.4–26.2°
c = 11.750 (4) ŵ = 1.61 mm1
β = 90.000 (13)°T = 100 K
V = 1243.5 (8) Å3Block, orange
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2533 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs2418 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.053
Detector resolution: 7.9 pixels mm-1θmax = 26.3°, θmin = 2.3°
0.5\ ω and 0.5\ φ scansh = 1011
Absorption correction: multi-scan
(SADABS2014; Krause et al., 2015)
k = 1414
Tmin = 0.671, Tmax = 0.745l = 1414
10969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2533 reflectionsΔρmax = 0.45 e Å3
165 parametersΔρmin = 0.72 e Å3
1 restraintAbsolute structure: Twinning involves inversion, so Flack parameter cannot be determined
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.28312 (9)0.62203 (5)0.25609 (10)0.00941 (18)
O10.2855 (7)0.4024 (5)0.1906 (5)0.0273 (15)
O20.5810 (8)0.6161 (5)0.1684 (4)0.0203 (14)
O30.3526 (7)0.4253 (4)0.3640 (5)0.0215 (14)
O40.5745 (7)0.6384 (5)0.3492 (4)0.0202 (14)
N10.2418 (6)0.7837 (4)0.2434 (6)0.0120 (10)
N20.0638 (5)0.6011 (3)0.2563 (7)0.0096 (12)
H2A0.03240.58120.18540.011*
H2B0.03890.54500.30520.011*
N30.2935 (10)0.6210 (6)0.0915 (4)0.0129 (14)
H3A0.38740.59930.06920.016*
H3B0.22590.57060.06370.016*
N40.3107 (6)0.4635 (5)0.2721 (5)0.0125 (14)
N50.5059 (5)0.6297 (4)0.2587 (7)0.0128 (11)
N60.2800 (10)0.6479 (5)0.4204 (4)0.0107 (14)
H6A0.19890.61240.45130.013*
H6B0.36490.61850.45210.013*
C10.0740 (6)0.8054 (5)0.2453 (8)0.0137 (12)
H1A0.03900.82190.16710.016*
H1B0.05320.87190.29300.016*
C20.0139 (8)0.7062 (6)0.2916 (6)0.0136 (15)
H2C0.01890.71040.37570.016*
H2D0.11820.70720.26150.016*
C30.3066 (11)0.8199 (6)0.1312 (7)0.0144 (19)
H3C0.41800.82450.13600.017*
H3D0.26690.89440.10980.017*
C40.2602 (11)0.7331 (6)0.0438 (6)0.0156 (19)
H4A0.15100.73980.02690.019*
H4B0.31710.74440.02780.019*
C50.3176 (11)0.8366 (7)0.3423 (6)0.017 (2)
H5A0.28570.91570.34970.020*
H5B0.42860.83450.33250.020*
C60.2716 (12)0.7707 (6)0.4475 (5)0.0131 (17)
H6C0.34020.78860.51150.016*
H6D0.16750.79100.47020.016*
Cl10.00000.4971 (2)0.00000.0158 (7)
Cl20.00000.4871 (2)0.50000.0128 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0102 (3)0.0061 (3)0.0119 (4)0.0005 (4)0.0004 (6)0.0001 (6)
O10.041 (4)0.012 (2)0.029 (3)0.007 (3)0.010 (3)0.004 (3)
O20.017 (3)0.025 (3)0.019 (3)0.004 (3)0.007 (2)0.001 (3)
O30.035 (4)0.011 (3)0.018 (3)0.008 (3)0.001 (3)0.004 (2)
O40.015 (3)0.026 (3)0.019 (3)0.004 (3)0.005 (2)0.001 (2)
N10.015 (2)0.011 (2)0.010 (3)0.001 (2)0.002 (3)0.004 (3)
N20.014 (2)0.006 (3)0.009 (3)0.0013 (17)0.005 (4)0.003 (3)
N30.012 (3)0.010 (3)0.017 (3)0.002 (3)0.002 (3)0.000 (3)
N40.012 (3)0.010 (3)0.016 (4)0.001 (2)0.003 (3)0.002 (3)
N50.016 (2)0.007 (2)0.015 (3)0.001 (3)0.005 (3)0.003 (3)
N60.011 (3)0.008 (3)0.012 (3)0.001 (3)0.002 (3)0.002 (2)
C10.016 (3)0.012 (3)0.013 (3)0.005 (2)0.002 (5)0.000 (4)
C20.013 (3)0.010 (3)0.018 (4)0.003 (3)0.002 (3)0.002 (2)
C30.013 (5)0.011 (3)0.019 (4)0.002 (3)0.003 (4)0.005 (3)
C40.020 (5)0.013 (4)0.014 (4)0.004 (4)0.002 (3)0.002 (3)
C50.024 (6)0.014 (4)0.011 (4)0.003 (4)0.004 (4)0.005 (3)
C60.019 (4)0.006 (3)0.015 (4)0.000 (3)0.004 (3)0.004 (3)
Cl10.0193 (18)0.0139 (13)0.0143 (13)0.0000.0017 (14)0.000
Cl20.0144 (17)0.0118 (13)0.0121 (12)0.0000.0018 (13)0.000
Geometric parameters (Å, º) top
Co1—N11.972 (5)N6—H6A0.9100
Co1—N21.959 (5)N6—H6B0.9100
Co1—N31.936 (5)N6—C61.503 (8)
Co1—N41.919 (6)C1—H1A0.9900
Co1—N51.975 (5)C1—H1B0.9900
Co1—N61.956 (5)C1—C21.518 (9)
O1—N41.225 (8)C2—H2C0.9900
O2—N51.263 (9)C2—H2D0.9900
O3—N41.230 (8)C3—H3C0.9900
O4—N51.229 (9)C3—H3D0.9900
N1—C11.509 (7)C3—C41.517 (10)
N1—C31.502 (10)C4—H4A0.9900
N1—C51.484 (10)C4—H4B0.9900
N2—H2A0.9100C5—H5A0.9900
N2—H2B0.9100C5—H5B0.9900
N2—C21.490 (8)C5—C61.521 (10)
N3—H3A0.9100C6—H6C0.9900
N3—H3B0.9100C6—H6D0.9900
N3—C41.481 (10)
N1—Co1—N598.1 (2)H6A—N6—H6B108.0
N2—Co1—N186.60 (19)C6—N6—Co1111.4 (4)
N2—Co1—N5175.2 (2)C6—N6—H6A109.4
N3—Co1—N186.5 (3)C6—N6—H6B109.4
N3—Co1—N292.7 (4)N1—C1—H1A109.2
N3—Co1—N588.2 (4)N1—C1—H1B109.2
N3—Co1—N6171.1 (3)N1—C1—C2112.1 (5)
N4—Co1—N1176.4 (3)H1A—C1—H1B107.9
N4—Co1—N290.0 (2)C2—C1—H1A109.2
N4—Co1—N394.9 (3)C2—C1—H1B109.2
N4—Co1—N585.2 (2)N2—C2—C1108.7 (5)
N4—Co1—N693.5 (3)N2—C2—H2C109.9
N6—Co1—N185.2 (3)N2—C2—H2D109.9
N6—Co1—N290.3 (4)C1—C2—H2C109.9
N6—Co1—N589.5 (4)C1—C2—H2D109.9
C1—N1—Co1110.5 (4)H2C—C2—H2D108.3
C3—N1—Co1106.1 (4)N1—C3—H3C110.3
C3—N1—C1109.9 (7)N1—C3—H3D110.3
C5—N1—Co1105.9 (5)N1—C3—C4107.1 (6)
C5—N1—C1111.2 (7)H3C—C3—H3D108.6
C5—N1—C3113.1 (6)C4—C3—H3C110.3
Co1—N2—H2A109.5C4—C3—H3D110.3
Co1—N2—H2B109.5N3—C4—C3107.9 (6)
H2A—N2—H2B108.1N3—C4—H4A110.1
C2—N2—Co1110.5 (4)N3—C4—H4B110.1
C2—N2—H2A109.5C3—C4—H4A110.1
C2—N2—H2B109.5C3—C4—H4B110.1
Co1—N3—H3A109.4H4A—C4—H4B108.4
Co1—N3—H3B109.4N1—C5—H5A110.3
H3A—N3—H3B108.0N1—C5—H5B110.3
C4—N3—Co1111.3 (5)N1—C5—C6107.1 (7)
C4—N3—H3A109.4H5A—C5—H5B108.5
C4—N3—H3B109.4C6—C5—H5A110.3
O1—N4—Co1119.2 (5)C6—C5—H5B110.3
O1—N4—O3121.3 (6)N6—C6—C5108.7 (6)
O3—N4—Co1119.5 (5)N6—C6—H6C110.0
O2—N5—Co1120.5 (5)N6—C6—H6D110.0
O4—N5—Co1120.8 (6)C5—C6—H6C110.0
O4—N5—O2118.5 (5)C5—C6—H6D110.0
Co1—N6—H6A109.4H6C—C6—H6D108.3
Co1—N6—H6B109.4
Co1—N1—C1—C217.5 (9)N1—C5—C6—N643.7 (10)
Co1—N1—C3—C444.9 (7)C1—N1—C3—C474.6 (7)
Co1—N1—C5—C649.3 (7)C1—N1—C5—C670.8 (8)
Co1—N2—C2—C135.6 (8)C3—N1—C1—C2134.2 (7)
Co1—N3—C4—C328.4 (9)C3—N1—C5—C6165.1 (7)
Co1—N6—C6—C517.7 (10)C5—N1—C1—C299.9 (7)
N1—C1—C2—N234.4 (9)C5—N1—C3—C4160.6 (7)
N1—C3—C4—N348.1 (9)
Selected metric parameters (Å, °) of the [Co(NO2)2(tren)]+ cation in Forms I–III and in the DFT-optimized geometry of [Co(NO2)2(tren)]Cl top
Form I (Pcmb) (Chin et al., 1990)Form I (Pbcm)Form II (Pbca)Form III (A2)DFT of [Co(NO2)2(tren)]+
Co1—N11.963 (3)1.9653 (17)1.9667 (11)1.972 (5)2.013
Co1—N21.943 (4)1.9570 (16)1.9563 (11)1.959 (5)1.993
Co1—N31.950 (2)1.9517 (12)1.9591 (10)1.936 (5)1.988
Co1—N41.909 (3)1.9141 (16)1.9151 (11)1.919 (6)1.929
Co1—N51.955 (4)1.9716 (18)1.9712 (11)1.975 (5)2.014
Co1—N61.9519 (10)1.956 (5)1.987
Dihedral angles
O1/O3/N4—NCoN909093.51 (3)107.4 (3)126.6
O2/O4/N5—NCoN909090.60 (4)91.6 (3)96.2
Metric parameters (Å, °) of the hydrogen-bonding interactions observed in Forms I–III of [Co(NO2)2(tren)]Cl top
D—H···AD—HH···AD···AD—H···A
Form I (space group Pbcm)
N2—H2A···Cl10.892.563.3382 (8)147
N2—H2B···Cl1i0.892.463.3382 (7)168
N3—H3A···O20.892.162.7151 (18)120
N3—H3B···Cl10.892.393.2742 (13)173
Form II (space group Pbca)
N2—H2A···Cl10.912.583.3564 (8)144
N2—H2B···Cl1ii0.912.433.3121 (8)163
N3—H3A···O20.912.172.7165 (12)118
N3—H3B···Cl10.912.373.2756 (9)176
N6—H6A···Cl1ii0.912.333.2305 (9)170
N6—H6B···O40.912.142.7165 (12)120
Form III (space group A2)
N2—H2A···Cl10.912.423.307 (8)166
N2—H2B···Cl20.912.423.220 (8)148
N3—H3A···O20.912.082.703 (10)124
N3—H3B···Cl10.912.313.178 (8)160
N6—H6A···Cl20.912.383.274 (8)167
N6—H6B···O4iii0.912.413.001 (8)123
Symmetry codes: (i) x, y, -z+3/2; (ii) x, -y+1/2, z+1/2; (iii) -x+1, y, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds