Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the C2-symmetric dinuclear title complex, [Zn2(C18H13N4O2)2(C2H3O2)2]·4H2O, each ZnII ion is five-coordinated in a distorted trigonal bipyramidal fashion by one carboxyl­ate O atom from one benzoate ligand, one imine N atom and two pyridyl N atoms from a second benzoate ligand, and one O atom from an acetate anion. The two Zn atoms are bridged by the two benzoate ligands, forming a dinuclear structure with a 14-membered macrocycle. Adjacent dinuclear units are further connected by extensive hydrogen bonds involving the solvent water mol­ecules, giving a three-dimensional hydrogen-bonded framework. The framework can be regarded as an example of the four-connected node network of the PtS topology.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108007166/ln3090sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108007166/ln3090Isup2.hkl
Contains datablock I

CCDC reference: 686423

Comment top

The rapidly growing area of coordination polymers based on the interactions of metal cations with organic ligands has given rise to a wide range of fascinating one-, two- and three-dimensional structures (Erxleben, 2003). In designing these polymers, the choice of appropriate organic ligands is a dominant factor in determining the structural and functional outcome of the target polymers. Organic ligands containing N,O-donors are of interest because of their capacity for intriguing structural features and their potential applications (Li et al., 2003; Gao et al., 2004; Fei et al., 2005). Many studies have centred on the use of pyridine(bi)carboxylate ligands, especially 3- or 4-pyridinecarboxylate ligands and 2,5-pyridinedicarboxylate (Xing et al., 1998; Qin et al., 2002; Garcia-Zarracino & Hopfl, 2005). However, there are few reports on the bis(pyridine)carboxylate ligands (Hemmert et al., 1996; Kirin et al., 2005). In order to further explore the self-assembly of coordination networks based on bis(pyridine)carboxylate ligands, we synthesized a new dinuclear zinc complex, [Zn2(C18H13N4O2)2(CH3COO)2].4H2O, (I), obtained by the reaction of zinc(II) acetate dihydrate and a new ligand, viz. (E)-2-[N,N'-di(pyridin-2-yl)carbamimidoyl]benzoic acid, in methanol solution. To the best of our knowledge, this is the first report of a crystal structure of a metal complex containing this ligand.

The title complex has a dinuclear structure, in which the molecule is situated about a crystallographic twofold axis, as shown in Fig. 1. The unique ZnII ion lies in a distorted trigonal–bipyramidal coordination environment, which is completed by one carboxylate O atom from one benzoate ligand, one imine N atom and two pyridyl N atoms from a second benzoate ligand, and one O atom from an acetate anion. The equatorial plane of the trigonal bipyramid is defined by atoms N1, O3 and O1i [symmetry code: (i) -x, y, 1/2 - z], and the displacement of the ZnII ion from the equatorial plane is 0.13 (3) Å. The axial positions are occupied by pyridyl atoms N2 and N4, and the N2—Zn1—N4 angle deviates significantly from linearity (Table 1). The distortion of the coordination polyhedron is primarily influenced by the very small bite angle imposed by the four-membered ring generated by the coordination of the imine and immediately adjacent pyridyl N atoms to the ZnII ion.

It is noteworthy that each ligand behaves in a quadridentate coordination fashion involving one monodentate carboxylate O atom, the imine N atom and the two pyridyl N atoms, while the amine N atom is free of coordination with the Zn atoms. Within each benzoate ligand, the two pyridyl rings are nearly parallel to one another, with a dihedral angle of 9.2 (2)°; however, the benzene ring is nearly perpendicular to these two pyridyl rings, with dihedral angles of 89.8 (2) and 89.7 (2)°. The two Zn atoms in the molecule are bridged by the two benzoate ligands to give a 14-membered macrometallacyclic ring with a Zn···Zn separation of 5.0983 (12) Å. Within the dinuclear units, ππ interactions are present between each of the pyridyl rings and their symmetry-related counterparts in the second benzoate ligand. The centroid–centroid distances are 3.573 (2) and 3.817 (2) Å for the pyridyl rings containing atoms N2 and N4, respectively.

The asymmetric unit of the crystal structure includes two solvent water molecules. It can be seen from Fig. 2 that the crystal structure is built through extensive hydrogen bonds. The free water molecules of adjacent asymmetric units form hydrogen bonds amongst themselves (Table 2), which result in eight-membered centrosymmetric rhombic hydrogen-bonded rings. These rings have a graph-set motif of R24(8) (Bernstein et al., 1995), where atom O1W acts solely as a hydrogen-bond donor through both of its H atoms and atom O2W acts solely as a hydrogen-bond acceptor. At the same time, the free water molecules also form intermolecular hydrogen bonds with adjacent Zn complex molecules. Atom O1W accepts a hydrogen bond from the uncoordinated amine N atom (N3), while atom O2W donates hydrogen bonds through its two H atoms to acetate atom O3 and carboxylate atom O2 of two different adjacent Zn complex molecules (Table 2). Taken together, the hydrogen-bonding interactions give rise to a regular three-dimensional hydrogen-bonding framework. It is noteworthy that the complex molecules do not interact with one another via direct hydrogen bonds but only via water molecules. A better insight into the nature of this intricate framework can be achieved by the application of a topological approach, reducing multi-dimensional structures to simple node and connection nets. As discussed above, each dinuclear unit and each eight-membered rhombic hydrogen-bonded ring of water molecules can be considered as four-connected nodes. Therefore, the whole structure can be regarded as a PtS net (Wang et al., 2008), as displayed in Fig. 3.

Related literature top

For related literature, see: Bernstein et al. (1995); Erxleben (2003); Fei et al. (2005); Gao et al. (2004); Garcia-Zarracino & Hopfl (2005); Hemmert et al. (1996); Kirin et al. (2005); Li et al. (2003); Qin et al. (2002); Wang et al. (2008); Xing et al. (1998).

Experimental top

An aqueous solution of zinc(II) acetate dihydrate (0.110 g, 0.5 mmol) was added to an methanol solution of (E)-2-[N,N'-di(pyridin-2-yl)carbamimidoyl]benzoic acid (1.59 g, 5 mmol). The solution was stirred for half an hour and allowed to evaporate at room temperature. Colorless crystals were isolated from the filtered solution after four weeks. Analysis calculated for C40H40N8O12Zn2: C 50.28, H 4.22, N 11.73%; found: C 50.24, H 4.25, N 11.77%.

Refinement top

H atoms in the Zn complex molecule were placed in calculated positions and included in the refinement by using the riding-model approximation, with phenyl C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å and amine N—H distances of 0.86 Å, and with Uiso(H) values of 1.2Ueq(phenyl C, N) or 1.5Ueq(methyl C). The H atoms of the water molecules were located in a difference map and refined with with O—H distance restraints of 0.85 (1) Å and with Uiso(H) values of 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: RAPID-AUTO (Rigaku Corporation, 1998) and CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I), showing displacement ellipsoids at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, y, 1/2 - z.]
[Figure 2] Fig. 2. The three-dimensional hydrogen-bonding network structure of complex (I), with uninvolved H atoms omitted.
[Figure 3] Fig. 3. The PtS topology exhibited by the structure of complex (I).
Bis{µ-(E)-2-[(2-pyridylamino)(2- pyridylimino)methyl]benzato}bis[acetatozinc(II)] tetrahydrate top
Crystal data top
[Zn2(C18H13N4O2)2(C2H3O2)2]·4H2OF(000) = 1968
Mr = 955.58Dx = 1.543 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 16786 reflections
a = 13.718 (3) Åθ = 3.1–27.5°
b = 15.433 (3) ŵ = 1.24 mm1
c = 20.526 (4) ÅT = 295 K
β = 108.83 (3)°Prism, colorless
V = 4113.0 (16) Å30.36 × 0.35 × 0.23 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4715 independent reflections
Radiation source: fine-focus sealed tube4200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2019
Tmin = 0.654, Tmax = 0.744l = 2625
19669 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0402P)2 + 2.5563P]
where P = (Fo2 + 2Fc2)/3
4715 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn2(C18H13N4O2)2(C2H3O2)2]·4H2OV = 4113.0 (16) Å3
Mr = 955.58Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.718 (3) ŵ = 1.24 mm1
b = 15.433 (3) ÅT = 295 K
c = 20.526 (4) Å0.36 × 0.35 × 0.23 mm
β = 108.83 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4715 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4200 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.744Rint = 0.025
19669 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.30 e Å3
4715 reflectionsΔρmin = 0.34 e Å3
293 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.109493 (13)0.556597 (11)0.170539 (8)0.03110 (7)
O10.03458 (9)0.55145 (7)0.38822 (6)0.0400 (3)
O20.05633 (11)0.64525 (12)0.47430 (8)0.0702 (5)
O30.21542 (10)0.55981 (9)0.12489 (7)0.0498 (3)
O40.33033 (12)0.54528 (10)0.22844 (8)0.0593 (4)
N10.13623 (10)0.58427 (8)0.27422 (6)0.0316 (3)
N20.11601 (10)0.69499 (9)0.20214 (7)0.0343 (3)
N30.17612 (11)0.44789 (8)0.32053 (7)0.0330 (3)
H140.20330.42040.35850.040*
N40.10710 (11)0.42690 (8)0.19911 (7)0.0346 (3)
C10.08803 (12)0.59836 (11)0.43713 (8)0.0366 (3)
C20.20219 (12)0.59636 (10)0.44797 (8)0.0344 (3)
C30.26978 (14)0.62865 (13)0.50908 (9)0.0475 (4)
H30.24400.64940.54280.057*
C40.37445 (15)0.63051 (14)0.52054 (10)0.0554 (5)
H40.41860.65230.56180.067*
C50.41404 (14)0.60000 (14)0.47081 (10)0.0510 (5)
H50.48470.60030.47880.061*
C60.34778 (13)0.56901 (12)0.40904 (9)0.0416 (4)
H60.37420.54940.37530.050*
C70.24222 (12)0.56699 (9)0.39712 (8)0.0310 (3)
C80.17779 (11)0.53565 (10)0.32717 (8)0.0305 (3)
C90.13703 (12)0.67506 (10)0.26921 (8)0.0317 (3)
C100.15131 (14)0.73910 (11)0.31864 (9)0.0420 (4)
H100.16530.72500.36480.050*
C110.14415 (15)0.82451 (11)0.29738 (10)0.0450 (4)
H110.15390.86870.32970.054*
C120.12275 (14)0.84500 (11)0.22880 (10)0.0432 (4)
H120.11740.90230.21410.052*
C130.10959 (13)0.77777 (12)0.18287 (9)0.0409 (4)
H130.09560.79060.13650.049*
C140.13792 (11)0.39426 (10)0.26269 (8)0.0316 (3)
C150.13807 (13)0.30501 (11)0.27437 (9)0.0405 (4)
H150.15900.28330.31900.049*
C160.10699 (15)0.25009 (11)0.21917 (11)0.0496 (4)
H160.10770.19050.22600.060*
C170.07466 (16)0.28357 (12)0.15344 (11)0.0527 (5)
H170.05280.24730.11530.063*
C180.07548 (15)0.37115 (12)0.14569 (10)0.0456 (4)
H180.05310.39370.10130.055*
C190.30836 (15)0.55728 (11)0.16660 (11)0.0454 (4)
C200.39118 (19)0.57135 (18)0.13360 (16)0.0741 (7)
H2010.39130.63100.12040.111*
H2020.37760.53520.09360.111*
H2030.45710.55670.16590.111*
O1W0.25784 (17)0.34431 (12)0.44071 (9)0.0780 (5)
H1W10.296 (2)0.2997 (14)0.4494 (17)0.117*
H1W20.213 (2)0.341 (2)0.4614 (17)0.117*
O2W0.36212 (13)0.18362 (12)0.47327 (8)0.0649 (4)
H2W10.4260 (8)0.1812 (18)0.4780 (14)0.097*
H2W20.3308 (17)0.1441 (15)0.4449 (13)0.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03200 (11)0.03393 (11)0.02783 (11)0.00038 (7)0.01027 (7)0.00074 (7)
O10.0317 (6)0.0468 (7)0.0385 (6)0.0003 (5)0.0074 (5)0.0069 (5)
O20.0467 (8)0.1020 (12)0.0646 (9)0.0017 (8)0.0217 (7)0.0393 (9)
O30.0432 (7)0.0606 (8)0.0530 (8)0.0040 (6)0.0257 (6)0.0006 (6)
O40.0547 (9)0.0585 (9)0.0641 (10)0.0013 (6)0.0182 (7)0.0009 (7)
N10.0373 (7)0.0293 (6)0.0282 (6)0.0012 (5)0.0103 (5)0.0005 (5)
N20.0341 (7)0.0352 (7)0.0330 (6)0.0009 (5)0.0100 (5)0.0021 (6)
N30.0392 (7)0.0301 (6)0.0291 (6)0.0037 (5)0.0102 (5)0.0028 (5)
N40.0383 (7)0.0318 (6)0.0329 (7)0.0009 (5)0.0105 (5)0.0010 (6)
C10.0359 (8)0.0429 (9)0.0307 (7)0.0027 (7)0.0103 (6)0.0005 (7)
C20.0349 (8)0.0375 (8)0.0286 (7)0.0007 (6)0.0072 (6)0.0003 (6)
C30.0451 (10)0.0614 (11)0.0329 (8)0.0026 (8)0.0083 (7)0.0081 (8)
C40.0448 (10)0.0713 (13)0.0397 (9)0.0110 (9)0.0010 (8)0.0079 (9)
C50.0313 (9)0.0654 (12)0.0509 (10)0.0061 (8)0.0057 (7)0.0018 (10)
C60.0346 (8)0.0492 (10)0.0413 (9)0.0007 (7)0.0128 (7)0.0007 (8)
C70.0324 (8)0.0297 (7)0.0289 (7)0.0020 (6)0.0071 (6)0.0026 (6)
C80.0299 (7)0.0326 (7)0.0310 (7)0.0018 (6)0.0127 (6)0.0001 (6)
C90.0300 (7)0.0317 (7)0.0335 (7)0.0009 (6)0.0105 (6)0.0004 (6)
C100.0564 (11)0.0348 (8)0.0359 (8)0.0026 (7)0.0164 (8)0.0006 (7)
C110.0550 (11)0.0310 (8)0.0521 (10)0.0009 (7)0.0215 (8)0.0045 (8)
C120.0434 (9)0.0326 (8)0.0558 (10)0.0026 (7)0.0191 (8)0.0093 (8)
C130.0407 (9)0.0410 (9)0.0410 (9)0.0028 (7)0.0132 (7)0.0109 (7)
C140.0276 (7)0.0310 (7)0.0375 (8)0.0009 (6)0.0125 (6)0.0009 (6)
C150.0398 (9)0.0329 (8)0.0478 (9)0.0001 (7)0.0129 (7)0.0042 (7)
C160.0508 (11)0.0294 (8)0.0651 (12)0.0011 (7)0.0137 (9)0.0026 (8)
C170.0586 (12)0.0395 (9)0.0544 (11)0.0008 (8)0.0105 (9)0.0148 (9)
C180.0525 (10)0.0415 (9)0.0395 (9)0.0002 (8)0.0102 (8)0.0078 (8)
C190.0428 (10)0.0331 (8)0.0674 (13)0.0047 (7)0.0279 (9)0.0100 (8)
C200.0544 (13)0.0849 (17)0.100 (2)0.0152 (12)0.0484 (14)0.0176 (15)
O1W0.1101 (15)0.0768 (11)0.0604 (9)0.0342 (10)0.0458 (10)0.0285 (9)
O2W0.0613 (9)0.0789 (11)0.0592 (9)0.0187 (8)0.0259 (8)0.0086 (8)
Geometric parameters (Å, º) top
Zn1—O1i1.9566 (14)C6—C71.389 (2)
Zn1—O31.9675 (13)C6—H60.9300
Zn1—N12.0838 (13)C7—C81.502 (2)
Zn1—N42.0890 (14)C9—C101.384 (2)
Zn1—N22.2256 (14)C10—C111.382 (2)
O1—C11.263 (2)C10—H100.9300
O1—Zn1i1.9566 (14)C11—C121.379 (3)
O2—C11.228 (2)C11—H110.9300
O3—C191.287 (3)C12—C131.374 (3)
O4—C191.220 (3)C12—H120.9300
N1—C81.292 (2)C13—H130.9300
N1—C91.405 (2)C14—C151.398 (2)
N2—C131.332 (2)C15—C161.368 (3)
N2—C91.348 (2)C15—H150.9300
N3—C81.3607 (19)C16—C171.377 (3)
N3—C141.403 (2)C16—H160.9300
N3—H140.8600C17—C181.361 (3)
N4—C141.334 (2)C17—H170.9300
N4—C181.351 (2)C18—H180.9300
C1—C21.509 (2)C19—C201.514 (3)
C2—C31.389 (2)C20—H2010.9600
C2—C71.402 (2)C20—H2020.9600
C3—C41.378 (3)C20—H2030.9600
C3—H30.9300O1W—H1W10.85 (3)
C4—C51.384 (3)O1W—H1W20.85 (3)
C4—H40.9300O2W—H2W10.852 (9)
C5—C61.385 (3)O2W—H2W20.86 (2)
C5—H50.9300
O1i—Zn1—O3117.51 (6)N1—C8—N3120.35 (14)
O1i—Zn1—N1116.59 (6)N1—C8—C7125.50 (14)
O3—Zn1—N1124.59 (6)N3—C8—C7113.69 (13)
O1i—Zn1—N491.71 (5)N2—C9—C10121.24 (14)
O3—Zn1—N4103.81 (6)N2—C9—N1107.35 (13)
N1—Zn1—N485.59 (5)C10—C9—N1131.36 (14)
O1i—Zn1—N298.98 (5)C11—C10—C9118.08 (16)
O3—Zn1—N298.52 (5)C11—C10—H10121.0
N1—Zn1—N261.86 (5)C9—C10—H10121.0
N4—Zn1—N2147.20 (5)C12—C11—C10120.74 (16)
C1—O1—Zn1i132.73 (11)C12—C11—H11119.6
C19—O3—Zn1114.08 (12)C10—C11—H11119.6
C8—N1—C9128.97 (14)C13—C12—C11117.70 (16)
C8—N1—Zn1128.64 (11)C13—C12—H12121.2
C9—N1—Zn197.62 (9)C11—C12—H12121.2
C13—N2—C9119.61 (14)N2—C13—C12122.62 (16)
C13—N2—Zn1147.29 (12)N2—C13—H13118.7
C9—N2—Zn193.09 (9)C12—C13—H13118.7
C8—N3—C14131.43 (13)N4—C14—C15121.48 (15)
C8—N3—H14114.3N4—C14—N3121.27 (14)
C14—N3—H14114.3C15—C14—N3117.18 (14)
C14—N4—C18118.10 (14)C16—C15—C14119.05 (17)
C14—N4—Zn1127.43 (11)C16—C15—H15120.5
C18—N4—Zn1114.37 (12)C14—C15—H15120.5
O2—C1—O1126.90 (16)C15—C16—C17119.63 (17)
O2—C1—C2118.62 (15)C15—C16—H16120.2
O1—C1—C2114.46 (14)C17—C16—H16120.2
C3—C2—C7118.71 (16)C18—C17—C16118.34 (18)
C3—C2—C1118.95 (15)C18—C17—H17120.8
C7—C2—C1122.26 (14)C16—C17—H17120.8
C4—C3—C2121.09 (18)N4—C18—C17123.39 (18)
C4—C3—H3119.5N4—C18—H18118.3
C2—C3—H3119.5C17—C18—H18118.3
C3—C4—C5120.14 (17)O4—C19—O3123.76 (18)
C3—C4—H4119.9O4—C19—C20121.2 (2)
C5—C4—H4119.9O3—C19—C20115.0 (2)
C4—C5—C6119.65 (17)C19—C20—H201109.5
C4—C5—H5120.2C19—C20—H202109.5
C6—C5—H5120.2H201—C20—H202109.5
C5—C6—C7120.52 (17)C19—C20—H203109.5
C5—C6—H6119.7H201—C20—H203109.5
C7—C6—H6119.7H202—C20—H203109.5
C6—C7—C2119.87 (15)H1W1—O1W—H1W2109.9 (16)
C6—C7—C8115.71 (14)H2W1—O2W—H2W2108.5 (15)
C2—C7—C8124.37 (14)
O1i—Zn1—O3—C19175.58 (11)C3—C2—C7—C8176.10 (16)
N1—Zn1—O3—C1918.00 (14)C1—C2—C7—C80.7 (2)
N4—Zn1—O3—C1976.21 (12)C9—N1—C8—N3174.35 (15)
N2—Zn1—O3—C1979.59 (12)Zn1—N1—C8—N324.5 (2)
O1i—Zn1—N1—C8115.36 (14)C9—N1—C8—C72.7 (3)
O3—Zn1—N1—C878.11 (15)Zn1—N1—C8—C7147.23 (12)
N4—Zn1—N1—C825.65 (14)C14—N3—C8—N12.3 (3)
N2—Zn1—N1—C8158.64 (15)C14—N3—C8—C7170.28 (15)
O1i—Zn1—N1—C987.82 (10)C6—C7—C8—N192.75 (19)
O3—Zn1—N1—C978.72 (10)C2—C7—C8—N184.7 (2)
N4—Zn1—N1—C9177.53 (10)C6—C7—C8—N379.42 (18)
N2—Zn1—N1—C91.81 (8)C2—C7—C8—N3103.11 (17)
O1i—Zn1—N2—C1364.2 (2)C13—N2—C9—C100.5 (2)
O3—Zn1—N2—C1355.6 (2)Zn1—N2—C9—C10179.61 (14)
N1—Zn1—N2—C13179.6 (2)C13—N2—C9—N1178.36 (14)
N4—Zn1—N2—C13171.72 (18)Zn1—N2—C9—N12.57 (12)
O1i—Zn1—N2—C9117.30 (10)C8—N1—C9—N2159.48 (15)
O3—Zn1—N2—C9122.93 (10)Zn1—N1—C9—N22.76 (13)
N1—Zn1—N2—C91.88 (9)C8—N1—C9—C1023.0 (3)
N4—Zn1—N2—C99.78 (15)Zn1—N1—C9—C10179.72 (17)
O1i—Zn1—N4—C14129.75 (14)N2—C9—C10—C110.5 (3)
O3—Zn1—N4—C14111.35 (14)N1—C9—C10—C11177.69 (16)
N1—Zn1—N4—C1413.21 (13)C9—C10—C11—C120.4 (3)
N2—Zn1—N4—C1420.2 (2)C10—C11—C12—C130.4 (3)
O1i—Zn1—N4—C1854.05 (13)C9—N2—C13—C120.6 (2)
O3—Zn1—N4—C1864.84 (13)Zn1—N2—C13—C12178.84 (14)
N1—Zn1—N4—C18170.59 (13)C11—C12—C13—N20.5 (3)
N2—Zn1—N4—C18163.61 (11)C18—N4—C14—C150.2 (2)
Zn1i—O1—C1—O223.6 (3)Zn1—N4—C14—C15175.92 (12)
Zn1i—O1—C1—C2154.67 (11)C18—N4—C14—N3177.10 (15)
O2—C1—C2—C316.4 (3)Zn1—N4—C14—N31.0 (2)
O1—C1—C2—C3165.18 (16)C8—N3—C14—N49.7 (3)
O2—C1—C2—C7160.37 (17)C8—N3—C14—C15173.18 (16)
O1—C1—C2—C718.1 (2)N4—C14—C15—C160.8 (3)
C7—C2—C3—C41.2 (3)N3—C14—C15—C16176.30 (16)
C1—C2—C3—C4178.13 (18)C14—C15—C16—C171.1 (3)
C2—C3—C4—C50.1 (3)C15—C16—C17—C180.4 (3)
C3—C4—C5—C61.1 (3)C14—N4—C18—C170.8 (3)
C4—C5—C6—C71.1 (3)Zn1—N4—C18—C17175.76 (16)
C5—C6—C7—C20.1 (3)C16—C17—C18—N40.5 (3)
C5—C6—C7—C8177.47 (16)Zn1—O3—C19—O47.0 (2)
C3—C2—C7—C61.3 (2)Zn1—O3—C19—C20172.42 (14)
C1—C2—C7—C6178.04 (15)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H14···O1W0.861.992.848 (2)173
O1W—H1W1···O2W0.85 (3)2.00 (1)2.833 (2)169 (3)
O1W—H1W2···O2Wii0.85 (3)1.97 (3)2.808 (2)165 (3)
O2W—H2W1···O2iii0.85 (1)1.90 (1)2.723 (2)163 (3)
O2W—H2W2···O3iv0.86 (2)1.89 (1)2.731 (2)168 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C18H13N4O2)2(C2H3O2)2]·4H2O
Mr955.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)13.718 (3), 15.433 (3), 20.526 (4)
β (°) 108.83 (3)
V3)4113.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.36 × 0.35 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.654, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
19669, 4715, 4200
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.03
No. of reflections4715
No. of parameters293
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: , RAPID-AUTO (Rigaku Corporation, 1998) and CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Zn1—O1i1.9566 (14)Zn1—N42.0890 (14)
Zn1—O31.9675 (13)Zn1—N22.2256 (14)
Zn1—N12.0838 (13)
O1i—Zn1—O3117.51 (6)N1—Zn1—N485.59 (5)
O1i—Zn1—N1116.59 (6)O1i—Zn1—N298.98 (5)
O3—Zn1—N1124.59 (6)O3—Zn1—N298.52 (5)
O1i—Zn1—N491.71 (5)N1—Zn1—N261.86 (5)
O3—Zn1—N4103.81 (6)N4—Zn1—N2147.20 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H14···O1W0.861.992.848 (2)173
O1W—H1W1···O2W0.85 (3)1.996 (12)2.833 (2)169 (3)
O1W—H1W2···O2Wii0.85 (3)1.97 (3)2.808 (2)165 (3)
O2W—H2W1···O2iii0.852 (9)1.896 (13)2.723 (2)163 (3)
O2W—H2W2···O3iv0.86 (2)1.886 (12)2.731 (2)168 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds