Buy article online - an online subscription or single-article purchase is required to access this article.
The title compounds, C
21H
14F
2NO
2+·CF
3SO
3−, (I), and C
20H
11F
2NO
2, (II), form monoclinic and triclinic crystals, respectively. Adjacent cations of (I) are oriented in a `head-to-tail' manner and are linked to one another
via networks of C—H
O, C—F
π, S—O
π and multidirectional π–π interactions. Adjacent molecules of (II) are also arranged in a `head-to-tail' manner and are linked
via networks of C—H
O and multidirectional π–π interactions. The mean planes of the acridine moieties lie parallel in the lattices of both compounds. The benzene rings are also parallel. However, the acridine and difluorophenyl rings are mutually oriented at an angle of 17.3 (2)° in (I) and 5.8 (2)° in (II). This mutual orientation in various phenyl acridine-9-carboxylates and related compounds is strongly influenced by the nature of the substituents on the phenyl fragment.
Supporting information
CCDC references: 294328; 294329
Compound (II) was prepared by heating anhydrous acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-difluorophenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of triethylamine (1.5 molar excess) and a catalytic quantity of 4-(N,N-dimethyl)aminopyridine. The crude product was subsequently washed with dilute HCl, NaHCO3 and saturated saline, and then purified chromatographically with silica gel as the stationary phase and cyclohexane–ethyl acetate (1/1 v/v) as the mobile phase (yield 79%). Analysis, calculated for C22H14F5NO5S: C 71.6, H 3.3, N 4.2%; found: C 71.5, H 3.3, N 25.1%. Yellow crystals of (II) suitable for X-ray analysis were grown from cyclohexane (m.p. 454–455 K). Compound (I) was synthesized by treating compound (II) dissolved in anhydrous dichloromethane with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in the same solvent (in an Ar atmosphere at room temperature for 4 h). The crude salt was purified by repeated precipitation from an ethanol–diethyl ether solution (Ratio?) (yield 86%). Pale-yellow crystals of (I) suitable for X-ray investigations were grown from absolute ethanol (m.p. 504–506 K).
The methyl H atoms in (I) were located in difference Fourier syntheses and refined as a rigid rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). These H atoms were assumed to have two unique disordered orientations with an occupancy factor of 0.5. A l l other H atoms in (I) and (II) were placed geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).
For both compounds, data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
(I) 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
top
Crystal data top
C21H14F2NO2+·CF3O3S− | F(000) = 1016 |
Mr = 499.40 | Dx = 1.576 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 50 reflections |
a = 11.382 (2) Å | θ = 2.1–25.0° |
b = 14.048 (3) Å | µ = 0.23 mm−1 |
c = 13.162 (3) Å | T = 290 K |
β = 91.16 (3)° | Prism, yellow |
V = 2104.1 (8) Å3 | 0.5 × 0.3 × 0.2 mm |
Z = 4 | |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.029 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.1° |
Graphite monochromator | h = −13→13 |
θ/2θ scans | k = 0→16 |
3874 measured reflections | l = 0→15 |
3700 independent reflections | 3 standard reflections every 200 reflections |
1760 reflections with I > 2σ(I) | intensity decay: 4.5% |
Refinement top
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.144 | w = 1/[σ2(Fo2) + (0.0693P)2 + 0.9523P] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
3700 reflections | Δρmax = 0.27 e Å−3 |
309 parameters | Δρmin = −0.32 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0096 (9) |
Secondary atom site location: difference Fourier map | |
Crystal data top
C21H14F2NO2+·CF3O3S− | V = 2104.1 (8) Å3 |
Mr = 499.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.382 (2) Å | µ = 0.23 mm−1 |
b = 14.048 (3) Å | T = 290 K |
c = 13.162 (3) Å | 0.5 × 0.3 × 0.2 mm |
β = 91.16 (3)° | |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.029 |
3874 measured reflections | 3 standard reflections every 200 reflections |
3700 independent reflections | intensity decay: 4.5% |
1760 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 0.97 | Δρmax = 0.27 e Å−3 |
3700 reflections | Δρmin = −0.32 e Å−3 |
309 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.2189 (3) | 0.1066 (3) | 0.7437 (3) | 0.0627 (11) | |
H1 | 0.2645 | 0.0770 | 0.6951 | 0.075* | |
C2 | 0.1649 (4) | 0.0526 (3) | 0.8147 (4) | 0.0801 (14) | |
H2 | 0.1731 | −0.0132 | 0.8154 | 0.096* | |
C3 | 0.0957 (4) | 0.0998 (4) | 0.8878 (3) | 0.0812 (15) | |
H3 | 0.0596 | 0.0636 | 0.9374 | 0.097* | |
C4 | 0.0803 (3) | 0.1935 (4) | 0.8879 (3) | 0.0680 (12) | |
H4 | 0.0341 | 0.2215 | 0.9372 | 0.082* | |
C5 | 0.1544 (4) | 0.5034 (3) | 0.7376 (3) | 0.0652 (11) | |
H5 | 0.1040 | 0.5323 | 0.7830 | 0.078* | |
C6 | 0.2102 (4) | 0.5563 (3) | 0.6693 (4) | 0.0757 (13) | |
H6 | 0.1975 | 0.6217 | 0.6677 | 0.091* | |
C7 | 0.2870 (4) | 0.5158 (3) | 0.6008 (3) | 0.0722 (12) | |
H7 | 0.3266 | 0.5542 | 0.5552 | 0.087* | |
C8 | 0.3039 (3) | 0.4215 (3) | 0.6004 (3) | 0.0575 (10) | |
H8 | 0.3542 | 0.3951 | 0.5532 | 0.069* | |
C9 | 0.2634 (3) | 0.2634 (2) | 0.6712 (2) | 0.0412 (8) | |
N10 | 0.1186 (3) | 0.3475 (2) | 0.8115 (2) | 0.0545 (8) | |
C11 | 0.2072 (3) | 0.2069 (2) | 0.7423 (3) | 0.0462 (9) | |
C12 | 0.1337 (3) | 0.2509 (3) | 0.8139 (3) | 0.0521 (9) | |
C13 | 0.2473 (3) | 0.3613 (2) | 0.6697 (2) | 0.0442 (8) | |
C14 | 0.1712 (3) | 0.4037 (3) | 0.7413 (3) | 0.0481 (9) | |
C15 | 0.3510 (3) | 0.2186 (2) | 0.6045 (3) | 0.0445 (8) | |
O16 | 0.3152 (2) | 0.21948 (17) | 0.50565 (17) | 0.0538 (7) | |
O17 | 0.4403 (2) | 0.1845 (2) | 0.63328 (19) | 0.0648 (8) | |
C18 | 0.3917 (3) | 0.1757 (3) | 0.4379 (3) | 0.0506 (9) | |
C19 | 0.4711 (3) | 0.2286 (3) | 0.3850 (3) | 0.0597 (10) | |
C20 | 0.5439 (4) | 0.1868 (4) | 0.3164 (3) | 0.0712 (12) | |
H20 | 0.5976 | 0.2229 | 0.2805 | 0.085* | |
C21 | 0.5352 (4) | 0.0905 (4) | 0.3021 (3) | 0.0767 (14) | |
H21 | 0.5839 | 0.0613 | 0.2556 | 0.092* | |
C22 | 0.4576 (4) | 0.0363 (3) | 0.3537 (3) | 0.0766 (13) | |
H22 | 0.4526 | −0.0290 | 0.3430 | 0.092* | |
C23 | 0.3872 (3) | 0.0807 (3) | 0.4220 (3) | 0.0587 (10) | |
F24 | 0.4756 (2) | 0.32225 (18) | 0.4024 (2) | 0.0864 (8) | |
F25 | 0.3091 (2) | 0.02991 (18) | 0.4759 (2) | 0.0868 (8) | |
C26 | 0.0408 (4) | 0.3927 (3) | 0.8875 (3) | 0.0813 (14) | |
H26A | −0.0079 | 0.3450 | 0.9175 | 0.122* | 0.50 |
H26B | −0.0079 | 0.4396 | 0.8544 | 0.122* | 0.50 |
H26C | 0.0882 | 0.4227 | 0.9395 | 0.122* | 0.50 |
H26D | 0.0562 | 0.4599 | 0.8901 | 0.122* | 0.50 |
H26E | 0.0561 | 0.3652 | 0.9532 | 0.122* | 0.50 |
H26F | −0.0399 | 0.3822 | 0.8680 | 0.122* | 0.50 |
S27 | 0.88935 (9) | 0.23332 (7) | 0.13665 (7) | 0.0559 (3) | |
O28 | 0.9571 (2) | 0.3156 (2) | 0.1202 (2) | 0.0762 (8) | |
O29 | 0.9331 (3) | 0.1496 (2) | 0.0894 (2) | 0.0884 (11) | |
O30 | 0.8512 (3) | 0.2203 (3) | 0.2387 (2) | 0.0909 (10) | |
C31 | 0.7557 (4) | 0.2562 (3) | 0.0694 (3) | 0.0627 (10) | |
F32 | 0.7735 (3) | 0.2671 (3) | −0.02924 (19) | 0.1216 (12) | |
F34 | 0.7029 (2) | 0.3343 (2) | 0.1027 (2) | 0.1024 (9) | |
F33 | 0.6787 (2) | 0.1873 (2) | 0.0769 (2) | 0.1012 (9) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.056 (2) | 0.053 (3) | 0.078 (3) | −0.004 (2) | 0.000 (2) | 0.014 (2) |
C2 | 0.066 (3) | 0.071 (3) | 0.102 (4) | −0.009 (2) | −0.002 (3) | 0.035 (3) |
C3 | 0.060 (3) | 0.112 (5) | 0.071 (3) | −0.021 (3) | −0.003 (2) | 0.041 (3) |
C4 | 0.053 (2) | 0.098 (4) | 0.053 (3) | −0.011 (2) | 0.0046 (19) | 0.019 (2) |
C5 | 0.066 (3) | 0.064 (3) | 0.065 (3) | 0.015 (2) | −0.008 (2) | −0.019 (2) |
C6 | 0.099 (4) | 0.041 (2) | 0.086 (3) | 0.006 (2) | −0.016 (3) | −0.002 (2) |
C7 | 0.100 (3) | 0.051 (3) | 0.066 (3) | −0.006 (2) | 0.001 (2) | 0.005 (2) |
C8 | 0.072 (3) | 0.047 (3) | 0.054 (2) | 0.001 (2) | 0.0049 (19) | −0.0005 (19) |
C9 | 0.0402 (18) | 0.040 (2) | 0.0431 (19) | −0.0002 (15) | −0.0066 (14) | 0.0024 (16) |
N10 | 0.0447 (17) | 0.070 (2) | 0.0484 (19) | 0.0019 (16) | −0.0005 (14) | −0.0114 (17) |
C11 | 0.0350 (18) | 0.052 (2) | 0.052 (2) | −0.0020 (16) | −0.0038 (16) | 0.0077 (18) |
C12 | 0.0397 (18) | 0.071 (3) | 0.046 (2) | −0.0098 (19) | −0.0064 (15) | 0.005 (2) |
C13 | 0.0444 (19) | 0.046 (2) | 0.042 (2) | 0.0010 (16) | −0.0046 (16) | 0.0028 (17) |
C14 | 0.043 (2) | 0.050 (2) | 0.051 (2) | −0.0007 (17) | −0.0053 (17) | −0.0074 (18) |
C15 | 0.044 (2) | 0.040 (2) | 0.049 (2) | −0.0009 (16) | −0.0031 (16) | 0.0010 (17) |
O16 | 0.0502 (14) | 0.0664 (18) | 0.0444 (14) | 0.0152 (12) | −0.0050 (11) | −0.0038 (12) |
O17 | 0.0524 (16) | 0.086 (2) | 0.0552 (16) | 0.0209 (15) | −0.0054 (13) | −0.0059 (13) |
C18 | 0.046 (2) | 0.060 (3) | 0.045 (2) | 0.0107 (19) | −0.0038 (16) | −0.0060 (18) |
C19 | 0.064 (2) | 0.064 (3) | 0.051 (2) | 0.004 (2) | −0.004 (2) | −0.005 (2) |
C20 | 0.062 (3) | 0.101 (4) | 0.050 (2) | 0.010 (3) | 0.006 (2) | 0.006 (2) |
C21 | 0.074 (3) | 0.107 (4) | 0.049 (2) | 0.033 (3) | 0.003 (2) | −0.003 (3) |
C22 | 0.090 (3) | 0.072 (3) | 0.067 (3) | 0.034 (3) | −0.015 (3) | −0.016 (3) |
C23 | 0.057 (2) | 0.062 (3) | 0.057 (2) | 0.011 (2) | −0.005 (2) | −0.003 (2) |
F24 | 0.105 (2) | 0.0733 (19) | 0.0813 (17) | −0.0105 (15) | 0.0128 (14) | −0.0015 (14) |
F25 | 0.0962 (19) | 0.0684 (17) | 0.0961 (19) | −0.0082 (14) | 0.0110 (15) | −0.0033 (14) |
C26 | 0.074 (3) | 0.100 (4) | 0.071 (3) | 0.002 (3) | 0.024 (2) | −0.028 (3) |
S27 | 0.0549 (6) | 0.0667 (7) | 0.0463 (5) | 0.0080 (5) | 0.0058 (4) | 0.0063 (5) |
O28 | 0.0634 (18) | 0.086 (2) | 0.079 (2) | −0.0215 (16) | −0.0007 (15) | 0.0021 (16) |
O29 | 0.099 (2) | 0.063 (2) | 0.104 (2) | 0.0305 (17) | 0.042 (2) | 0.0125 (17) |
O30 | 0.096 (2) | 0.136 (3) | 0.0410 (15) | 0.005 (2) | 0.0115 (15) | 0.0156 (17) |
C31 | 0.061 (2) | 0.075 (3) | 0.052 (2) | −0.007 (2) | 0.0061 (18) | −0.009 (2) |
F32 | 0.100 (2) | 0.208 (4) | 0.0568 (16) | 0.004 (2) | −0.0165 (14) | 0.0227 (19) |
F34 | 0.0767 (18) | 0.0843 (19) | 0.146 (3) | 0.0292 (15) | −0.0048 (17) | −0.0114 (18) |
F33 | 0.0772 (17) | 0.114 (2) | 0.113 (2) | −0.0329 (17) | 0.0097 (16) | −0.0345 (17) |
Geometric parameters (Å, º) top
C1—C2 | 1.360 (5) | C15—O17 | 1.179 (4) |
C1—C11 | 1.415 (5) | O16—C18 | 1.401 (4) |
C1—H1 | 0.9300 | C18—C23 | 1.352 (5) |
C2—C3 | 1.419 (7) | C18—C19 | 1.370 (5) |
C2—H2 | 0.9300 | C19—F24 | 1.336 (5) |
C3—C4 | 1.329 (6) | C19—C20 | 1.370 (6) |
C3—H3 | 0.9300 | C20—C21 | 1.369 (6) |
C4—C12 | 1.412 (5) | C20—H20 | 0.9300 |
C4—H4 | 0.9300 | C21—C22 | 1.358 (6) |
C5—C6 | 1.337 (6) | C21—H21 | 0.9300 |
C5—C14 | 1.415 (5) | C22—C23 | 1.367 (6) |
C5—H5 | 0.9300 | C22—H22 | 0.9300 |
C6—C7 | 1.390 (6) | C23—F25 | 1.352 (4) |
C6—H6 | 0.9300 | C26—H26A | 0.9600 |
C7—C8 | 1.339 (5) | C26—H26B | 0.9600 |
C7—H7 | 0.9300 | C26—H26C | 0.9600 |
C8—C13 | 1.409 (5) | C26—H26D | 0.9600 |
C8—H8 | 0.9300 | C26—H26E | 0.9600 |
C9—C13 | 1.389 (5) | C26—H26F | 0.9600 |
C9—C11 | 1.393 (5) | S27—O28 | 1.409 (3) |
C9—C15 | 1.482 (5) | S27—O29 | 1.425 (3) |
N10—C12 | 1.367 (5) | S27—O30 | 1.432 (3) |
N10—C14 | 1.363 (5) | S27—C31 | 1.774 (4) |
N10—C26 | 1.491 (5) | C31—F33 | 1.311 (5) |
C11—C12 | 1.415 (5) | C31—F32 | 1.328 (4) |
C13—C14 | 1.423 (5) | C31—F34 | 1.329 (5) |
C15—O16 | 1.355 (4) | | |
| | | |
C2—C1—C11 | 121.3 (4) | F24—C19—C20 | 120.9 (4) |
C2—C1—H1 | 119.3 | F24—C19—C18 | 118.0 (4) |
C11—C1—H1 | 119.3 | C20—C19—C18 | 121.1 (4) |
C1—C2—C3 | 118.1 (4) | C21—C20—C19 | 118.1 (4) |
C1—C2—H2 | 121.0 | C21—C20—H20 | 121.0 |
C3—C2—H2 | 121.0 | C19—C20—H20 | 121.0 |
C4—C3—C2 | 122.6 (4) | C22—C21—C20 | 122.1 (4) |
C4—C3—H3 | 118.7 | C22—C21—H21 | 119.0 |
C2—C3—H3 | 118.7 | C20—C21—H21 | 119.0 |
C3—C4—C12 | 120.4 (4) | C21—C22—C23 | 118.0 (5) |
C3—C4—H4 | 119.8 | C21—C22—H22 | 121.0 |
C12—C4—H4 | 119.8 | C23—C22—H22 | 121.0 |
C6—C5—C14 | 120.6 (4) | C18—C23—F25 | 117.6 (3) |
C6—C5—H5 | 119.7 | C18—C23—C22 | 122.1 (4) |
C14—C5—H5 | 119.7 | F25—C23—C22 | 120.3 (4) |
C5—C6—C7 | 121.4 (4) | N10—C26—H26A | 109.5 |
C5—C6—H6 | 119.3 | N10—C26—H26B | 109.5 |
C7—C6—H6 | 119.3 | H26A—C26—H26B | 109.5 |
C8—C7—C6 | 120.0 (4) | N10—C26—H26C | 109.5 |
C8—C7—H7 | 120.0 | H26A—C26—H26C | 109.5 |
C6—C7—H7 | 120.0 | H26B—C26—H26C | 109.5 |
C7—C8—C13 | 121.5 (4) | N10—C26—H26D | 109.5 |
C7—C8—H8 | 119.2 | H26A—C26—H26D | 141.1 |
C13—C8—H8 | 119.2 | H26B—C26—H26D | 56.3 |
C13—C9—C11 | 120.8 (3) | H26C—C26—H26D | 56.3 |
C13—C9—C15 | 120.2 (3) | N10—C26—H26E | 109.5 |
C11—C9—C15 | 118.7 (3) | H26A—C26—H26E | 56.3 |
C14—N10—C12 | 122.2 (3) | H26B—C26—H26E | 141.1 |
C14—N10—C26 | 118.9 (3) | H26C—C26—H26E | 56.3 |
C12—N10—C26 | 119.0 (3) | H26D—C26—H26E | 109.5 |
C9—C11—C1 | 122.1 (3) | N10—C26—H26F | 109.5 |
C9—C11—C12 | 118.9 (3) | H26A—C26—H26F | 56.3 |
C1—C11—C12 | 118.9 (3) | H26B—C26—H26F | 56.3 |
N10—C12—C4 | 121.8 (4) | H26C—C26—H26F | 141.1 |
N10—C12—C11 | 119.7 (3) | H26D—C26—H26F | 109.5 |
C4—C12—C11 | 118.6 (4) | H26E—C26—H26F | 109.5 |
C9—C13—C8 | 122.8 (3) | O28—S27—O29 | 114.45 (18) |
C9—C13—C14 | 119.1 (3) | O28—S27—O30 | 115.2 (2) |
C8—C13—C14 | 118.1 (3) | O29—S27—O30 | 114.76 (19) |
N10—C14—C5 | 122.4 (4) | O28—S27—C31 | 104.0 (2) |
N10—C14—C13 | 119.3 (3) | O29—S27—C31 | 103.6 (2) |
C5—C14—C13 | 118.3 (4) | O30—S27—C31 | 102.55 (18) |
C9—C15—O16 | 111.9 (3) | F33—C31—F32 | 105.9 (4) |
C9—C15—O17 | 124.6 (3) | F33—C31—F34 | 106.1 (3) |
C15—O16—C18 | 115.4 (3) | F32—C31—F34 | 107.8 (4) |
O16—C15—O17 | 123.6 (3) | F33—C31—S27 | 113.4 (3) |
C23—C18—C19 | 118.7 (4) | F32—C31—S27 | 111.2 (3) |
C23—C18—O16 | 120.6 (3) | F34—C31—S27 | 112.0 (3) |
C19—C18—O16 | 120.7 (4) | | |
| | | |
C11—C1—C2—C3 | 0.2 (6) | C8—C13—C14—N10 | −177.7 (3) |
C1—C2—C3—C4 | 1.2 (7) | C9—C13—C14—C5 | −179.0 (3) |
C2—C3—C4—C12 | −0.1 (7) | C8—C13—C14—C5 | 1.5 (5) |
C14—C5—C6—C7 | −0.6 (7) | C13—C9—C15—O17 | 109.2 (4) |
C5—C6—C7—C8 | 1.8 (7) | C13—C9—C15—O16 | −72.1 (4) |
C6—C7—C8—C13 | −1.3 (6) | C11—C9—C15—O16 | 114.6 (3) |
C13—C9—C11—C1 | 178.0 (3) | O17—C15—O16—C18 | 0.6 (5) |
C15—C9—C11—C1 | −8.7 (5) | C9—C15—O16—C18 | −178.1 (3) |
C13—C9—C11—C12 | −0.4 (5) | C11—C9—C15—O17 | −64.2 (5) |
C15—C9—C11—C12 | 172.9 (3) | C15—O16—C18—C23 | 84.9 (4) |
C2—C1—C11—C9 | 178.9 (4) | C15—O16—C18—C19 | −96.3 (4) |
C2—C1—C11—C12 | −2.7 (5) | C23—C18—C19—F24 | −179.2 (3) |
C14—N10—C12—C4 | 178.9 (3) | O16—C18—C19—F24 | 2.0 (5) |
C26—N10—C12—C4 | −1.8 (5) | C23—C18—C19—C20 | 0.8 (6) |
C14—N10—C12—C11 | 0.7 (5) | O16—C18—C19—C20 | −178.0 (3) |
C26—N10—C12—C11 | −180.0 (3) | F24—C19—C20—C21 | 179.8 (4) |
C3—C4—C12—N10 | 179.4 (4) | C18—C19—C20—C21 | −0.1 (6) |
C3—C4—C12—C11 | −2.4 (6) | C19—C20—C21—C22 | −0.2 (7) |
C9—C11—C12—N10 | 0.4 (5) | C20—C21—C22—C23 | −0.3 (6) |
C1—C11—C12—N10 | −178.0 (3) | C19—C18—C23—F25 | 179.3 (3) |
C9—C11—C12—C4 | −177.8 (3) | O16—C18—C23—F25 | −1.9 (5) |
C1—C11—C12—C4 | 3.7 (5) | C19—C18—C23—C22 | −1.3 (6) |
C11—C9—C13—C8 | 178.8 (3) | O16—C18—C23—C22 | 177.6 (3) |
C15—C9—C13—C8 | 5.6 (5) | C21—C22—C23—C18 | 1.0 (6) |
C11—C9—C13—C14 | −0.7 (5) | C21—C22—C23—F25 | −179.6 (4) |
C15—C9—C13—C14 | −173.9 (3) | O28—S27—C31—F33 | −178.9 (3) |
C7—C8—C13—C9 | −179.8 (4) | O29—S27—C31—F33 | 61.1 (3) |
C7—C8—C13—C14 | −0.3 (6) | O30—S27—C31—F33 | −58.6 (3) |
C12—N10—C14—C5 | 179.0 (3) | O28—S27—C31—F32 | 61.8 (4) |
C26—N10—C14—C5 | −0.3 (5) | O29—S27—C31—F32 | −58.1 (4) |
C12—N10—C14—C13 | −1.8 (5) | O30—S27—C31—F32 | −177.8 (3) |
C26—N10—C14—C13 | 178.9 (3) | O28—S27—C31—F34 | −58.9 (3) |
C6—C5—C14—N10 | 178.1 (4) | O29—S27—C31—F34 | −178.8 (3) |
C6—C5—C14—C13 | −1.1 (6) | O30—S27—C31—F34 | 61.5 (3) |
C9—C13—C14—N10 | 1.8 (5) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.54 | 3.225 (5) | 131 |
C5—H5···O28ii | 0.93 | 2.59 | 3.417 (5) | 148 |
C22—H22···O17iii | 0.93 | 2.52 | 3.316 (5) | 144 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
(II) 2,6-difluorophenyl acridine-9-carboxylate
top
Crystal data top
C20H11F2NO2 | Z = 2 |
Mr = 335.30 | F(000) = 344 |
Triclinic, P1 | Dx = 1.460 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.306 (2) Å | Cell parameters from 50 reflections |
b = 9.057 (2) Å | θ = 2.5–25.0° |
c = 11.423 (2) Å | µ = 0.11 mm−1 |
α = 69.94 (3)° | T = 290 K |
β = 77.80 (3)° | Prism, yellow |
γ = 72.16 (3)° | 0.4 × 0.3 × 0.2 mm |
V = 762.9 (3) Å3 | |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.023 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.5° |
Graphite monochromator | h = −9→9 |
θ/2θ scans | k = −10→10 |
2875 measured reflections | l = 0→13 |
2681 independent reflections | 3 standard reflections every 200 reflections |
1314 reflections with I > 2σ(I) | intensity decay: 1.0% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.129 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2681 reflections | Δρmax = 0.18 e Å−3 |
227 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0025 (4) |
Crystal data top
C20H11F2NO2 | γ = 72.16 (3)° |
Mr = 335.30 | V = 762.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.306 (2) Å | Mo Kα radiation |
b = 9.057 (2) Å | µ = 0.11 mm−1 |
c = 11.423 (2) Å | T = 290 K |
α = 69.94 (3)° | 0.4 × 0.3 × 0.2 mm |
β = 77.80 (3)° | |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.023 |
2875 measured reflections | 3 standard reflections every 200 reflections |
2681 independent reflections | intensity decay: 1.0% |
1314 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.18 e Å−3 |
2681 reflections | Δρmin = −0.16 e Å−3 |
227 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | −0.0776 (3) | 0.6168 (3) | 0.1656 (2) | 0.0559 (6) | |
H1 | −0.1679 | 0.6153 | 0.2296 | 0.067* | |
C2 | −0.0846 (4) | 0.7473 (3) | 0.0628 (3) | 0.0659 (7) | |
H2 | −0.1798 | 0.8353 | 0.0569 | 0.079* | |
C3 | 0.0491 (4) | 0.7527 (3) | −0.0357 (2) | 0.0678 (8) | |
H3 | 0.0410 | 0.8436 | −0.1062 | 0.081* | |
C4 | 0.1891 (4) | 0.6276 (3) | −0.0290 (2) | 0.0602 (7) | |
H4 | 0.2769 | 0.6334 | −0.0948 | 0.072* | |
C5 | 0.5148 (3) | 0.1091 (3) | 0.1858 (3) | 0.0632 (7) | |
H5 | 0.6000 | 0.1182 | 0.1183 | 0.076* | |
C6 | 0.5382 (3) | −0.0231 (3) | 0.2866 (3) | 0.0684 (8) | |
H6 | 0.6399 | −0.1036 | 0.2883 | 0.082* | |
C7 | 0.4114 (3) | −0.0412 (3) | 0.3893 (3) | 0.0624 (7) | |
H7 | 0.4300 | −0.1335 | 0.4584 | 0.075* | |
C8 | 0.2629 (3) | 0.0734 (3) | 0.3892 (2) | 0.0514 (6) | |
H8 | 0.1790 | 0.0584 | 0.4573 | 0.062* | |
C9 | 0.0851 (3) | 0.3411 (3) | 0.27999 (19) | 0.0400 (5) | |
N10 | 0.3465 (2) | 0.3660 (2) | 0.07906 (17) | 0.0534 (5) | |
C11 | 0.0667 (3) | 0.4819 (3) | 0.17662 (19) | 0.0431 (6) | |
C12 | 0.2044 (3) | 0.4867 (3) | 0.0773 (2) | 0.0487 (6) | |
C13 | 0.2333 (3) | 0.2167 (3) | 0.2860 (2) | 0.0422 (5) | |
C14 | 0.3613 (3) | 0.2357 (3) | 0.1807 (2) | 0.0472 (6) | |
C15 | −0.0594 (3) | 0.3239 (3) | 0.3817 (2) | 0.0414 (5) | |
O16 | −0.03122 (18) | 0.35588 (19) | 0.48181 (14) | 0.0501 (5) | |
O17 | −0.1824 (2) | 0.2872 (2) | 0.37816 (15) | 0.0681 (6) | |
C18 | −0.1595 (3) | 0.3494 (3) | 0.5831 (2) | 0.0442 (6) | |
C19 | −0.1398 (3) | 0.2205 (3) | 0.6894 (2) | 0.0549 (7) | |
C20 | −0.2582 (4) | 0.2158 (4) | 0.7937 (2) | 0.0676 (8) | |
H20 | −0.2427 | 0.1273 | 0.8657 | 0.081* | |
C21 | −0.3992 (3) | 0.3434 (4) | 0.7898 (2) | 0.0680 (8) | |
H21 | −0.4805 | 0.3410 | 0.8598 | 0.082* | |
C22 | −0.4226 (3) | 0.4748 (4) | 0.6845 (2) | 0.0615 (7) | |
H22 | −0.5185 | 0.5617 | 0.6821 | 0.074* | |
C23 | −0.3012 (3) | 0.4746 (3) | 0.5829 (2) | 0.0519 (6) | |
F24 | −0.0005 (2) | 0.09652 (19) | 0.69054 (14) | 0.0841 (6) | |
F25 | −0.31815 (19) | 0.60132 (19) | 0.47740 (14) | 0.0791 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0566 (15) | 0.0487 (15) | 0.0511 (15) | −0.0047 (12) | −0.0026 (12) | −0.0108 (12) |
C2 | 0.0758 (18) | 0.0470 (15) | 0.0584 (17) | −0.0025 (13) | −0.0142 (15) | −0.0033 (13) |
C3 | 0.091 (2) | 0.0542 (17) | 0.0450 (16) | −0.0177 (17) | −0.0096 (15) | 0.0023 (13) |
C4 | 0.0785 (19) | 0.0564 (16) | 0.0394 (14) | −0.0230 (16) | 0.0048 (13) | −0.0083 (12) |
C5 | 0.0500 (15) | 0.0576 (17) | 0.0721 (18) | −0.0102 (13) | 0.0214 (13) | −0.0272 (15) |
C6 | 0.0476 (15) | 0.0536 (17) | 0.086 (2) | 0.0014 (13) | 0.0024 (15) | −0.0180 (16) |
C7 | 0.0558 (16) | 0.0512 (15) | 0.0641 (17) | −0.0046 (13) | −0.0005 (14) | −0.0094 (13) |
C8 | 0.0475 (14) | 0.0470 (14) | 0.0486 (14) | −0.0070 (12) | 0.0039 (11) | −0.0104 (12) |
C9 | 0.0412 (12) | 0.0410 (13) | 0.0352 (12) | −0.0107 (10) | 0.0020 (10) | −0.0119 (10) |
N10 | 0.0593 (13) | 0.0502 (13) | 0.0446 (12) | −0.0169 (11) | 0.0132 (9) | −0.0155 (10) |
C11 | 0.0463 (13) | 0.0428 (13) | 0.0371 (12) | −0.0102 (11) | −0.0002 (10) | −0.0120 (11) |
C12 | 0.0590 (15) | 0.0498 (14) | 0.0358 (13) | −0.0183 (13) | 0.0039 (11) | −0.0126 (11) |
C13 | 0.0399 (13) | 0.0428 (13) | 0.0403 (13) | −0.0086 (11) | 0.0026 (10) | −0.0141 (10) |
C14 | 0.0464 (14) | 0.0456 (14) | 0.0476 (14) | −0.0139 (11) | 0.0104 (11) | −0.0191 (12) |
C15 | 0.0378 (13) | 0.0406 (13) | 0.0385 (13) | −0.0047 (10) | −0.0004 (10) | −0.0100 (10) |
O16 | 0.0450 (9) | 0.0677 (11) | 0.0391 (9) | −0.0176 (8) | 0.0086 (7) | −0.0231 (8) |
O17 | 0.0535 (11) | 0.1069 (16) | 0.0573 (11) | −0.0363 (11) | 0.0112 (8) | −0.0376 (10) |
C18 | 0.0397 (12) | 0.0541 (14) | 0.0369 (13) | −0.0106 (11) | 0.0029 (10) | −0.0168 (11) |
C19 | 0.0498 (14) | 0.0574 (16) | 0.0488 (15) | −0.0027 (12) | −0.0009 (13) | −0.0181 (13) |
C20 | 0.0757 (19) | 0.0725 (19) | 0.0425 (15) | −0.0195 (16) | 0.0100 (14) | −0.0119 (13) |
C21 | 0.0628 (17) | 0.096 (2) | 0.0484 (17) | −0.0280 (17) | 0.0197 (13) | −0.0342 (16) |
C22 | 0.0426 (14) | 0.0808 (19) | 0.0578 (17) | −0.0030 (13) | 0.0043 (13) | −0.0339 (16) |
C23 | 0.0484 (15) | 0.0559 (15) | 0.0449 (15) | −0.0034 (13) | −0.0075 (12) | −0.0144 (12) |
F24 | 0.0820 (11) | 0.0667 (10) | 0.0689 (10) | 0.0119 (9) | 0.0010 (8) | −0.0106 (8) |
F25 | 0.0767 (10) | 0.0689 (10) | 0.0628 (10) | 0.0062 (8) | −0.0087 (8) | −0.0054 (8) |
Geometric parameters (Å, º) top
C1—C2 | 1.347 (3) | C9—C15 | 1.488 (3) |
C1—C11 | 1.416 (3) | N10—C12 | 1.339 (3) |
C1—H1 | 0.9300 | N10—C14 | 1.337 (3) |
C2—C3 | 1.403 (4) | C11—C12 | 1.430 (3) |
C2—H2 | 0.9300 | C13—C14 | 1.427 (3) |
C3—C4 | 1.346 (4) | C15—O16 | 1.352 (3) |
C3—H3 | 0.9300 | C15—O17 | 1.180 (3) |
C4—C12 | 1.422 (3) | O16—C18 | 1.395 (2) |
C4—H4 | 0.9300 | C18—C23 | 1.361 (3) |
C5—C6 | 1.343 (4) | C18—C19 | 1.364 (3) |
C5—C14 | 1.426 (3) | C19—F24 | 1.342 (3) |
C5—H5 | 0.9300 | C19—C20 | 1.372 (3) |
C6—C7 | 1.402 (4) | C20—C21 | 1.366 (4) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C7—C8 | 1.347 (3) | C21—C22 | 1.370 (4) |
C7—H7 | 0.9300 | C21—H21 | 0.9300 |
C8—C13 | 1.418 (3) | C22—C23 | 1.367 (3) |
C8—H8 | 0.9300 | C22—H22 | 0.9300 |
C9—C13 | 1.387 (3) | C23—F25 | 1.347 (3) |
C9—C11 | 1.403 (3) | | |
| | | |
C2—C1—C11 | 120.3 (2) | N10—C12—C4 | 118.4 (2) |
C2—C1—H1 | 119.8 | N10—C12—C11 | 123.6 (2) |
C11—C1—H1 | 119.8 | C4—C12—C11 | 118.0 (2) |
C1—C2—C3 | 121.2 (3) | C9—C13—C8 | 123.9 (2) |
C1—C2—H2 | 119.4 | C9—C13—C14 | 117.1 (2) |
C3—C2—H2 | 119.4 | C8—C13—C14 | 119.0 (2) |
C4—C3—C2 | 120.6 (2) | N10—C14—C5 | 118.4 (2) |
C4—C3—H3 | 119.7 | N10—C14—C13 | 123.8 (2) |
C2—C3—H3 | 119.7 | C5—C14—C13 | 117.7 (2) |
C3—C4—C12 | 120.9 (2) | C9—C15—O16 | 110.6 (2) |
C3—C4—H4 | 119.6 | C9—C15—O17 | 125.9 (2) |
C12—C4—H4 | 119.6 | C15—O16—C18 | 116.8 (2) |
C6—C5—C14 | 121.1 (2) | O16—C15—O17 | 123.5 (2) |
C6—C5—H5 | 119.5 | C23—C18—C19 | 117.9 (2) |
C14—C5—H5 | 119.5 | C23—C18—O16 | 121.7 (2) |
C5—C6—C7 | 120.8 (2) | C19—C18—O16 | 120.2 (2) |
C5—C6—H6 | 119.6 | F24—C19—C18 | 118.4 (2) |
C7—C6—H6 | 119.6 | F24—C19—C20 | 120.1 (2) |
C8—C7—C6 | 120.8 (2) | C18—C19—C20 | 121.6 (2) |
C8—C7—H7 | 119.6 | C21—C20—C19 | 118.8 (2) |
C6—C7—H7 | 119.6 | C21—C20—H20 | 120.6 |
C7—C8—C13 | 120.5 (2) | C19—C20—H20 | 120.6 |
C7—C8—H8 | 119.7 | C20—C21—C22 | 121.0 (2) |
C13—C8—H8 | 119.7 | C20—C21—H21 | 119.5 |
C13—C9—C11 | 120.8 (2) | C22—C21—H21 | 119.5 |
C13—C9—C15 | 120.05 (19) | C23—C22—C21 | 118.1 (2) |
C11—C9—C15 | 119.11 (19) | C23—C22—H22 | 120.9 |
C14—N10—C12 | 117.89 (19) | C21—C22—H22 | 120.9 |
C9—C11—C1 | 124.3 (2) | F25—C23—C18 | 117.1 (2) |
C9—C11—C12 | 116.7 (2) | F25—C23—C22 | 120.4 (2) |
C1—C11—C12 | 119.0 (2) | C18—C23—C22 | 122.5 (2) |
| | | |
C11—C1—C2—C3 | 0.4 (4) | C6—C5—C14—N10 | 178.6 (3) |
C1—C2—C3—C4 | −0.7 (4) | C6—C5—C14—C13 | −0.3 (4) |
C2—C3—C4—C12 | 0.4 (4) | C9—C13—C14—N10 | 0.8 (3) |
C14—C5—C6—C7 | 0.7 (4) | C8—C13—C14—N10 | −179.8 (2) |
C5—C6—C7—C8 | 0.2 (4) | C9—C13—C14—C5 | 179.7 (2) |
C6—C7—C8—C13 | −1.4 (4) | C8—C13—C14—C5 | −0.9 (3) |
C13—C9—C11—C1 | −177.5 (2) | C13—C9—C15—O17 | −99.8 (3) |
C15—C9—C11—C1 | 4.7 (3) | C13—C9—C15—O16 | 80.0 (2) |
C13—C9—C11—C12 | 2.4 (3) | C11—C9—C15—O16 | −102.2 (2) |
C15—C9—C11—C12 | −175.4 (2) | O17—C15—O16—C18 | −2.2 (3) |
C2—C1—C11—C9 | −180.0 (3) | C9—C15—O16—C18 | 178.01 (17) |
C2—C1—C11—C12 | 0.1 (4) | C11—C9—C15—O17 | 78.1 (3) |
C14—N10—C12—C4 | 178.5 (2) | C15—O16—C18—C23 | −79.8 (3) |
C14—N10—C12—C11 | −1.5 (3) | C15—O16—C18—C19 | 104.9 (3) |
C3—C4—C12—N10 | −179.9 (2) | C23—C18—C19—F24 | −180.0 (2) |
C3—C4—C12—C11 | 0.1 (4) | O16—C18—C19—F24 | −4.5 (3) |
C9—C11—C12—N10 | −0.3 (3) | C23—C18—C19—C20 | 0.0 (4) |
C1—C11—C12—N10 | 179.6 (2) | O16—C18—C19—C20 | 175.5 (2) |
C9—C11—C12—C4 | 179.7 (2) | F24—C19—C20—C21 | −179.7 (2) |
C1—C11—C12—C4 | −0.4 (3) | C18—C19—C20—C21 | 0.3 (4) |
C11—C9—C13—C8 | 178.0 (2) | C19—C20—C21—C22 | −0.4 (4) |
C15—C9—C13—C8 | −4.2 (3) | C20—C21—C22—C23 | 0.2 (4) |
C11—C9—C13—C14 | −2.7 (3) | C19—C18—C23—F25 | 179.6 (2) |
C15—C9—C13—C14 | 175.2 (2) | O16—C18—C23—F25 | 4.2 (3) |
C7—C8—C13—C9 | −178.9 (2) | C19—C18—C23—C22 | −0.2 (4) |
C7—C8—C13—C14 | 1.8 (4) | O16—C18—C23—C22 | −175.6 (2) |
C12—N10—C14—C5 | −177.6 (2) | C21—C22—C23—F25 | −179.7 (2) |
C12—N10—C14—C13 | 1.3 (3) | C21—C22—C23—C18 | 0.1 (4) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O17i | 0.93 | 2.55 | 3.395 (4) | 151 |
Symmetry code: (i) −x−1, −y+1, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C21H14F2NO2+·CF3O3S− | C20H11F2NO2 |
Mr | 499.40 | 335.30 |
Crystal system, space group | Monoclinic, P21/c | Triclinic, P1 |
Temperature (K) | 290 | 290 |
a, b, c (Å) | 11.382 (2), 14.048 (3), 13.162 (3) | 8.306 (2), 9.057 (2), 11.423 (2) |
α, β, γ (°) | 90, 91.16 (3), 90 | 69.94 (3), 77.80 (3), 72.16 (3) |
V (Å3) | 2104.1 (8) | 762.9 (3) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.23 | 0.11 |
Crystal size (mm) | 0.5 × 0.3 × 0.2 | 0.4 × 0.3 × 0.2 |
|
Data collection |
Diffractometer | Kuma KM-4 diffractometer | Kuma KM-4 diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3874, 3700, 1760 | 2875, 2681, 1314 |
Rint | 0.029 | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.144, 0.97 | 0.042, 0.129, 1.01 |
No. of reflections | 3700 | 2681 |
No. of parameters | 309 | 227 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.32 | 0.18, −0.16 |
Selected geometric parameters (Å, º) for (I) topN10—C12 | 1.367 (5) | O16—C18 | 1.401 (4) |
N10—C14 | 1.363 (5) | C19—F24 | 1.336 (5) |
C15—O16 | 1.355 (4) | C23—F25 | 1.352 (4) |
C15—O17 | 1.179 (4) | | |
| | | |
C9—C15—O16 | 111.9 (3) | C9—C15—O17 | 124.6 (3) |
| | | |
C11—C9—C15—O17 | −64.2 (5) | C15—O16—C18—C19 | −96.3 (4) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O29i | 0.93 | 2.54 | 3.225 (5) | 131 |
C5—H5···O28ii | 0.93 | 2.59 | 3.417 (5) | 148 |
C22—H22···O17iii | 0.93 | 2.52 | 3.316 (5) | 144 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Y—X···π interactions in (I) (Å,°) topY—X | Cg | X···Cg | Y···Cg | Y—X···Cg |
C19—F24 | 2iv | 3.874 (3) | 4.109 (4) | 90.5 (2) |
C23—F25 | 4iii | 3.977 (3) | 4.383 (4) | 98.4 (2) |
S27—O28 | 1v | 3.511 (3) | 3.708 (2) | 86.74 (13) |
S27—O28 | 2v | 3.374 (3) | 4.080 (2) | 110.17 (14) |
S27—O29 | 1v | 3.569 (4) | 3.708 (2) | 84.22 (14) |
S27—O29 | 3v | 3.835 (4) | 4.740 (2) | 121.64 (16) |
Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg2 ring C1–C4/C12/C11, Cg3 ring C5–C8/C13/C14, Cg4 ring C18–C23. Symmetry codes: (iii) 1 − x, −y, 1 − z; (iv) x, 1/2 − y, z − 1/2; (v) 1 + x, 1/2 − y, z − 1/2. |
π–π interactions in (I) (Å, °) topCgI | CgJ | Cg···Cg | Dihedral angle | Interplanar dist. | Offset |
1 | 4vi | 3.620 (2) | 7.8 | 3.424 (2) | 1.841 (2) |
3 | 4vi | 3.940 (3) | 6.4 | 3.482 (3) | 1.003 (3) |
4 | 1iv | 3.620 (2) | 7.8 | 3.530 (2) | 1.037 (2) |
4 | 3iv | 3.940 (3) | 6.4 | 3.527 (3) | 1.570 (3) |
Notes: Cg···Cg is the distance between ring centroids as defined in Table 3. The dihedral angle is that between the planes of CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. Symmetry codes: (iv) x, 1/2 − y, z − 1/2; (vi) x, 1/2 − y, 1/2 + z. |
Selected geometric parameters (Å, º) for (II) topN10—C12 | 1.339 (3) | O16—C18 | 1.395 (2) |
N10—C14 | 1.337 (3) | C19—F24 | 1.342 (3) |
C15—O16 | 1.352 (3) | C23—F25 | 1.347 (3) |
C15—O17 | 1.180 (3) | | |
| | | |
C9—C15—O16 | 110.6 (2) | C9—C15—O17 | 125.9 (2) |
| | | |
C11—C9—C15—O17 | 78.1 (3) | C15—O16—C18—C19 | 104.9 (3) |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
C22—H22···O17i | 0.93 | 2.55 | 3.395 (4) | 151 |
Symmetry code: (i) −x−1, −y+1, −z+1. |
π–π interactions in (II) (Å, °) topCgI | CgJ | Cg···Cg | Dihedral angle | Interplanar distance | Offset |
1 | 2ii | 3.912 (2) | 1.1 | 3.459 (3) | 1.472 (2) |
1 | 4iii | 3.735 (2) | 6.3 | 3.469 (3) | 1.413 (2) |
2 | 1ii | 3.912 (2) | 1.1 | 3.427 (3) | 1.740 (2) |
2 | 2ii | 3.514 (2) | 0.0 | 3.444 (3) | 1.634 (2) |
2 | 4iii | 3.787 (2) | 6.3 | 3.406 (3) | 1.472 (2) |
4 | 1iii | 3.735 (2) | 6.3 | 3.535 (3) | 1.413 (2) |
4 | 2iii | 3.787 (2) | 6.3 | 3.527 (3) | 1.740 (2) |
Notes: Cg···Cg is the distance between ring centroids as defined in Table 3. The dihedral angle is that between the planes of CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. Symmetry codes: (ii) −x, 1 − y, −z; (iii) −x, 1 − y, 1 − z. |
The angles between the acridine and phenyl rings (δ, °), and between the acridine ring and the carboxyl or vinyl fragment (ε, °) in substituted phenyl acridine-9-carboxylates, their relevant 10-methylacridinium cations and related compounds topCompound | δ angle | ε angle | References |
(I) | 17.3 (2) | 67.6 (2) | This work |
(II) | 5.8 (2) | 78.8 (2) | This work |
(III) | 35.9 (2) | 56.5 (2) | Meszko et al. (2002) |
(IV) | 30.2 (2) | 57.9 (2) | To be published |
(V) | 62.1 (2) | 67.3 (2) | Sikorski et al. (2005a) |
(VI) | 35.7 (2) | 68.1 (2) | Sikorski et al. (2005a) |
(VII) | 9.3 (2) | 77.2 (2) | Sikorski et al. (2005b) |
(VIII) | 41.2 (2) | 51.0 (2) | Sikorski et al. (2005d) |
(IX) | 45.5 (2) | 54.3 (2) | To be published |
(X) | 27.2 (2) | 89.0 (2) | To be published |
(XI) | 33.4 (2) | 62.0 (2) | Sikorski et al. (2005b) |
(XII) | 35.9 (3) | 60.6 (3) | Sikorski et al. (2005c) |
(XIII) | 67.1 (2) | 55.5 (2) | Sgarabotto et al. (1989) |
(XIV) | 73.7 (3) | 69.9 (3) | Sgarabotto et al. (1989) |
Compounds: (I) 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (II) 2,5-difluorophenyl acridine-9-carboxylate; (III) 2-methylphenyl 2-methoxyacridine-9-carboxylate; (IV) 2-methylphenyl acridine-9-carboxylate; (V) 2-ethylphenyl acridine-9-carboxylate; (VI) 2,5-dimethylphenyl acridine-9-carboxylate; (VII) 2,5-dichlorophenyl acridine-9-carboxylate; (VIII) 2,5-dibromophenyl acridine-9-carboxylate; (IX) 2,5-diiodophenyl acridine-9-carboxylate; (X) 9-(2-methylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XI) 9-(2,6-dichlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XII) 9-(2,6-dibromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XIII) (E)-9-styrylacridine; (XIV) (Z)-9-(2,5-dimethylstyryl)acridine. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
Most commercially available immunoassay tests utilizing chemiluminescence employ derivatives of acridine-9-carboxylic acid (Weeks et al., 1986; Rongen et al., 1994; Razawi & McCapra, 2000a,b; Smith et al., 2000). Sensitivities at the attomole level are available with this method, which makes acridine-based labels more profitable than standard radioisotopic techniques (e.g. 125I or 3H) (Zomer & Jacquemijns, 2001). Among the most frequently used of these derivatives are the phenyl esters of the 10-methylacridinium-9-carboxylic acid cation (Dodeigne et al., 2000), although other compounds, like hydroxamic or sulfohydroxamic esters, have been tested in order to develop new assay options (Renotte et al., 2000). These compounds react with H2O2 in alkaline media to produce molecules of electronically excited 10-methyl-9-acridinone (Rak et al., 1999), which emits light. The intensity of the light is related directly to the concentration of the entity assayed and this is the foundation for the analytical application of chemiluminescence. Nevertheless, the use of acridinium esters for labelling biomolecules entails certain disadvantages. Although their chemiluminescence efficiency in aqueous solutions is relatively high (up to 10%), they are not very stable (Rak et al., 1999; Razawi & McCapra, 2000a,b): they can react relatively fast with OH−, which attacks the C atom in position 9. Many attempts have been made to enhance their resistance to hydrolysis, since this reaction competes with the chemiluminescence pathway in alkaline media, yielding a non-luminescent product, the non-excited 10-methyl-9-acridinone (Hammond et al., 1991). Since the phenyl fragment is removed during oxidation of phenyl 10-methylacridinium 9-carboxylates, it is thought that the phenyl ring substituents exert the greatest influence on the ability to chemiluminesce and on the properties of this group of compounds (Sato, 1996; Rak et al., 1999). Wilson et al. (2001) noted that reduction of 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium (the title cation) yielded the corresponding ester of acridan, which is not susceptible to nucleophilic substitution (and thus hydrolysis). In this case, chemiluminescence was triggered by the cathodic oxidation of the acridan, which regenerates to the original acridinium salt and decomposes to the electronically excited 10-methyl-9-acridinone (a light emitter). It can thus be expected that the presence of F atoms in the phenyl ring will improve the resistance of such compounds to alkaline hydrolysis, and enhance their susceptibility to oxidation and their chemiluminescence ability. These were the premises for undertaking investigations on the title chemiluminogens, 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, (I), and 2,6-difluorophenyl acridine-9-carboxylate, (II).
In this paper, we present the results of our crystal structure investigations, which were paralleled by laboratory studies on the relationship between the structural and chemiluminogenic properties of this group of compounds.
Parameters characterizing the geometry of the central ring of the acridine moiety and the carboxyl fragment in (I) are given in Table 1. The acridine moiety, with an average deviation from planarity for its constituent atoms of 0.015 Å, and the phenyl ring in (I) are mutually oriented at an angle of 17.3 (2)° (denoted by δ, this is the angle between the mean planes delineated by all the non-H atoms of the acridine and phenyl moieties) (Fig. 1). The carboxyl group is twisted at an angle of 67.6 (2)° relative to the acridine skeleton (denoted by ε, this is the angle between the mean planes delineated by all the non-H atoms of the acridine moiety and atoms C15, O16 and O17). The H atoms of the methyl group are disordered over two orientations, twisted through 60° with respect to one another, each with an occupancy of 0.5.
In the crystalline phase, two adjacent cations of (I), arranged in a `head-to-tail' manner and related by a centre of symmetry, are linked via two C—H···O interactions to yield dimers, which are, in turn, linked to anions via C—H···O interactions to form strips (Fig. 2 and Table 2). These strips are linked by networks of two types of C—H···O, C—F···π, S—O···π and π–π transverse interactions involving F atoms, O atoms from the anion, and the acridine or phenyl rings (Fig. 2, Tables 3 and 4). This variety of interactions, rare in other acridine derivatives, accounts for the stability of the crystalline phase of (I).
Parameters characterizing the geometry of the central ring of the acridine moiety and carboxyl fragment in (II) are given in Table 5. A ngle δ between the acridine (average deviation from planarity for its constituent atoms = 0.003 Å) and phenyl moieties in (II) is 5.8 (2)° (Fig. 3). The carboxyl group in (II) is twisted at an angle ε = 78.8 (2)° relative to the acridine skeleton. Comparison of the δ and ε angles for (I) and (II) yields an inverse relationship.
Arranged in a `head-to-tail' manner and related by a centre of symmetry, two adjacent molecules of (II) are linked via two C—H···O interactions [as in (I)] to produce dimers (Fig. 4 and Table 6). These are further linked by a network of multidirectional π–π interactions involving the central acridine ring, one of the lateral acridine rings and the phenyl ring (Fig. 4 and Table 7), all of which makes for a stable molecular crystal lattice.
The geometry of the molecules in the crystalline phase is the product of intramolecular forces and intermolecular interactions. If some fragments are rigid, as with the acridine, phenyl and carboxyl (O═C—O—) moieties in compounds (I) and (II), the molecules can exist in a variety of structures as a result of rotation around the single bonds, in the present case C9—C15 and O16—C18. This provides the opportunity to investigate the influence of the structure of the molecular fragments on their mutual arrangement and on the structure of the whole molecules. Table 8 lists the angles δ, reflecting the mutual arrangement of the acridine and phenyl rings, and the angles ε, representing the relative arrangement of the acridine ring and the carboxyl (or vinyl) group, for a series of phenyl acridine-9-carboxylates, their relevant 10-methylacridinium cations and related compounds. The angles δ are the largest in two known structures of styrylacridines. They are quite large if bulky groups (Et) or atoms (Br, I) are ortho-substituted in the phenyl ring of phenyl acridine-9-carboxylates. As far as the halogen-disubstituted compounds are concerned, the angle δ in the fluoro derivatives of phenyl acridine-9-carboxylates and their 10-methylacridinium cations is relatively small and increases with the size of the halogen atom. All of the angles ε listed in Table 8 are larger than 50° and are not correlated with either the angles δ or the size and number of the substituents in the phenyl fragment. The angles ε are most probably the outcome of the most efficient crystal packing. A property which does not arise directly from the δ values listed in Table 8, but which emerges from a meticulous analysis of crystal phase structures, is that there is a relatively large number and variety of intermolecular interactions in the difluoro derivatives, which may be a consequence of the nearly parallel mutual orientation of the acridine and phenyl rings.