Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, C21H14F2NO2+·CF3SO3, (I), and C20H11F2NO2, (II), form monoclinic and triclinic crystals, respectively. Adjacent cations of (I) are oriented in a `head-to-tail' manner and are linked to one another via networks of C—H...O, C—F...π, S—O...π and multidirectional π–π inter­actions. Adjacent mol­ecules of (II) are also arranged in a `head-to-tail' manner and are linked via networks of C—H...O and multidirectional π–π inter­actions. The mean planes of the acridine moieties lie parallel in the lattices of both compounds. The benzene rings are also parallel. However, the acridine and difluoro­phenyl rings are mutually oriented at an angle of 17.3 (2)° in (I) and 5.8 (2)° in (II). This mutual orientation in various phenyl acridine-9-carboxyl­ates and related compounds is strongly influenced by the nature of the substituents on the phenyl fragment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105033779/ln1184sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105033779/ln1184Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105033779/ln1184IIsup3.hkl
Contains datablock II

CCDC references: 294328; 294329

Comment top

Most commercially available immunoassay tests utilizing chemiluminescence employ derivatives of acridine-9-carboxylic acid (Weeks et al., 1986; Rongen et al., 1994; Razawi & McCapra, 2000a,b; Smith et al., 2000). Sensitivities at the attomole level are available with this method, which makes acridine-based labels more profitable than standard radioisotopic techniques (e.g. 125I or 3H) (Zomer & Jacquemijns, 2001). Among the most frequently used of these derivatives are the phenyl esters of the 10-methylacridinium-9-carboxylic acid cation (Dodeigne et al., 2000), although other compounds, like hydroxamic or sulfohydroxamic esters, have been tested in order to develop new assay options (Renotte et al., 2000). These compounds react with H2O2 in alkaline media to produce molecules of electronically excited 10-methyl-9-acridinone (Rak et al., 1999), which emits light. The intensity of the light is related directly to the concentration of the entity assayed and this is the foundation for the analytical application of chemiluminescence. Nevertheless, the use of acridinium esters for labelling biomolecules entails certain disadvantages. Although their chemiluminescence efficiency in aqueous solutions is relatively high (up to 10%), they are not very stable (Rak et al., 1999; Razawi & McCapra, 2000a,b): they can react relatively fast with OH, which attacks the C atom in position 9. Many attempts have been made to enhance their resistance to hydrolysis, since this reaction competes with the chemiluminescence pathway in alkaline media, yielding a non-luminescent product, the non-excited 10-methyl-9-acridinone (Hammond et al., 1991). Since the phenyl fragment is removed during oxidation of phenyl 10-methylacridinium 9-carboxylates, it is thought that the phenyl ring substituents exert the greatest influence on the ability to chemiluminesce and on the properties of this group of compounds (Sato, 1996; Rak et al., 1999). Wilson et al. (2001) noted that reduction of 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium (the title cation) yielded the corresponding ester of acridan, which is not susceptible to nucleophilic substitution (and thus hydrolysis). In this case, chemiluminescence was triggered by the cathodic oxidation of the acridan, which regenerates to the original acridinium salt and decomposes to the electronically excited 10-methyl-9-acridinone (a light emitter). It can thus be expected that the presence of F atoms in the phenyl ring will improve the resistance of such compounds to alkaline hydrolysis, and enhance their susceptibility to oxidation and their chemiluminescence ability. These were the premises for undertaking investigations on the title chemiluminogens, 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate, (I), and 2,6-difluorophenyl acridine-9-carboxylate, (II).

In this paper, we present the results of our crystal structure investigations, which were paralleled by laboratory studies on the relationship between the structural and chemiluminogenic properties of this group of compounds.

Parameters characterizing the geometry of the central ring of the acridine moiety and the carboxyl fragment in (I) are given in Table 1. The acridine moiety, with an average deviation from planarity for its constituent atoms of 0.015 Å, and the phenyl ring in (I) are mutually oriented at an angle of 17.3 (2)° (denoted by δ, this is the angle between the mean planes delineated by all the non-H atoms of the acridine and phenyl moieties) (Fig. 1). The carboxyl group is twisted at an angle of 67.6 (2)° relative to the acridine skeleton (denoted by ε, this is the angle between the mean planes delineated by all the non-H atoms of the acridine moiety and atoms C15, O16 and O17). The H atoms of the methyl group are disordered over two orientations, twisted through 60° with respect to one another, each with an occupancy of 0.5.

In the crystalline phase, two adjacent cations of (I), arranged in a `head-to-tail' manner and related by a centre of symmetry, are linked via two C—H···O interactions to yield dimers, which are, in turn, linked to anions via C—H···O interactions to form strips (Fig. 2 and Table 2). These strips are linked by networks of two types of C—H···O, C—F···π, S—O···π and ππ transverse interactions involving F atoms, O atoms from the anion, and the acridine or phenyl rings (Fig. 2, Tables 3 and 4). This variety of interactions, rare in other acridine derivatives, accounts for the stability of the crystalline phase of (I).

Parameters characterizing the geometry of the central ring of the acridine moiety and carboxyl fragment in (II) are given in Table 5. A ngle δ between the acridine (average deviation from planarity for its constituent atoms = 0.003 Å) and phenyl moieties in (II) is 5.8 (2)° (Fig. 3). The carboxyl group in (II) is twisted at an angle ε = 78.8 (2)° relative to the acridine skeleton. Comparison of the δ and ε angles for (I) and (II) yields an inverse relationship.

Arranged in a `head-to-tail' manner and related by a centre of symmetry, two adjacent molecules of (II) are linked via two C—H···O interactions [as in (I)] to produce dimers (Fig. 4 and Table 6). These are further linked by a network of multidirectional ππ interactions involving the central acridine ring, one of the lateral acridine rings and the phenyl ring (Fig. 4 and Table 7), all of which makes for a stable molecular crystal lattice.

The geometry of the molecules in the crystalline phase is the product of intramolecular forces and intermolecular interactions. If some fragments are rigid, as with the acridine, phenyl and carboxyl (OC—O—) moieties in compounds (I) and (II), the molecules can exist in a variety of structures as a result of rotation around the single bonds, in the present case C9—C15 and O16—C18. This provides the opportunity to investigate the influence of the structure of the molecular fragments on their mutual arrangement and on the structure of the whole molecules. Table 8 lists the angles δ, reflecting the mutual arrangement of the acridine and phenyl rings, and the angles ε, representing the relative arrangement of the acridine ring and the carboxyl (or vinyl) group, for a series of phenyl acridine-9-carboxylates, their relevant 10-methylacridinium cations and related compounds. The angles δ are the largest in two known structures of styrylacridines. They are quite large if bulky groups (Et) or atoms (Br, I) are ortho-substituted in the phenyl ring of phenyl acridine-9-carboxylates. As far as the halogen-disubstituted compounds are concerned, the angle δ in the fluoro derivatives of phenyl acridine-9-carboxylates and their 10-methylacridinium cations is relatively small and increases with the size of the halogen atom. All of the angles ε listed in Table 8 are larger than 50° and are not correlated with either the angles δ or the size and number of the substituents in the phenyl fragment. The angles ε are most probably the outcome of the most efficient crystal packing. A property which does not arise directly from the δ values listed in Table 8, but which emerges from a meticulous analysis of crystal phase structures, is that there is a relatively large number and variety of intermolecular interactions in the difluoro derivatives, which may be a consequence of the nearly parallel mutual orientation of the acridine and phenyl rings.

Experimental top

Compound (II) was prepared by heating anhydrous acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride, followed by esterification of the resulting acid chloride with an equimolar quantity of 2,6-difluorophenol (Sato, 1996). The reaction was carried out in anhydrous dichloromethane in the presence of triethylamine (1.5 molar excess) and a catalytic quantity of 4-(N,N-dimethyl)aminopyridine. The crude product was subsequently washed with dilute HCl, NaHCO3 and saturated saline, and then purified chromatographically with silica gel as the stationary phase and cyclohexane–ethyl acetate (1/1 v/v) as the mobile phase (yield 79%). Analysis, calculated for C22H14F5NO5S: C 71.6, H 3.3, N 4.2%; found: C 71.5, H 3.3, N 25.1%. Yellow crystals of (II) suitable for X-ray analysis were grown from cyclohexane (m.p. 454–455 K). Compound (I) was synthesized by treating compound (II) dissolved in anhydrous dichloromethane with a fivefold molar excess of methyl trifluoromethanesulfonate dissolved in the same solvent (in an Ar atmosphere at room temperature for 4 h). The crude salt was purified by repeated precipitation from an ethanol–diethyl ether solution (Ratio?) (yield 86%). Pale-yellow crystals of (I) suitable for X-ray investigations were grown from absolute ethanol (m.p. 504–506 K).

Refinement top

The methyl H atoms in (I) were located in difference Fourier syntheses and refined as a rigid rotating group, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). These H atoms were assumed to have two unique disordered orientations with an occupancy factor of 0.5. A l l other H atoms in (I) and (II) were placed geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: KM-4 Software (Kuma Diffraction, 1989); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The arrangement of the ions of (I) in the unit cell. The C—H···O interactions are represented by dashed lines, and the Y—X···π and ππ interactions by dotted lines. H atoms not involved in C—H···O interactions have been omitted. [Symmetry codes: (i) x − 1, y, 1 + z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, −y, 1 − z; (iv) x, 1/2 − y, z − 1/2; (v) 1 + x, 1/2 − y, z − 1/2; (vi) x, 1/2 − y, z − 1/2].
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme and 25% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The arrangement of the molecules of (II) in the unit cell. The C—-H···O interactions are represented by dashed lines and the ππ interactions by dotted lines. H atoms not involved in C—H···O interactions have been omitted. [Symmetry codes: (i) −1 − x, 1 − y,1 − z; (ii) −x, 1 − y, −z; (iii) −x, 1 − y, 1 − z].
(I) 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C21H14F2NO2+·CF3O3SF(000) = 1016
Mr = 499.40Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 50 reflections
a = 11.382 (2) Åθ = 2.1–25.0°
b = 14.048 (3) ŵ = 0.23 mm1
c = 13.162 (3) ÅT = 290 K
β = 91.16 (3)°Prism, yellow
V = 2104.1 (8) Å30.5 × 0.3 × 0.2 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer
Rint = 0.029
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1313
θ/2θ scansk = 016
3874 measured reflectionsl = 015
3700 independent reflections3 standard reflections every 200 reflections
1760 reflections with I > 2σ(I) intensity decay: 4.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.9523P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3700 reflectionsΔρmax = 0.27 e Å3
309 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0096 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C21H14F2NO2+·CF3O3SV = 2104.1 (8) Å3
Mr = 499.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.382 (2) ŵ = 0.23 mm1
b = 14.048 (3) ÅT = 290 K
c = 13.162 (3) Å0.5 × 0.3 × 0.2 mm
β = 91.16 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.029
3874 measured reflections3 standard reflections every 200 reflections
3700 independent reflections intensity decay: 4.5%
1760 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.97Δρmax = 0.27 e Å3
3700 reflectionsΔρmin = 0.32 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2189 (3)0.1066 (3)0.7437 (3)0.0627 (11)
H10.26450.07700.69510.075*
C20.1649 (4)0.0526 (3)0.8147 (4)0.0801 (14)
H20.17310.01320.81540.096*
C30.0957 (4)0.0998 (4)0.8878 (3)0.0812 (15)
H30.05960.06360.93740.097*
C40.0803 (3)0.1935 (4)0.8879 (3)0.0680 (12)
H40.03410.22150.93720.082*
C50.1544 (4)0.5034 (3)0.7376 (3)0.0652 (11)
H50.10400.53230.78300.078*
C60.2102 (4)0.5563 (3)0.6693 (4)0.0757 (13)
H60.19750.62170.66770.091*
C70.2870 (4)0.5158 (3)0.6008 (3)0.0722 (12)
H70.32660.55420.55520.087*
C80.3039 (3)0.4215 (3)0.6004 (3)0.0575 (10)
H80.35420.39510.55320.069*
C90.2634 (3)0.2634 (2)0.6712 (2)0.0412 (8)
N100.1186 (3)0.3475 (2)0.8115 (2)0.0545 (8)
C110.2072 (3)0.2069 (2)0.7423 (3)0.0462 (9)
C120.1337 (3)0.2509 (3)0.8139 (3)0.0521 (9)
C130.2473 (3)0.3613 (2)0.6697 (2)0.0442 (8)
C140.1712 (3)0.4037 (3)0.7413 (3)0.0481 (9)
C150.3510 (3)0.2186 (2)0.6045 (3)0.0445 (8)
O160.3152 (2)0.21948 (17)0.50565 (17)0.0538 (7)
O170.4403 (2)0.1845 (2)0.63328 (19)0.0648 (8)
C180.3917 (3)0.1757 (3)0.4379 (3)0.0506 (9)
C190.4711 (3)0.2286 (3)0.3850 (3)0.0597 (10)
C200.5439 (4)0.1868 (4)0.3164 (3)0.0712 (12)
H200.59760.22290.28050.085*
C210.5352 (4)0.0905 (4)0.3021 (3)0.0767 (14)
H210.58390.06130.25560.092*
C220.4576 (4)0.0363 (3)0.3537 (3)0.0766 (13)
H220.45260.02900.34300.092*
C230.3872 (3)0.0807 (3)0.4220 (3)0.0587 (10)
F240.4756 (2)0.32225 (18)0.4024 (2)0.0864 (8)
F250.3091 (2)0.02991 (18)0.4759 (2)0.0868 (8)
C260.0408 (4)0.3927 (3)0.8875 (3)0.0813 (14)
H26A0.00790.34500.91750.122*0.50
H26B0.00790.43960.85440.122*0.50
H26C0.08820.42270.93950.122*0.50
H26D0.05620.45990.89010.122*0.50
H26E0.05610.36520.95320.122*0.50
H26F0.03990.38220.86800.122*0.50
S270.88935 (9)0.23332 (7)0.13665 (7)0.0559 (3)
O280.9571 (2)0.3156 (2)0.1202 (2)0.0762 (8)
O290.9331 (3)0.1496 (2)0.0894 (2)0.0884 (11)
O300.8512 (3)0.2203 (3)0.2387 (2)0.0909 (10)
C310.7557 (4)0.2562 (3)0.0694 (3)0.0627 (10)
F320.7735 (3)0.2671 (3)0.02924 (19)0.1216 (12)
F340.7029 (2)0.3343 (2)0.1027 (2)0.1024 (9)
F330.6787 (2)0.1873 (2)0.0769 (2)0.1012 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.053 (3)0.078 (3)0.004 (2)0.000 (2)0.014 (2)
C20.066 (3)0.071 (3)0.102 (4)0.009 (2)0.002 (3)0.035 (3)
C30.060 (3)0.112 (5)0.071 (3)0.021 (3)0.003 (2)0.041 (3)
C40.053 (2)0.098 (4)0.053 (3)0.011 (2)0.0046 (19)0.019 (2)
C50.066 (3)0.064 (3)0.065 (3)0.015 (2)0.008 (2)0.019 (2)
C60.099 (4)0.041 (2)0.086 (3)0.006 (2)0.016 (3)0.002 (2)
C70.100 (3)0.051 (3)0.066 (3)0.006 (2)0.001 (2)0.005 (2)
C80.072 (3)0.047 (3)0.054 (2)0.001 (2)0.0049 (19)0.0005 (19)
C90.0402 (18)0.040 (2)0.0431 (19)0.0002 (15)0.0066 (14)0.0024 (16)
N100.0447 (17)0.070 (2)0.0484 (19)0.0019 (16)0.0005 (14)0.0114 (17)
C110.0350 (18)0.052 (2)0.052 (2)0.0020 (16)0.0038 (16)0.0077 (18)
C120.0397 (18)0.071 (3)0.046 (2)0.0098 (19)0.0064 (15)0.005 (2)
C130.0444 (19)0.046 (2)0.042 (2)0.0010 (16)0.0046 (16)0.0028 (17)
C140.043 (2)0.050 (2)0.051 (2)0.0007 (17)0.0053 (17)0.0074 (18)
C150.044 (2)0.040 (2)0.049 (2)0.0009 (16)0.0031 (16)0.0010 (17)
O160.0502 (14)0.0664 (18)0.0444 (14)0.0152 (12)0.0050 (11)0.0038 (12)
O170.0524 (16)0.086 (2)0.0552 (16)0.0209 (15)0.0054 (13)0.0059 (13)
C180.046 (2)0.060 (3)0.045 (2)0.0107 (19)0.0038 (16)0.0060 (18)
C190.064 (2)0.064 (3)0.051 (2)0.004 (2)0.004 (2)0.005 (2)
C200.062 (3)0.101 (4)0.050 (2)0.010 (3)0.006 (2)0.006 (2)
C210.074 (3)0.107 (4)0.049 (2)0.033 (3)0.003 (2)0.003 (3)
C220.090 (3)0.072 (3)0.067 (3)0.034 (3)0.015 (3)0.016 (3)
C230.057 (2)0.062 (3)0.057 (2)0.011 (2)0.005 (2)0.003 (2)
F240.105 (2)0.0733 (19)0.0813 (17)0.0105 (15)0.0128 (14)0.0015 (14)
F250.0962 (19)0.0684 (17)0.0961 (19)0.0082 (14)0.0110 (15)0.0033 (14)
C260.074 (3)0.100 (4)0.071 (3)0.002 (3)0.024 (2)0.028 (3)
S270.0549 (6)0.0667 (7)0.0463 (5)0.0080 (5)0.0058 (4)0.0063 (5)
O280.0634 (18)0.086 (2)0.079 (2)0.0215 (16)0.0007 (15)0.0021 (16)
O290.099 (2)0.063 (2)0.104 (2)0.0305 (17)0.042 (2)0.0125 (17)
O300.096 (2)0.136 (3)0.0410 (15)0.005 (2)0.0115 (15)0.0156 (17)
C310.061 (2)0.075 (3)0.052 (2)0.007 (2)0.0061 (18)0.009 (2)
F320.100 (2)0.208 (4)0.0568 (16)0.004 (2)0.0165 (14)0.0227 (19)
F340.0767 (18)0.0843 (19)0.146 (3)0.0292 (15)0.0048 (17)0.0114 (18)
F330.0772 (17)0.114 (2)0.113 (2)0.0329 (17)0.0097 (16)0.0345 (17)
Geometric parameters (Å, º) top
C1—C21.360 (5)C15—O171.179 (4)
C1—C111.415 (5)O16—C181.401 (4)
C1—H10.9300C18—C231.352 (5)
C2—C31.419 (7)C18—C191.370 (5)
C2—H20.9300C19—F241.336 (5)
C3—C41.329 (6)C19—C201.370 (6)
C3—H30.9300C20—C211.369 (6)
C4—C121.412 (5)C20—H200.9300
C4—H40.9300C21—C221.358 (6)
C5—C61.337 (6)C21—H210.9300
C5—C141.415 (5)C22—C231.367 (6)
C5—H50.9300C22—H220.9300
C6—C71.390 (6)C23—F251.352 (4)
C6—H60.9300C26—H26A0.9600
C7—C81.339 (5)C26—H26B0.9600
C7—H70.9300C26—H26C0.9600
C8—C131.409 (5)C26—H26D0.9600
C8—H80.9300C26—H26E0.9600
C9—C131.389 (5)C26—H26F0.9600
C9—C111.393 (5)S27—O281.409 (3)
C9—C151.482 (5)S27—O291.425 (3)
N10—C121.367 (5)S27—O301.432 (3)
N10—C141.363 (5)S27—C311.774 (4)
N10—C261.491 (5)C31—F331.311 (5)
C11—C121.415 (5)C31—F321.328 (4)
C13—C141.423 (5)C31—F341.329 (5)
C15—O161.355 (4)
C2—C1—C11121.3 (4)F24—C19—C20120.9 (4)
C2—C1—H1119.3F24—C19—C18118.0 (4)
C11—C1—H1119.3C20—C19—C18121.1 (4)
C1—C2—C3118.1 (4)C21—C20—C19118.1 (4)
C1—C2—H2121.0C21—C20—H20121.0
C3—C2—H2121.0C19—C20—H20121.0
C4—C3—C2122.6 (4)C22—C21—C20122.1 (4)
C4—C3—H3118.7C22—C21—H21119.0
C2—C3—H3118.7C20—C21—H21119.0
C3—C4—C12120.4 (4)C21—C22—C23118.0 (5)
C3—C4—H4119.8C21—C22—H22121.0
C12—C4—H4119.8C23—C22—H22121.0
C6—C5—C14120.6 (4)C18—C23—F25117.6 (3)
C6—C5—H5119.7C18—C23—C22122.1 (4)
C14—C5—H5119.7F25—C23—C22120.3 (4)
C5—C6—C7121.4 (4)N10—C26—H26A109.5
C5—C6—H6119.3N10—C26—H26B109.5
C7—C6—H6119.3H26A—C26—H26B109.5
C8—C7—C6120.0 (4)N10—C26—H26C109.5
C8—C7—H7120.0H26A—C26—H26C109.5
C6—C7—H7120.0H26B—C26—H26C109.5
C7—C8—C13121.5 (4)N10—C26—H26D109.5
C7—C8—H8119.2H26A—C26—H26D141.1
C13—C8—H8119.2H26B—C26—H26D56.3
C13—C9—C11120.8 (3)H26C—C26—H26D56.3
C13—C9—C15120.2 (3)N10—C26—H26E109.5
C11—C9—C15118.7 (3)H26A—C26—H26E56.3
C14—N10—C12122.2 (3)H26B—C26—H26E141.1
C14—N10—C26118.9 (3)H26C—C26—H26E56.3
C12—N10—C26119.0 (3)H26D—C26—H26E109.5
C9—C11—C1122.1 (3)N10—C26—H26F109.5
C9—C11—C12118.9 (3)H26A—C26—H26F56.3
C1—C11—C12118.9 (3)H26B—C26—H26F56.3
N10—C12—C4121.8 (4)H26C—C26—H26F141.1
N10—C12—C11119.7 (3)H26D—C26—H26F109.5
C4—C12—C11118.6 (4)H26E—C26—H26F109.5
C9—C13—C8122.8 (3)O28—S27—O29114.45 (18)
C9—C13—C14119.1 (3)O28—S27—O30115.2 (2)
C8—C13—C14118.1 (3)O29—S27—O30114.76 (19)
N10—C14—C5122.4 (4)O28—S27—C31104.0 (2)
N10—C14—C13119.3 (3)O29—S27—C31103.6 (2)
C5—C14—C13118.3 (4)O30—S27—C31102.55 (18)
C9—C15—O16111.9 (3)F33—C31—F32105.9 (4)
C9—C15—O17124.6 (3)F33—C31—F34106.1 (3)
C15—O16—C18115.4 (3)F32—C31—F34107.8 (4)
O16—C15—O17123.6 (3)F33—C31—S27113.4 (3)
C23—C18—C19118.7 (4)F32—C31—S27111.2 (3)
C23—C18—O16120.6 (3)F34—C31—S27112.0 (3)
C19—C18—O16120.7 (4)
C11—C1—C2—C30.2 (6)C8—C13—C14—N10177.7 (3)
C1—C2—C3—C41.2 (7)C9—C13—C14—C5179.0 (3)
C2—C3—C4—C120.1 (7)C8—C13—C14—C51.5 (5)
C14—C5—C6—C70.6 (7)C13—C9—C15—O17109.2 (4)
C5—C6—C7—C81.8 (7)C13—C9—C15—O1672.1 (4)
C6—C7—C8—C131.3 (6)C11—C9—C15—O16114.6 (3)
C13—C9—C11—C1178.0 (3)O17—C15—O16—C180.6 (5)
C15—C9—C11—C18.7 (5)C9—C15—O16—C18178.1 (3)
C13—C9—C11—C120.4 (5)C11—C9—C15—O1764.2 (5)
C15—C9—C11—C12172.9 (3)C15—O16—C18—C2384.9 (4)
C2—C1—C11—C9178.9 (4)C15—O16—C18—C1996.3 (4)
C2—C1—C11—C122.7 (5)C23—C18—C19—F24179.2 (3)
C14—N10—C12—C4178.9 (3)O16—C18—C19—F242.0 (5)
C26—N10—C12—C41.8 (5)C23—C18—C19—C200.8 (6)
C14—N10—C12—C110.7 (5)O16—C18—C19—C20178.0 (3)
C26—N10—C12—C11180.0 (3)F24—C19—C20—C21179.8 (4)
C3—C4—C12—N10179.4 (4)C18—C19—C20—C210.1 (6)
C3—C4—C12—C112.4 (6)C19—C20—C21—C220.2 (7)
C9—C11—C12—N100.4 (5)C20—C21—C22—C230.3 (6)
C1—C11—C12—N10178.0 (3)C19—C18—C23—F25179.3 (3)
C9—C11—C12—C4177.8 (3)O16—C18—C23—F251.9 (5)
C1—C11—C12—C43.7 (5)C19—C18—C23—C221.3 (6)
C11—C9—C13—C8178.8 (3)O16—C18—C23—C22177.6 (3)
C15—C9—C13—C85.6 (5)C21—C22—C23—C181.0 (6)
C11—C9—C13—C140.7 (5)C21—C22—C23—F25179.6 (4)
C15—C9—C13—C14173.9 (3)O28—S27—C31—F33178.9 (3)
C7—C8—C13—C9179.8 (4)O29—S27—C31—F3361.1 (3)
C7—C8—C13—C140.3 (6)O30—S27—C31—F3358.6 (3)
C12—N10—C14—C5179.0 (3)O28—S27—C31—F3261.8 (4)
C26—N10—C14—C50.3 (5)O29—S27—C31—F3258.1 (4)
C12—N10—C14—C131.8 (5)O30—S27—C31—F32177.8 (3)
C26—N10—C14—C13178.9 (3)O28—S27—C31—F3458.9 (3)
C6—C5—C14—N10178.1 (4)O29—S27—C31—F34178.8 (3)
C6—C5—C14—C131.1 (6)O30—S27—C31—F3461.5 (3)
C9—C13—C14—N101.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.543.225 (5)131
C5—H5···O28ii0.932.593.417 (5)148
C22—H22···O17iii0.932.523.316 (5)144
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
(II) 2,6-difluorophenyl acridine-9-carboxylate top
Crystal data top
C20H11F2NO2Z = 2
Mr = 335.30F(000) = 344
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.306 (2) ÅCell parameters from 50 reflections
b = 9.057 (2) Åθ = 2.5–25.0°
c = 11.423 (2) ŵ = 0.11 mm1
α = 69.94 (3)°T = 290 K
β = 77.80 (3)°Prism, yellow
γ = 72.16 (3)°0.4 × 0.3 × 0.2 mm
V = 762.9 (3) Å3
Data collection top
Kuma KM-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 99
θ/2θ scansk = 1010
2875 measured reflectionsl = 013
2681 independent reflections3 standard reflections every 200 reflections
1314 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1152P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2681 reflectionsΔρmax = 0.18 e Å3
227 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (4)
Crystal data top
C20H11F2NO2γ = 72.16 (3)°
Mr = 335.30V = 762.9 (3) Å3
Triclinic, P1Z = 2
a = 8.306 (2) ÅMo Kα radiation
b = 9.057 (2) ŵ = 0.11 mm1
c = 11.423 (2) ÅT = 290 K
α = 69.94 (3)°0.4 × 0.3 × 0.2 mm
β = 77.80 (3)°
Data collection top
Kuma KM-4
diffractometer
Rint = 0.023
2875 measured reflections3 standard reflections every 200 reflections
2681 independent reflections intensity decay: 1.0%
1314 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2681 reflectionsΔρmin = 0.16 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0776 (3)0.6168 (3)0.1656 (2)0.0559 (6)
H10.16790.61530.22960.067*
C20.0846 (4)0.7473 (3)0.0628 (3)0.0659 (7)
H20.17980.83530.05690.079*
C30.0491 (4)0.7527 (3)0.0357 (2)0.0678 (8)
H30.04100.84360.10620.081*
C40.1891 (4)0.6276 (3)0.0290 (2)0.0602 (7)
H40.27690.63340.09480.072*
C50.5148 (3)0.1091 (3)0.1858 (3)0.0632 (7)
H50.60000.11820.11830.076*
C60.5382 (3)0.0231 (3)0.2866 (3)0.0684 (8)
H60.63990.10360.28830.082*
C70.4114 (3)0.0412 (3)0.3893 (3)0.0624 (7)
H70.43000.13350.45840.075*
C80.2629 (3)0.0734 (3)0.3892 (2)0.0514 (6)
H80.17900.05840.45730.062*
C90.0851 (3)0.3411 (3)0.27999 (19)0.0400 (5)
N100.3465 (2)0.3660 (2)0.07906 (17)0.0534 (5)
C110.0667 (3)0.4819 (3)0.17662 (19)0.0431 (6)
C120.2044 (3)0.4867 (3)0.0773 (2)0.0487 (6)
C130.2333 (3)0.2167 (3)0.2860 (2)0.0422 (5)
C140.3613 (3)0.2357 (3)0.1807 (2)0.0472 (6)
C150.0594 (3)0.3239 (3)0.3817 (2)0.0414 (5)
O160.03122 (18)0.35588 (19)0.48181 (14)0.0501 (5)
O170.1824 (2)0.2872 (2)0.37816 (15)0.0681 (6)
C180.1595 (3)0.3494 (3)0.5831 (2)0.0442 (6)
C190.1398 (3)0.2205 (3)0.6894 (2)0.0549 (7)
C200.2582 (4)0.2158 (4)0.7937 (2)0.0676 (8)
H200.24270.12730.86570.081*
C210.3992 (3)0.3434 (4)0.7898 (2)0.0680 (8)
H210.48050.34100.85980.082*
C220.4226 (3)0.4748 (4)0.6845 (2)0.0615 (7)
H220.51850.56170.68210.074*
C230.3012 (3)0.4746 (3)0.5829 (2)0.0519 (6)
F240.0005 (2)0.09652 (19)0.69054 (14)0.0841 (6)
F250.31815 (19)0.60132 (19)0.47740 (14)0.0791 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (15)0.0487 (15)0.0511 (15)0.0047 (12)0.0026 (12)0.0108 (12)
C20.0758 (18)0.0470 (15)0.0584 (17)0.0025 (13)0.0142 (15)0.0033 (13)
C30.091 (2)0.0542 (17)0.0450 (16)0.0177 (17)0.0096 (15)0.0023 (13)
C40.0785 (19)0.0564 (16)0.0394 (14)0.0230 (16)0.0048 (13)0.0083 (12)
C50.0500 (15)0.0576 (17)0.0721 (18)0.0102 (13)0.0214 (13)0.0272 (15)
C60.0476 (15)0.0536 (17)0.086 (2)0.0014 (13)0.0024 (15)0.0180 (16)
C70.0558 (16)0.0512 (15)0.0641 (17)0.0046 (13)0.0005 (14)0.0094 (13)
C80.0475 (14)0.0470 (14)0.0486 (14)0.0070 (12)0.0039 (11)0.0104 (12)
C90.0412 (12)0.0410 (13)0.0352 (12)0.0107 (10)0.0020 (10)0.0119 (10)
N100.0593 (13)0.0502 (13)0.0446 (12)0.0169 (11)0.0132 (9)0.0155 (10)
C110.0463 (13)0.0428 (13)0.0371 (12)0.0102 (11)0.0002 (10)0.0120 (11)
C120.0590 (15)0.0498 (14)0.0358 (13)0.0183 (13)0.0039 (11)0.0126 (11)
C130.0399 (13)0.0428 (13)0.0403 (13)0.0086 (11)0.0026 (10)0.0141 (10)
C140.0464 (14)0.0456 (14)0.0476 (14)0.0139 (11)0.0104 (11)0.0191 (12)
C150.0378 (13)0.0406 (13)0.0385 (13)0.0047 (10)0.0004 (10)0.0100 (10)
O160.0450 (9)0.0677 (11)0.0391 (9)0.0176 (8)0.0086 (7)0.0231 (8)
O170.0535 (11)0.1069 (16)0.0573 (11)0.0363 (11)0.0112 (8)0.0376 (10)
C180.0397 (12)0.0541 (14)0.0369 (13)0.0106 (11)0.0029 (10)0.0168 (11)
C190.0498 (14)0.0574 (16)0.0488 (15)0.0027 (12)0.0009 (13)0.0181 (13)
C200.0757 (19)0.0725 (19)0.0425 (15)0.0195 (16)0.0100 (14)0.0119 (13)
C210.0628 (17)0.096 (2)0.0484 (17)0.0280 (17)0.0197 (13)0.0342 (16)
C220.0426 (14)0.0808 (19)0.0578 (17)0.0030 (13)0.0043 (13)0.0339 (16)
C230.0484 (15)0.0559 (15)0.0449 (15)0.0034 (13)0.0075 (12)0.0144 (12)
F240.0820 (11)0.0667 (10)0.0689 (10)0.0119 (9)0.0010 (8)0.0106 (8)
F250.0767 (10)0.0689 (10)0.0628 (10)0.0062 (8)0.0087 (8)0.0054 (8)
Geometric parameters (Å, º) top
C1—C21.347 (3)C9—C151.488 (3)
C1—C111.416 (3)N10—C121.339 (3)
C1—H10.9300N10—C141.337 (3)
C2—C31.403 (4)C11—C121.430 (3)
C2—H20.9300C13—C141.427 (3)
C3—C41.346 (4)C15—O161.352 (3)
C3—H30.9300C15—O171.180 (3)
C4—C121.422 (3)O16—C181.395 (2)
C4—H40.9300C18—C231.361 (3)
C5—C61.343 (4)C18—C191.364 (3)
C5—C141.426 (3)C19—F241.342 (3)
C5—H50.9300C19—C201.372 (3)
C6—C71.402 (4)C20—C211.366 (4)
C6—H60.9300C20—H200.9300
C7—C81.347 (3)C21—C221.370 (4)
C7—H70.9300C21—H210.9300
C8—C131.418 (3)C22—C231.367 (3)
C8—H80.9300C22—H220.9300
C9—C131.387 (3)C23—F251.347 (3)
C9—C111.403 (3)
C2—C1—C11120.3 (2)N10—C12—C4118.4 (2)
C2—C1—H1119.8N10—C12—C11123.6 (2)
C11—C1—H1119.8C4—C12—C11118.0 (2)
C1—C2—C3121.2 (3)C9—C13—C8123.9 (2)
C1—C2—H2119.4C9—C13—C14117.1 (2)
C3—C2—H2119.4C8—C13—C14119.0 (2)
C4—C3—C2120.6 (2)N10—C14—C5118.4 (2)
C4—C3—H3119.7N10—C14—C13123.8 (2)
C2—C3—H3119.7C5—C14—C13117.7 (2)
C3—C4—C12120.9 (2)C9—C15—O16110.6 (2)
C3—C4—H4119.6C9—C15—O17125.9 (2)
C12—C4—H4119.6C15—O16—C18116.8 (2)
C6—C5—C14121.1 (2)O16—C15—O17123.5 (2)
C6—C5—H5119.5C23—C18—C19117.9 (2)
C14—C5—H5119.5C23—C18—O16121.7 (2)
C5—C6—C7120.8 (2)C19—C18—O16120.2 (2)
C5—C6—H6119.6F24—C19—C18118.4 (2)
C7—C6—H6119.6F24—C19—C20120.1 (2)
C8—C7—C6120.8 (2)C18—C19—C20121.6 (2)
C8—C7—H7119.6C21—C20—C19118.8 (2)
C6—C7—H7119.6C21—C20—H20120.6
C7—C8—C13120.5 (2)C19—C20—H20120.6
C7—C8—H8119.7C20—C21—C22121.0 (2)
C13—C8—H8119.7C20—C21—H21119.5
C13—C9—C11120.8 (2)C22—C21—H21119.5
C13—C9—C15120.05 (19)C23—C22—C21118.1 (2)
C11—C9—C15119.11 (19)C23—C22—H22120.9
C14—N10—C12117.89 (19)C21—C22—H22120.9
C9—C11—C1124.3 (2)F25—C23—C18117.1 (2)
C9—C11—C12116.7 (2)F25—C23—C22120.4 (2)
C1—C11—C12119.0 (2)C18—C23—C22122.5 (2)
C11—C1—C2—C30.4 (4)C6—C5—C14—N10178.6 (3)
C1—C2—C3—C40.7 (4)C6—C5—C14—C130.3 (4)
C2—C3—C4—C120.4 (4)C9—C13—C14—N100.8 (3)
C14—C5—C6—C70.7 (4)C8—C13—C14—N10179.8 (2)
C5—C6—C7—C80.2 (4)C9—C13—C14—C5179.7 (2)
C6—C7—C8—C131.4 (4)C8—C13—C14—C50.9 (3)
C13—C9—C11—C1177.5 (2)C13—C9—C15—O1799.8 (3)
C15—C9—C11—C14.7 (3)C13—C9—C15—O1680.0 (2)
C13—C9—C11—C122.4 (3)C11—C9—C15—O16102.2 (2)
C15—C9—C11—C12175.4 (2)O17—C15—O16—C182.2 (3)
C2—C1—C11—C9180.0 (3)C9—C15—O16—C18178.01 (17)
C2—C1—C11—C120.1 (4)C11—C9—C15—O1778.1 (3)
C14—N10—C12—C4178.5 (2)C15—O16—C18—C2379.8 (3)
C14—N10—C12—C111.5 (3)C15—O16—C18—C19104.9 (3)
C3—C4—C12—N10179.9 (2)C23—C18—C19—F24180.0 (2)
C3—C4—C12—C110.1 (4)O16—C18—C19—F244.5 (3)
C9—C11—C12—N100.3 (3)C23—C18—C19—C200.0 (4)
C1—C11—C12—N10179.6 (2)O16—C18—C19—C20175.5 (2)
C9—C11—C12—C4179.7 (2)F24—C19—C20—C21179.7 (2)
C1—C11—C12—C40.4 (3)C18—C19—C20—C210.3 (4)
C11—C9—C13—C8178.0 (2)C19—C20—C21—C220.4 (4)
C15—C9—C13—C84.2 (3)C20—C21—C22—C230.2 (4)
C11—C9—C13—C142.7 (3)C19—C18—C23—F25179.6 (2)
C15—C9—C13—C14175.2 (2)O16—C18—C23—F254.2 (3)
C7—C8—C13—C9178.9 (2)C19—C18—C23—C220.2 (4)
C7—C8—C13—C141.8 (4)O16—C18—C23—C22175.6 (2)
C12—N10—C14—C5177.6 (2)C21—C22—C23—F25179.7 (2)
C12—N10—C14—C131.3 (3)C21—C22—C23—C180.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O17i0.932.553.395 (4)151
Symmetry code: (i) x1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H14F2NO2+·CF3O3SC20H11F2NO2
Mr499.40335.30
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)290290
a, b, c (Å)11.382 (2), 14.048 (3), 13.162 (3)8.306 (2), 9.057 (2), 11.423 (2)
α, β, γ (°)90, 91.16 (3), 9069.94 (3), 77.80 (3), 72.16 (3)
V3)2104.1 (8)762.9 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.230.11
Crystal size (mm)0.5 × 0.3 × 0.20.4 × 0.3 × 0.2
Data collection
DiffractometerKuma KM-4
diffractometer
Kuma KM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3874, 3700, 1760 2875, 2681, 1314
Rint0.0290.023
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 0.97 0.042, 0.129, 1.01
No. of reflections37002681
No. of parameters309227
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.320.18, 0.16

Computer programs: KM-4 Software (Kuma Diffraction, 1989), KM-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
N10—C121.367 (5)O16—C181.401 (4)
N10—C141.363 (5)C19—F241.336 (5)
C15—O161.355 (4)C23—F251.352 (4)
C15—O171.179 (4)
C9—C15—O16111.9 (3)C9—C15—O17124.6 (3)
C11—C9—C15—O1764.2 (5)C15—O16—C18—C1996.3 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O29i0.932.543.225 (5)131
C5—H5···O28ii0.932.593.417 (5)148
C22—H22···O17iii0.932.523.316 (5)144
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Y—X···π interactions in (I) (Å,°) top
Y—XCgX···CgY···CgY—X···Cg
C19—F242iv3.874 (3)4.109 (4)90.5 (2)
C23—F254iii3.977 (3)4.383 (4)98.4 (2)
S27—O281v3.511 (3)3.708 (2)86.74 (13)
S27—O282v3.374 (3)4.080 (2)110.17 (14)
S27—O291v3.569 (4)3.708 (2)84.22 (14)
S27—O293v3.835 (4)4.740 (2)121.64 (16)
Notes: Cg represents the centre of gravity of the rings, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg2 ring C1–C4/C12/C11, Cg3 ring C5–C8/C13/C14, Cg4 ring C18–C23. Symmetry codes: (iii) 1 − x, −y, 1 − z; (iv) x, 1/2 − y, z − 1/2; (v) 1 + x, 1/2 − y, z − 1/2.
ππ interactions in (I) (Å, °) top
CgICgJCg···CgDihedral angleInterplanar dist.Offset
14vi3.620 (2)7.83.424 (2)1.841 (2)
34vi3.940 (3)6.43.482 (3)1.003 (3)
41iv3.620 (2)7.83.530 (2)1.037 (2)
43iv3.940 (3)6.43.527 (3)1.570 (3)
Notes: Cg···Cg is the distance between ring centroids as defined in Table 3. The dihedral angle is that between the planes of CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. Symmetry codes: (iv) x, 1/2 − y, z − 1/2; (vi) x, 1/2 − y, 1/2 + z.
Selected geometric parameters (Å, º) for (II) top
N10—C121.339 (3)O16—C181.395 (2)
N10—C141.337 (3)C19—F241.342 (3)
C15—O161.352 (3)C23—F251.347 (3)
C15—O171.180 (3)
C9—C15—O16110.6 (2)C9—C15—O17125.9 (2)
C11—C9—C15—O1778.1 (3)C15—O16—C18—C19104.9 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C22—H22···O17i0.932.553.395 (4)151
Symmetry code: (i) x1, y+1, z+1.
ππ interactions in (II) (Å, °) top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
12ii3.912 (2)1.13.459 (3)1.472 (2)
14iii3.735 (2)6.33.469 (3)1.413 (2)
21ii3.912 (2)1.13.427 (3)1.740 (2)
22ii3.514 (2)0.03.444 (3)1.634 (2)
24iii3.787 (2)6.33.406 (3)1.472 (2)
41iii3.735 (2)6.33.535 (3)1.413 (2)
42iii3.787 (2)6.33.527 (3)1.740 (2)
Notes: Cg···Cg is the distance between ring centroids as defined in Table 3. The dihedral angle is that between the planes of CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J. Symmetry codes: (ii) −x, 1 − y, −z; (iii) −x, 1 − y, 1 − z.
The angles between the acridine and phenyl rings (δ, °), and between the acridine ring and the carboxyl or vinyl fragment (ε, °) in substituted phenyl acridine-9-carboxylates, their relevant 10-methylacridinium cations and related compounds top
Compoundδ angleε angleReferences
(I)17.3 (2)67.6 (2)This work
(II)5.8 (2)78.8 (2)This work
(III)35.9 (2)56.5 (2)Meszko et al. (2002)
(IV)30.2 (2)57.9 (2)To be published
(V)62.1 (2)67.3 (2)Sikorski et al. (2005a)
(VI)35.7 (2)68.1 (2)Sikorski et al. (2005a)
(VII)9.3 (2)77.2 (2)Sikorski et al. (2005b)
(VIII)41.2 (2)51.0 (2)Sikorski et al. (2005d)
(IX)45.5 (2)54.3 (2)To be published
(X)27.2 (2)89.0 (2)To be published
(XI)33.4 (2)62.0 (2)Sikorski et al. (2005b)
(XII)35.9 (3)60.6 (3)Sikorski et al. (2005c)
(XIII)67.1 (2)55.5 (2)Sgarabotto et al. (1989)
(XIV)73.7 (3)69.9 (3)Sgarabotto et al. (1989)
Compounds: (I) 9-(2,6-difluorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (II) 2,5-difluorophenyl acridine-9-carboxylate; (III) 2-methylphenyl 2-methoxyacridine-9-carboxylate; (IV) 2-methylphenyl acridine-9-carboxylate; (V) 2-ethylphenyl acridine-9-carboxylate; (VI) 2,5-dimethylphenyl acridine-9-carboxylate; (VII) 2,5-dichlorophenyl acridine-9-carboxylate; (VIII) 2,5-dibromophenyl acridine-9-carboxylate; (IX) 2,5-diiodophenyl acridine-9-carboxylate; (X) 9-(2-methylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XI) 9-(2,6-dichlorophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XII) 9-(2,6-dibromophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate; (XIII) (E)-9-styrylacridine; (XIV) (Z)-9-(2,5-dimethylstyryl)acridine.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds