Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, 4-ammonio-2,2,6,6-tetramethyl­piperi­dinium chromate dihydrate, (C9H22N2)[CrO4]·2H2O, crystallizes in the monoclinic system with one organic cation and one chromate anion in the asymmetric unit, together with three independent sites for water molecules, two of which have their O atoms located on twofold axes. The structure is composed of layers built up from CrO42− tetrahedra and water molecules alternating with C9H22N22+ cations and additional water molecules. Two types of hydrogen bonds, O—H...O and N—H...O, ensure the cohesion and stability of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101008447/ln1120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101008447/ln1120Isup2.hkl
Contains datablock I

CCDC reference: 179247

Comment top

De nombreux travaux ont été consacrés à l'étude tant chimique que structurale de chromates associés aux cations minéraux mais à notre connaissance, peu de publications font référence à des chromates associés aux cations organiques. En effet, uniquement trois chromates organiques ont déjà fait l'objet d'investigations structurales: (CN3H6)2CrO4 (Cygler et al., 1976) et C8H24N2CrO4.xH2O (x = 0,5 ou 2; Sorehkin et al., 1978). Récemment nous avons étudié le chromate de 2,2-diméthylpropylènediammonium, (C5H16N2)CrO4 (Chebbi et al., 2000) où le cation organique présente une chaîne carbonnée ouverte. Le présent travail concerne un chromate associé à un cation organique cyclique: l'ion 4-ammonium-2,2,6,6 - tétraméthylpipéridinium. Il s'agit du composé C9H22N2CrO4·2H2O, (I). Nous décrivons sa préparation chimique et ses caractéristiques structurales. \sch

L'unité asymétrique de la maille de (I) (Fig. 1) contient l'anion chromate CrO42-, le cation organique C9H22N22+ et trois sites indépendants de molécules d'eau O5, O6 et O7 dont deux (O5 et O6) sont situés dans deux positions spéciales 4(e).

La structure de (I) (Fig. 2) e s t constituée de couches inorganiques, contenant les anions CrO42- et les molécules d'eau O5 et O6, parallèles au plan (201) alternées avec des couches organiques formées de cations C9H22N22+ et de molécules d'eau O7.

La valeur moyenne des angles O—Cr—O [109,5(2)°] correspond á un tétraèdre régulier. Les distances Cr—O et O—O varient respectivement dans les domaines 1,620 (3)–1,640 (2) Å e t 2,624 (5)–2,694 (5) Å. Ces valeurs sont comparables à celles du même anion étudié avec d'autres types de cations (Cygler et al., 1976; Stephens & Cruickshank, 1970; Riou & Roult, 1979; Khan & Baur, 1972). En effet, le calcul des indices de distortion (ID) du tétraèdre CrO4 (Baur, 1974) montre une forte distortion des distances O—O [ID(O—O) = 0,0092] par rapport aux distances Cr—O [ID(Cr—O) = 0,0034].

L'arrangement moléculaire contient un cation organique C9H22N22+. Les valeurs moyennes des longueurs des liaisons C—N [1,517 (5) Å] et C—C [1,527 (6) Å] sont en accord avec celles rencontrées dans le composé (C5H16N2)CrO4 (Chebbi et al., 2000).

Les cations C9H22N22+ sont intercalés entre les couches inorganiques et assurent la liaison entre ces dernières grâce à des liaisons hydrogène de type N—H···O. Les molécules d'eau connectent par des liaisons hydrogène de type N—H···O et O—H···O respectivement les groupements organiques et inorganiques. Toutes ces liaisons hydrogène assurent la stabilité et la cohésion de l'édifice cristallin.

L'alternance des couches organiques et inorganiques rencontrées dans cette structure rappelle celle observée dans le composé (C5H16N2)CrO4 (Chebbi et al., 2000). Cependant ces deux structures diffèrent par la nature des liaisons hydrogène assurant la cohésion et la stabilité des édifices cristallins. En effet dans le composé (C5H16N2)CrO4 la cohésion de la structure est assurée uniquement par des liaisons hydrogène de type N—H···O, par contre dans le composé (I) un autre type de liaison hydrogène est observé (O—H···O) en plus des liaisons N—H···O comme nous l'avons détaillé ci-dessus. Ceci est dû à la présence des molécules d'eau dans la structure décrite dans ce travail. On remarque aussi que les couches cationiques dans les deux structures comparées diffèrent par la nature du cation organique qui est aliphatique dans (C5H16N2)CrO4 (l'ion 2,2-diméthylpropylènediammonium) et cyclique dans (I) (l'ion 4-ammonium-2,2,6,6 - tétraméthylpipéridinium).

Related literature top

For related literature, see: Baur (1974); Chebbi et al. (2000); Cygler et al. (1976); Khan & Baur (1972); Riou & Roult (1979); Sorehkin et al. (1978); Stephens & Cruickshank (1970).

Experimental top

Le composé (I) a été préparé à partir d'un mélange de C9H20N2 (3,1 g), CrO3 (2 g) et H2O (36 g) dans les proportions molaires respectives 1:1:100. Le mélange réactionnel obtenu est maintenu sous agitation magnétique, puis transvasé dans un cristallisoir. Aprés quelques jours d'évaporation à température ambiante, on obtient des cristaux en forme de plaquettes de couleur jaune.

Refinement top

Les atomes H ont été localisés par la synthèse de la densité éléctronique de différence a l'exception des atomes H des groupements méthyles et méthylènes qui ont été placés dans leurs positions calculés. Les atomes H des groupements méthyles et méthylènes ont été affinés en utilisant le `riding model' et en fixant U(H) = 0.05 Å2. Les autres atomes H ont été raffinés. Les atomes d'oxygène O5 et O6 de deux molécules d'eau sont situées dans deux positions spéciales 4(e).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1997) et PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. La structure moléculaire de (I). Les ellipsoîdes d'agitation thermique ont 50% de probabilité d'existence.
[Figure 2] Fig. 2. Projection selon l'axe b (PLATON; Spek, 1990) de la structure de (I) montrant les liaisons hydrogène.
4-ammonio-2,2,6,6 - tétraméthylpipéridinium chromate dihydrate top
Crystal data top
C9H22N22+·CrO42·2H2OF(000) = 1328
Mr = 310.32Dx = 1.465 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 13.566 (9) ÅCell parameters from 25 reflections
b = 9.617 (2) Åθ = 2.6–27°
c = 22.025 (11) ŵ = 0.83 mm1
β = 101.73 (4)°T = 293 K
V = 2813 (2) Å3Plate, yellow
Z = 80.58 × 0.29 × 0.25 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2388 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
ω/2θ scansh = 170
Absorption correction: ψ-scan
(North et al., 1968)
k = 120
Tmin = 0.804, Tmax = 0.812l = 2728
3194 measured reflections2 standard reflections every 120 min
3066 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0698P)2 + 3.9256P]
where P = (Fo2 + 2Fc2)/3
3066 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C9H22N22+·CrO42·2H2OV = 2813 (2) Å3
Mr = 310.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.566 (9) ŵ = 0.83 mm1
b = 9.617 (2) ÅT = 293 K
c = 22.025 (11) Å0.58 × 0.29 × 0.25 mm
β = 101.73 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2388 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.804, Tmax = 0.8122 standard reflections every 120 min
3194 measured reflections intensity decay: 0.6%
3066 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
3066 reflectionsΔρmin = 0.57 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.31062 (3)0.54178 (4)0.122497 (19)0.02853 (16)
O10.3168 (2)0.6051 (3)0.05463 (10)0.0557 (7)
O20.4179 (3)0.4720 (4)0.15596 (16)0.1002 (14)
O30.2199 (3)0.4295 (3)0.11497 (13)0.0779 (10)
O40.2910 (2)0.6721 (3)0.16653 (13)0.0545 (7)
N10.25733 (16)0.9187 (2)0.07077 (10)0.0224 (4)
N20.3267 (2)1.1256 (3)0.24467 (12)0.0357 (6)
C10.1156 (2)1.0927 (3)0.06007 (14)0.0367 (7)
H110.11071.07680.01650.050*
H120.15461.17500.07230.050*
H130.04931.10450.06840.050*
C20.35561 (18)1.0008 (3)0.08380 (11)0.0234 (5)
C30.38135 (18)1.0330 (3)0.15337 (11)0.0262 (5)
H310.40020.94740.17600.050*
H320.43891.09500.16180.050*
C40.29413 (19)1.0997 (3)0.17662 (11)0.0266 (5)
H40.27581.18790.15490.050*
C50.2036 (2)1.0020 (3)0.16538 (12)0.0274 (5)
H510.14911.04480.18110.050*
H520.22170.91640.18820.050*
C60.16692 (18)0.9676 (3)0.09681 (12)0.0240 (5)
C70.0937 (2)0.8452 (3)0.08804 (14)0.0331 (6)
H710.03520.86910.10410.050*
H720.12590.76560.10980.050*
H730.07390.82390.04470.050*
C80.4350 (2)0.9062 (3)0.06596 (15)0.0369 (7)
H810.49950.95110.07580.050*
H820.41810.88750.02230.050*
H830.43760.82040.08850.050*
C90.3464 (2)1.1318 (3)0.04422 (13)0.0349 (6)
H910.41211.17060.04580.050*
H920.30501.19840.05980.050*
H930.31641.10890.00210.050*
O50.50000.3046 (4)0.25000.0405 (8)
O60.50000.6913 (5)0.25000.0648 (12)
O70.1342 (3)0.3619 (4)0.20900 (16)0.0817 (11)
H1N10.270 (2)0.839 (3)0.0830 (12)0.015 (6)*
H2N10.241 (3)0.916 (4)0.0297 (18)0.048 (10)*
H1N20.370 (3)1.184 (4)0.2506 (16)0.038 (9)*
H2N20.280 (3)1.158 (5)0.2639 (19)0.066 (13)*
H3N20.349 (3)1.047 (5)0.2596 (19)0.055 (12)*
HO50.519 (3)0.346 (4)0.2744 (17)0.049 (12)*
HO60.523 (4)0.642 (5)0.273 (2)0.086 (18)*
H1O70.089 (3)0.323 (5)0.208 (2)0.053 (14)*
H2O70.144 (4)0.377 (5)0.170 (2)0.085 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0380 (3)0.0252 (2)0.0227 (2)0.00546 (18)0.00688 (17)0.00261 (17)
O10.0771 (17)0.0600 (16)0.0255 (11)0.0299 (14)0.0000 (11)0.0087 (11)
O20.095 (3)0.140 (3)0.071 (2)0.084 (3)0.0297 (18)0.047 (2)
O30.123 (3)0.0606 (17)0.0565 (17)0.0537 (18)0.0327 (17)0.0128 (14)
O40.0642 (16)0.0407 (13)0.0648 (16)0.0044 (11)0.0276 (13)0.0210 (12)
N10.0239 (10)0.0184 (10)0.0236 (11)0.0021 (8)0.0018 (8)0.0001 (8)
N20.0394 (14)0.0391 (15)0.0286 (13)0.0068 (13)0.0067 (11)0.0128 (11)
C10.0323 (14)0.0315 (14)0.0418 (16)0.0078 (12)0.0026 (12)0.0043 (13)
C20.0242 (12)0.0238 (12)0.0226 (12)0.0034 (9)0.0053 (9)0.0008 (9)
C30.0239 (12)0.0295 (13)0.0242 (12)0.0007 (10)0.0023 (10)0.0004 (10)
C40.0302 (13)0.0246 (12)0.0236 (12)0.0013 (10)0.0022 (10)0.0045 (10)
C50.0265 (12)0.0279 (12)0.0284 (13)0.0021 (10)0.0068 (10)0.0028 (10)
C60.0203 (11)0.0233 (12)0.0280 (12)0.0000 (9)0.0037 (9)0.0009 (10)
C70.0261 (13)0.0336 (14)0.0390 (15)0.0077 (11)0.0051 (11)0.0029 (12)
C80.0316 (14)0.0394 (16)0.0429 (16)0.0031 (12)0.0150 (12)0.0121 (13)
C90.0426 (16)0.0315 (14)0.0298 (14)0.0105 (12)0.0052 (12)0.0062 (11)
O50.0495 (19)0.0297 (16)0.0365 (18)0.0000.0052 (15)0.000
O60.058 (2)0.065 (3)0.060 (3)0.0000.016 (2)0.000
O70.099 (3)0.097 (3)0.056 (2)0.034 (2)0.0333 (19)0.0314 (18)
Geometric parameters (Å, º) top
Cr—O31.620 (3)C3—H320.9700
Cr—O11.632 (2)C4—C51.527 (4)
Cr—O21.635 (3)C4—H40.9800
Cr—O41.640 (2)C5—C61.527 (4)
N1—C21.526 (3)C5—H510.9700
N1—C61.530 (3)C5—H520.9700
N1—H1N10.82 (3)C6—C71.527 (3)
N1—H2N10.89 (4)C7—H710.9600
N2—C41.495 (3)C7—H720.9600
N2—H1N20.80 (4)C7—H730.9600
N2—H2N20.89 (5)C8—H810.9600
N2—H3N20.86 (4)C8—H820.9600
C1—C61.536 (4)C8—H830.9600
C1—H110.9600C9—H910.9600
C1—H120.9600C9—H920.9600
C1—H130.9600C9—H930.9600
C2—C81.521 (4)O5—HO50.68 (3)
C2—C91.522 (4)O6—HO60.72 (5)
C2—C31.532 (3)O7—H1O70.72 (4)
C3—C41.523 (4)O7—H2O70.92 (5)
C3—H310.9700
O3—Cr—O1109.53 (14)N2—C4—C5109.2 (2)
O3—Cr—O2111.1 (2)C3—C4—C5109.9 (2)
O1—Cr—O2111.07 (16)N2—C4—H4109.8
O3—Cr—O4111.03 (15)C3—C4—H4109.8
O1—Cr—O4107.53 (14)C5—C4—H4109.8
O2—Cr—O4106.50 (18)C4—C5—C6112.5 (2)
C2—N1—C6120.46 (19)C4—C5—H51109.1
C2—N1—H1N1107.5 (19)C6—C5—H51109.1
C6—N1—H1N1107.4 (18)C4—C5—H52109.1
C2—N1—H2N1104 (2)C6—C5—H52109.1
C6—N1—H2N1110 (2)H51—C5—H52107.8
H1N1—N1—H2N1107 (3)C7—C6—C5111.4 (2)
C4—N2—H1N2110 (2)C7—C6—N1105.4 (2)
C4—N2—H2N2116 (3)C5—C6—N1108.2 (2)
H1N2—N2—H2N2104 (4)C7—C6—C1108.9 (2)
C4—N2—H3N2104 (3)C5—C6—C1111.9 (2)
H1N2—N2—H3N2111 (4)N1—C6—C1110.8 (2)
H2N2—N2—H3N2111 (4)C6—C7—H71109.5
C6—C1—H11109.5C6—C7—H72109.5
C6—C1—H12109.5H71—C7—H72109.5
H11—C1—H12109.5C6—C7—H73109.5
C6—C1—H13109.5H71—C7—H73109.5
H11—C1—H13109.5H72—C7—H73109.5
H12—C1—H13109.5C2—C8—H81109.5
C8—C2—C9109.1 (2)C2—C8—H82109.5
C8—C2—N1106.2 (2)H81—C8—H82109.5
C9—C2—N1110.7 (2)C2—C8—H83109.5
C8—C2—C3110.5 (2)H81—C8—H83109.5
C9—C2—C3112.4 (2)H82—C8—H83109.5
N1—C2—C3107.8 (2)C2—C9—H91109.5
C4—C3—C2112.7 (2)C2—C9—H92109.5
C4—C3—H31109.0H91—C9—H92109.5
C2—C3—H31109.0C2—C9—H93109.5
C4—C3—H32109.0H91—C9—H93109.5
C2—C3—H32109.0H92—C9—H93109.5
H31—C3—H32107.8H1O7—O7—H2O7110 (5)
N2—C4—C3108.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.82 (3)2.45 (3)3.161 (4)145 (2)
N1—H1N1···O40.82 (3)2.41 (3)3.144 (4)149 (2)
N1—H2N1···O1i0.89 (4)1.87 (4)2.750 (4)169 (4)
N2—H1N2···O5ii0.80 (4)2.11 (4)2.897 (4)165 (4)
N2—H2N2···O4iii0.89 (4)1.97 (4)2.801 (4)154 (4)
N2—H3N2···O7iii0.85 (5)1.91 (5)2.745 (5)166 (4)
O5—HO5···O2iv0.68 (4)2.00 (4)2.680 (5)176 (3)
O6—HO6···O2iv0.72 (5)2.29 (5)3.007 (5)174 (6)
O7—H1O7···O6v0.72 (4)2.09 (4)2.738 (5)151 (5)
O7—H2O7···O30.91 (5)1.81 (5)2.653 (5)153 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1/2; (v) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H22N22+·CrO42·2H2O
Mr310.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.566 (9), 9.617 (2), 22.025 (11)
β (°) 101.73 (4)
V3)2813 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.58 × 0.29 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.804, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
3194, 3066, 2388
Rint0.017
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.05
No. of reflections3066
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.57

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1997) et PLATON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C21.526 (3)C2—C91.522 (4)
N1—C61.530 (3)C3—C41.523 (4)
N2—C41.495 (3)C4—C51.527 (4)
C1—C61.536 (4)C5—C61.527 (4)
C2—C81.521 (4)C6—C71.527 (3)
C2—N1—C6120.46 (19)N2—C4—C3108.4 (2)
C8—C2—N1106.2 (2)N2—C4—C5109.2 (2)
C9—C2—N1110.7 (2)C4—C5—C6112.5 (2)
C8—C2—C3110.5 (2)C7—C6—C5111.4 (2)
N1—C2—C3107.8 (2)C5—C6—N1108.2 (2)
C4—C3—C2112.7 (2)N1—C6—C1110.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.82 (3)2.45 (3)3.161 (4)145 (2)
N1—H1N1···O40.82 (3)2.41 (3)3.144 (4)149 (2)
N1—H2N1···O1i0.89 (4)1.87 (4)2.750 (4)169 (4)
N2—H1N2···O5ii0.80 (4)2.11 (4)2.897 (4)165 (4)
N2—H2N2···O4iii0.89 (4)1.97 (4)2.801 (4)154 (4)
N2—H3N2···O7iii0.85 (5)1.91 (5)2.745 (5)166 (4)
O5—HO5···O2iv0.68 (4)2.00 (4)2.680 (5)176 (3)
O6—HO6···O2iv0.72 (5)2.29 (5)3.007 (5)174 (6)
O7—H1O7···O6v0.72 (4)2.09 (4)2.738 (5)151 (5)
O7—H2O7···O30.91 (5)1.81 (5)2.653 (5)153 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1/2; (v) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds