Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Molecules of 2-amino-4-methoxy-6-methyl­pyrimidine, C6H9N3O, (I), lie on mirror planes in space group Pnma and are linked by two N—H...N hydrogen bonds [H...N = 2.26 and 2.34 Å, N...N = 3.136 (2) and 3.212 (2) Å, and N—H...N = 175 and 172°] into chains of edge-fused R^2_2(8) rings, which themselves are linked into sheets by aromatic π–π-stacking interactions. In 2-benzyl­amino-4-benzyl­oxy-6-methyl­pyri­mi­dine, C19H19N3O, (II), and 4-benzyl­amino-2,6-bis­(benzyl­oxy)­pyrimidine, C25H23N3O2, (III), the mol­ecules are linked by paired N—H...N hydrogen bonds [H...N = 2.16 Å, N...N = 3.039 (2) Å and N—H...N = 165° in (II); H...N = 2.15 Å, N...N = 2.980 (2) Å and N—H...N = 176° in (III)] into centrosymmetric R^2_2(8) dimers, with no direction-specific interactions between these dimeric units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102020206/na1584sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020206/na1584Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020206/na1584IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020206/na1584IIIsup4.hkl
Contains datablock III

CCDC references: 204038; 204039; 204040

Comment top

Alkoxypyrimidines are key intermediates for the synthesis of a wide range of alkoxy- and amino-substituted O6-benzyloxy-5-nitrosopyrimidines (Marchal et al., 1998, 2000; Quesada et al., 2000), important as potential, or proven, in vitro inhibitors of the human DNA-repair protein O6-alkylguanine-DNA-transferase (Chae et al., 1995; Quesada et al., 2002). We report here the molecular and supramolecular structures of three examples of this class, namely 2-amino-4-methoxy-6-methylpyrimidine, (I), 2-benzylamino-4-benzyloxy-6-methylpyrimidine, (II), and 4-benzylamino-2,6-bis(benzyloxy)pyrimidine, (III).

Compound (I) (Fig. 1) crystallizes in space group Pnma with all non-H atoms lying on mirror planes, with the plane for the reference molecule selected as that at y = 0.25. The molecules are linked by two N—H···N hydrogen bonds (Table 2) into chains of edge-fused rings, which themselves are linked into sheets by ππ-stacking interactions. The amino atom N2 in the reference molecule at (x, 1/4, z) acts as hydrogen-bond donor, via H1 and H2, respectively, to atom N1 in the molecule at (−0.5 + x, 1/4, 0.5 − z) and to atom N3 in that at (0.5 + x, 1/4, 0.5 − z), and propagation of these two hydrogen bonds generates a chain of edge-fused R22(8) rings running parallel to the [100] direction and generated by the a-glide plane at z = 0.25 (Fig. 2). This hydrogen-bonded substructure may alternatively be regarded as a molecular ladder, in which two C22(6) chains, related by the glide plane at z = 1/4, act as the uprights and the C2—N2 bonds act as the rungs.

The ππ-stacking interactions (Fig. 3) link the reference molecule at (x, 1/4, z), which forms part of the hydrogen-bonded chain along (x, 1/4, 1/4), with the two molecules at (1 − x, 3/4, 1 − z) and (1 − x, −0.25, 1 − z), which lie, respectively, in the hydrogen-bonded chains along (-x, 3/4, 3/4) and (-x, −0.25, 3/4). The interplanar spacing is 3.273 (2) Å, the centroid separation is 3.588 (2) Å and the centroid offset is 1.470 (2) Å. By this means, a (001) sheet is formed, centred at z = 0.5 and lying in the domain 0.22 < z < 0.78; a similar sheet, centred at z = 0, lies in the domain −0.28 < z < 0.28, but there are no direction-specific interactions between adjacent sheets.

In both (II) (Fig. 4) and (III) (Fig. 5), there is just a single N—H bond, and a single N—H···N hydrogen bond (Tables 4 and 6) leads to the formation of centrosymmetric R22(8) dimers, centred at (1/2, 1/2, 1/2) (Figs. 6 and 7). In neither of (II) and (III) are there any other hydrogen bonds or any ππ-stacking interactions.

The gross supramolecular structure of (I) resembles that of the 4,6-dimethoxy analogue, (IV) (Low et al., 2002), while differing from it in detail. The chains of edge-fused rings in (IV) contain two different types of R22(8) ring, both centrosymmetric, incorporating only atoms N1 and N2 in one type of ring and only N2 and N3 in the other; by contrast, the chain in (I) contains only one type of ring, and this includes all three N atoms. Moreover, whereas in (I), the chain is generated by a glide plane, in (IV) it is generated by a combination of inversions and twofold rotations. The supramolecular structures of (I) and (IV) also differsin the effects of the ππ stacking, which gives a two-dimensional array in (I), but a three-dimensional structure in (IV). On the other hand, the centrosymmetric dimer structures found for (II) and (III) exactly mimic that observed in (V) (Low et al., 2002), which is a positional isomer of (III).

In each of (I)–(III), the intramolecular distances show no evidence for significant bond fixation involving the pyrimidine rings (Tables 1, 3 and 5); in this respect, the molecular–electronic structure of (I) is markedly different from those in a large number of analogous pyrimidines carrying a 5-nitroso substituent, where highly polarized structures are the norm (Low et al., 2000; Low, Cannon et al., 2001; Low, Moreno et al., 2001; Quesada et al., 2002).

The non-H atoms in (I) are strictly coplanar, and the methoxy-group conformation is such that the methyl C atom is directed away from the amino group [cf. compound (IV) (Low et al., 2002), see Scheme]. In both (II) and (III), the methylene C atoms of the benzyl substituents are all close to the planes of the adjacent pyrimidine rings, but the phenyl groups are twisted well out of these planes (Tables 3 and 5). We note the general similarity between the conformations of (II) and (III), and the fact that the overall conformations of the isomeric compounds (III) and (V) are unchanged by the positional exchange of benzylamino and benzyloxy substituents. The subtle factors underpinning the preferred conformations is systems such as (I)–(V) await investigation.

Experimental top

A sample of compound (I) was purchased from Aldrich and converted to (II) (m. p. 475 K) using the transalkoxylation and N-benzylation methodology previously described by Low et al. (2002). Compound (III) (m. p. 408 K) was likewise prepared from 4-amino-2-methylthio-6-methoxypyrimidine (Pfleiderer & Liedek, 1958). 1H NMR (DMSO-d6, p.p.m), for (II): δ 2.15 (s, 3H, CH3), 4.47 (d, 2H, N–CH2, J = 6.31 Hz), 5.28 (s, 2H, O—CH2), 5.93 (s, 1H, C5—H), 7.26 (m, 10H, 2 × Ph), 7.55 (br s, 1H, NH, exchanges with D2O); for (III): δ 4.42 (d, 2H, NH–CH2, J = 5.28 Hz), 5.32 (s, 2H, O—CH2), 5.33 (s, 2H, O–CH2), 5.41 (s, 1H, C5–H), 5.43 (br s, 1H, NH exchanges with D2O), 7.29 (m, 15H, 3 × Ph). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in ethyl acetate [for (I)], ethanol [for (II)] and n-butanol [for (III)].

Refinement top

For compound (I), the systematic absences permitted Pnma (= Pnam) and Pna21 as possible space groups; Pnma was selected and confirmed by the analysis. For both (II) and (III), space group P21/c was uniquely assigned from the systematic absences. All H atoms were treated as riding, with C—H distances of C—H = 0.95 (aromatic), 0.98 (CH3) or 0.99 Å (CH2), and N—H distances of 0.88 Å. The methyl groups in (I) were both modelled using six half-occupancy H-atom sites offset from one another by 60°.

Computing details top

For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All the non-H atoms lie on a mirror plane. For the sake of clarity, only one set of half-occupancy H-atom sites is shown for each of the methyl groups.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain of edge-fused rings along [100]. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (0.5 + x, 1/4, 0.5 − z) and (−0.5 + x, 1/4, 0.5 − z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the ππ-stacking interactions. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (1 − x, 3/4, 1 − z) and (1 − x, −0.25, 1 − z), respectively.
[Figure 4] Fig. 4. The molecule of compound (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. The molecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6] Fig. 6. Part of the crystal structure of (II), showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 7] Fig. 7. Part of the crystal structure of (III), showing the formation of a centrosymmetric R22(8) dimer. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk are at the symmetry position (1 − x, 1 − y, 1 − z).
(I) 2-Amino-4-methoxy-6-methylpyrimidine top
Crystal data top
C6H9N3OF(000) = 296
Mr = 139.16Dx = 1.411 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 797 reflections
a = 8.1442 (17) Åθ = 3.0–27.4°
b = 6.5456 (11) ŵ = 0.10 mm1
c = 12.285 (2) ÅT = 120 K
V = 654.9 (2) Å3Plate, colourless
Z = 40.25 × 0.20 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.099
Graphite monochromatorθmax = 27.4°, θmin = 3.0°
ϕ scans and ω scans with κ offsetsh = 1010
7372 measured reflectionsk = 88
797 independent reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
797 reflections(Δ/σ)max < 0.001
61 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N3OV = 654.9 (2) Å3
Mr = 139.16Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.1442 (17) ŵ = 0.10 mm1
b = 6.5456 (11) ÅT = 120 K
c = 12.285 (2) Å0.25 × 0.20 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
468 reflections with I > 2σ(I)
7372 measured reflectionsRint = 0.099
797 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.98Δρmax = 0.32 e Å3
797 reflectionsΔρmin = 0.24 e Å3
61 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.6539 (2)0.25000.38300 (14)0.0247 (5)
N20.50228 (17)0.25000.22581 (14)0.0303 (6)
C20.5046 (2)0.25000.33456 (18)0.0234 (5)
N30.3588 (2)0.25000.38607 (13)0.0246 (5)
C40.3649 (2)0.25000.49404 (18)0.0234 (6)
O40.21476 (15)0.25000.54049 (11)0.0277 (5)
C410.2082 (2)0.25000.65685 (16)0.0301 (6)
C50.5107 (2)0.25000.55251 (18)0.0245 (6)
C60.6537 (3)0.25000.49193 (18)0.0248 (6)
C610.8176 (2)0.25000.54723 (17)0.0300 (6)
H10.40800.25000.19090.036*
H20.59510.25000.18910.036*
H41A0.09360.23990.68060.045*0.50
H41B0.25620.37700.68460.045*0.50
H41C0.27030.13310.68500.045*0.50
H50.51220.25000.62980.029*
H61A0.89820.31950.50090.045*0.50
H61B0.85290.10880.55990.045*0.50
H61C0.80900.32170.61700.045*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (10)0.0332 (11)0.0223 (12)0.0000.0014 (7)0.000
N20.0215 (11)0.0485 (13)0.0209 (13)0.0000.0003 (7)0.000
C20.0202 (12)0.0267 (13)0.0234 (14)0.0000.0007 (8)0.000
N30.0212 (10)0.0323 (11)0.0204 (13)0.0000.0006 (7)0.000
C40.0163 (12)0.0283 (13)0.0257 (14)0.0000.0015 (8)0.000
O40.0186 (8)0.0438 (10)0.0206 (9)0.0000.0025 (6)0.000
C410.0239 (12)0.0445 (15)0.0218 (14)0.0000.0044 (9)0.000
C50.0223 (12)0.0310 (13)0.0200 (14)0.0000.0010 (8)0.000
C60.0220 (12)0.0256 (13)0.0269 (14)0.0000.0014 (9)0.000
C610.0186 (12)0.0424 (15)0.0289 (15)0.0000.0027 (9)0.000
Geometric parameters (Å, º) top
N1—C21.354 (2)C41—H41B0.9800
N2—C21.336 (3)C41—H41C0.9800
N2—H10.8800C5—C61.382 (3)
N2—H20.8800C5—H50.9500
C2—N31.346 (2)C6—N11.338 (3)
N3—C41.327 (3)C6—C611.498 (3)
C4—O41.349 (2)C61—H61A0.9800
C4—C51.388 (3)C61—H61B0.9800
O4—C411.430 (2)C61—H61C0.9800
C41—H41A0.9800
C6—N1—C2116.03 (18)O4—C41—H41C109.5
C2—N2—H1120.0H41A—C41—H41C109.5
C2—N2—H2120.0H41B—C41—H41C109.5
H1—N2—H2120.0C6—C5—C4116.3 (2)
N2—C2—N3117.26 (17)C6—C5—H5121.9
N2—C2—N1116.88 (18)C4—C5—H5121.9
N3—C2—N1125.9 (2)N1—C6—C5122.63 (19)
C4—N3—C2115.91 (18)N1—C6—C61116.93 (18)
N3—C4—O4112.88 (18)C5—C6—C61120.4 (2)
N3—C4—C5123.3 (2)C6—C61—H61A109.5
O4—C4—C5123.8 (2)C6—C61—H61B109.5
C4—O4—C41117.16 (15)H61A—C61—H61B109.5
O4—C41—H41A109.5C6—C61—H61C109.5
O4—C41—H41B109.5H61A—C61—H61C109.5
H41A—C41—H41B109.5H61B—C61—H61C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.882.263.136 (2)175
N2—H2···N3ii0.882.343.212 (2)172
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
(II) 2-Benzylamino-4-benzyloxy-6-methylpyrimidine top
Crystal data top
C19H19N3OF(000) = 648
Mr = 305.38Dx = 1.260 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3667 reflections
a = 5.8932 (2) Åθ = 2.9–27.5°
b = 18.2849 (7) ŵ = 0.08 mm1
c = 15.1175 (7) ÅT = 120 K
β = 98.704 (2)°Needle, colourless
V = 1610.25 (11) Å30.26 × 0.18 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3667 independent reflections
Radiation source: fine-focus sealed X-ray tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.970, Tmax = 0.992k = 2321
12340 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
3667 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H19N3OV = 1610.25 (11) Å3
Mr = 305.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8932 (2) ŵ = 0.08 mm1
b = 18.2849 (7) ÅT = 120 K
c = 15.1175 (7) Å0.26 × 0.18 × 0.10 mm
β = 98.704 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3667 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
2371 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.992Rint = 0.093
12340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3667 reflectionsΔρmin = 0.28 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3786 (2)0.41128 (6)0.54274 (8)0.0248 (3)
C20.2046 (2)0.42351 (8)0.47591 (9)0.0235 (3)
C210.0557 (2)0.45877 (7)0.26654 (10)0.0247 (3)
C220.2481 (3)0.46390 (8)0.22397 (11)0.0324 (4)
C230.2572 (3)0.42769 (9)0.14406 (12)0.0360 (4)
C240.0755 (3)0.38511 (9)0.10589 (11)0.0356 (4)
C250.1153 (3)0.37827 (9)0.14836 (11)0.0352 (4)
C260.1248 (3)0.41521 (8)0.22793 (10)0.0299 (4)
C270.0400 (3)0.50143 (8)0.35103 (10)0.0278 (4)
N20.2185 (2)0.48339 (7)0.42474 (8)0.0279 (3)
N30.0163 (2)0.38143 (6)0.45427 (8)0.0247 (3)
O40.17951 (17)0.27910 (6)0.48822 (7)0.0299 (3)
C40.0030 (2)0.32420 (8)0.50671 (10)0.0255 (3)
C410.5105 (3)0.23401 (8)0.39309 (10)0.0281 (4)
C420.7263 (3)0.24832 (10)0.34582 (11)0.0365 (4)
C430.8854 (3)0.19269 (11)0.32694 (13)0.0462 (5)
C440.8316 (3)0.12265 (11)0.35528 (13)0.0456 (5)
C450.6168 (3)0.10718 (10)0.40146 (12)0.0417 (4)
C460.4554 (3)0.16270 (9)0.42006 (10)0.0337 (4)
C470.3399 (3)0.29512 (8)0.40894 (10)0.0288 (4)
C50.1674 (3)0.30720 (8)0.57925 (10)0.0279 (4)
C60.3570 (2)0.35210 (8)0.59406 (10)0.0252 (3)
C610.5501 (3)0.33671 (9)0.66774 (10)0.0307 (4)
H220.37520.49260.25000.039*
H230.38930.43230.11540.043*
H240.08130.36060.05080.043*
H250.24010.34830.12310.042*
H260.25720.41060.25640.036*
H27A0.04880.55430.33790.033*
H27B0.11140.49200.36960.033*
H20.33890.51220.43640.034*
H420.76530.29670.32620.044*
H431.03250.20300.29420.055*
H440.94240.08480.34310.055*
H450.57920.05860.42060.050*
H460.30690.15190.45130.040*
H47A0.25740.30020.35690.035*
H47B0.42000.34170.41670.035*
H50.15030.26660.61690.034*
H61A0.69530.33630.64360.046*
H61B0.52630.28890.69430.046*
H61C0.55530.37470.71370.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (7)0.0272 (7)0.0218 (6)0.0004 (5)0.0033 (5)0.0019 (5)
C20.0269 (8)0.0232 (7)0.0208 (8)0.0007 (6)0.0049 (6)0.0046 (6)
C210.0272 (8)0.0201 (7)0.0250 (8)0.0036 (6)0.0016 (6)0.0030 (6)
C220.0288 (8)0.0305 (8)0.0371 (9)0.0018 (7)0.0024 (7)0.0029 (7)
C230.0345 (9)0.0371 (9)0.0381 (9)0.0021 (7)0.0111 (7)0.0019 (8)
C240.0447 (10)0.0342 (9)0.0273 (9)0.0017 (7)0.0031 (7)0.0033 (7)
C250.0360 (9)0.0367 (9)0.0306 (9)0.0086 (7)0.0027 (7)0.0025 (7)
C260.0285 (8)0.0334 (8)0.0269 (8)0.0012 (7)0.0015 (7)0.0021 (7)
C270.0284 (8)0.0263 (8)0.0276 (8)0.0029 (6)0.0007 (7)0.0006 (7)
N20.0304 (7)0.0265 (7)0.0249 (7)0.0035 (5)0.0019 (6)0.0019 (5)
N30.0255 (7)0.0252 (7)0.0235 (7)0.0013 (5)0.0038 (5)0.0032 (5)
O40.0292 (6)0.0350 (6)0.0240 (6)0.0090 (5)0.0008 (4)0.0001 (5)
C40.0267 (8)0.0270 (8)0.0230 (8)0.0047 (6)0.0049 (6)0.0044 (6)
C410.0276 (8)0.0355 (9)0.0222 (8)0.0017 (7)0.0064 (6)0.0065 (7)
C420.0305 (9)0.0447 (10)0.0341 (9)0.0032 (7)0.0038 (7)0.0118 (8)
C430.0280 (9)0.0670 (13)0.0432 (11)0.0039 (9)0.0045 (8)0.0251 (10)
C440.0406 (11)0.0589 (13)0.0395 (10)0.0240 (9)0.0127 (8)0.0231 (9)
C450.0529 (12)0.0380 (9)0.0357 (10)0.0135 (8)0.0113 (9)0.0065 (8)
C460.0374 (9)0.0391 (9)0.0243 (8)0.0047 (7)0.0039 (7)0.0025 (7)
C470.0277 (8)0.0327 (9)0.0252 (8)0.0015 (6)0.0018 (6)0.0024 (7)
C50.0328 (9)0.0287 (8)0.0221 (8)0.0039 (6)0.0036 (7)0.0018 (6)
C60.0284 (8)0.0276 (8)0.0202 (7)0.0001 (6)0.0057 (6)0.0028 (6)
C610.0300 (8)0.0360 (9)0.0254 (8)0.0053 (7)0.0017 (7)0.0031 (7)
Geometric parameters (Å, º) top
N1—C21.3447 (19)C26—H260.95
C2—N31.3493 (18)C27—H27A0.99
N3—C41.3223 (19)C27—H27B0.99
C4—C51.384 (2)N2—H20.88
C5—C61.377 (2)C41—C421.386 (2)
C6—N11.3486 (19)C41—C461.390 (2)
C2—N21.3501 (19)C41—C471.498 (2)
N2—C271.450 (2)C42—C431.383 (2)
C4—O41.3505 (18)C42—H420.95
O4—C471.4398 (19)C43—C441.372 (3)
C6—C611.494 (2)C43—H430.95
C21—C261.385 (2)C44—C451.379 (3)
C21—C221.389 (2)C44—H440.95
C21—C271.511 (2)C45—C461.391 (2)
C22—C231.386 (2)C45—H450.95
C22—H220.95C46—H460.95
C23—C241.378 (2)C47—H47A0.99
C23—H230.95C47—H47B0.99
C24—C251.382 (2)C5—H50.95
C24—H240.95C61—H61A0.98
C25—C261.388 (2)C61—H61B0.98
C25—H250.95C61—H61C0.98
C2—N1—C6115.97 (12)C42—C41—C46118.93 (15)
N1—C2—N3126.36 (13)C42—C41—C47118.87 (15)
N1—C2—N2117.39 (13)C46—C41—C47122.11 (14)
N3—C2—N2116.25 (13)C43—C42—C41120.51 (17)
C26—C21—C22118.18 (14)C43—C42—H42119.7
C26—C21—C27120.77 (13)C41—C42—H42119.7
C22—C21—C27121.02 (13)C44—C43—C42120.30 (17)
C23—C22—C21120.88 (15)C44—C43—H43119.9
C23—C22—H22119.6C42—C43—H43119.9
C21—C22—H22119.6C43—C44—C45120.03 (16)
C24—C23—C22120.34 (15)C43—C44—H44120.0
C24—C23—H23119.8C45—C44—H44120.0
C22—C23—H23119.8C44—C45—C46120.00 (17)
C23—C24—C25119.46 (15)C44—C45—H45120.0
C23—C24—H24120.3C46—C45—H45120.0
C25—C24—H24120.3C41—C46—C45120.21 (16)
C24—C25—C26120.04 (15)C41—C46—H46119.9
C24—C25—H25120.0C45—C46—H46119.9
C26—C25—H25120.0O4—C47—C41108.76 (12)
C21—C26—C25121.07 (14)O4—C47—H47A109.9
C21—C26—H26119.5C41—C47—H47A109.9
C25—C26—H26119.5O4—C47—H47B109.9
N2—C27—C21113.70 (12)C41—C47—H47B109.9
N2—C27—H27A108.8H47A—C47—H47B108.3
C21—C27—H27A108.8C6—C5—C4116.62 (14)
N2—C27—H27B108.8C6—C5—H5121.7
C21—C27—H27B108.8C4—C5—H5121.7
H27A—C27—H27B107.7N1—C6—C5121.99 (14)
C2—N2—C27121.68 (13)N1—C6—C61116.91 (13)
C2—N2—H2119.2C5—C6—C61121.10 (14)
C27—N2—H2119.2C6—C61—H61A109.5
C4—N3—C2115.30 (12)C6—C61—H61B109.5
C4—O4—C47116.74 (11)H61A—C61—H61B109.5
N3—C4—O4118.49 (13)C6—C61—H61C109.5
N3—C4—C5123.68 (14)H61A—C61—H61C109.5
O4—C4—C5117.82 (13)H61B—C61—H61C109.5
C6—N1—C2—N32.0 (2)N3—C4—O4—C473.38 (19)
C6—N1—C2—N2178.36 (12)C47—O4—C4—C5175.87 (13)
C26—C21—C22—C231.4 (2)C46—C41—C42—C430.9 (2)
C27—C21—C22—C23176.65 (14)C47—C41—C42—C43177.54 (14)
C21—C22—C23—C240.8 (2)C41—C42—C43—C440.4 (3)
C22—C23—C24—C250.5 (2)C42—C43—C44—C451.1 (3)
C23—C24—C25—C261.2 (2)C43—C44—C45—C460.6 (3)
C22—C21—C26—C250.7 (2)C42—C41—C46—C451.4 (2)
C27—C21—C26—C25177.32 (14)C47—C41—C46—C45177.95 (14)
C24—C25—C26—C210.6 (2)C44—C45—C46—C410.7 (2)
C26—C21—C27—N2121.32 (15)C4—O4—C47—C41172.35 (12)
N3—C2—N2—C270.31 (19)O4—C47—C41—C42154.41 (13)
N1—C2—N2—C27179.97 (12)C46—C41—C47—O429.09 (19)
C2—N2—C27—C2180.49 (17)N3—C4—C5—C62.2 (2)
N2—C27—C21—C2260.71 (18)O4—C4—C5—C6177.00 (12)
N1—C2—N3—C42.2 (2)C2—N1—C6—C50.42 (19)
N2—C2—N3—C4178.20 (12)C2—N1—C6—C61178.98 (12)
C2—N3—C4—O4179.11 (11)C4—C5—C6—N12.4 (2)
C2—N3—C4—C50.1 (2)C4—C5—C6—C61177.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.163.039 (2)176
Symmetry code: (i) x+1, y+1, z+1.
(III) 4-Benzylamino-2,6-bis(benzyloxy)pyrimidine top
Crystal data top
C25H23N3O2F(000) = 840
Mr = 397.46Dx = 1.273 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4691 reflections
a = 5.6056 (2) Åθ = 3.0–27.5°
b = 18.2446 (5) ŵ = 0.08 mm1
c = 20.6480 (8) ÅT = 120 K
β = 100.965 (1)°Block, colourless
V = 2073.16 (12) Å30.50 × 0.30 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4691 independent reflections
Radiation source: fine-focus sealed X-ray tube2822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 76
Tmin = 0.950, Tmax = 0.987k = 2318
16019 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0684P)2]
where P = (Fo2 + 2Fc2)/3
4691 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H23N3O2V = 2073.16 (12) Å3
Mr = 397.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6056 (2) ŵ = 0.08 mm1
b = 18.2446 (5) ÅT = 120 K
c = 20.6480 (8) Å0.50 × 0.30 × 0.15 mm
β = 100.965 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4691 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
2822 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.987Rint = 0.076
16019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.96Δρmax = 0.23 e Å3
4691 reflectionsΔρmin = 0.31 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0799 (2)0.40310 (8)0.62780 (7)0.0219 (4)
C20.8732 (3)0.40173 (10)0.58335 (8)0.0212 (4)
C210.6951 (3)0.21091 (10)0.58460 (9)0.0241 (4)
C220.5821 (3)0.17710 (11)0.63056 (9)0.0309 (5)
C230.4128 (4)0.12225 (12)0.61258 (10)0.0364 (5)
C240.3545 (3)0.10049 (11)0.54768 (10)0.0348 (5)
C250.4638 (4)0.13319 (12)0.50108 (10)0.0408 (5)
C260.6342 (4)0.18797 (11)0.51939 (10)0.0369 (5)
C270.8704 (3)0.27252 (10)0.60378 (9)0.0270 (4)
O20.7589 (2)0.33668 (7)0.57016 (6)0.0253 (3)
N30.7552 (2)0.45599 (8)0.54943 (7)0.0213 (3)
N40.7413 (2)0.57865 (8)0.52500 (7)0.0221 (4)
C40.8585 (3)0.52300 (10)0.56023 (8)0.0207 (4)
C410.7785 (3)0.68374 (10)0.60319 (9)0.0226 (4)
C420.6246 (4)0.64959 (12)0.63845 (10)0.0387 (5)
C430.5943 (4)0.67636 (12)0.69907 (11)0.0431 (6)
C440.7198 (3)0.73721 (11)0.72561 (10)0.0331 (5)
C450.8752 (4)0.77118 (12)0.69155 (10)0.0408 (6)
C460.9047 (4)0.74430 (12)0.63086 (10)0.0369 (5)
C470.8116 (3)0.65442 (10)0.53648 (9)0.0241 (4)
C51.0748 (3)0.53260 (10)0.60609 (8)0.0217 (4)
C61.1744 (3)0.47034 (10)0.63757 (8)0.0219 (4)
C611.6809 (3)0.44110 (10)0.77412 (9)0.0232 (4)
C621.7009 (3)0.41495 (11)0.83814 (9)0.0279 (4)
C631.8945 (3)0.43636 (11)0.88699 (10)0.0321 (5)
C642.0670 (3)0.48398 (11)0.87229 (10)0.0328 (5)
C652.0476 (3)0.51062 (11)0.80854 (10)0.0325 (5)
C661.8547 (3)0.48915 (11)0.75981 (9)0.0282 (5)
C671.4741 (3)0.41581 (10)0.72120 (9)0.0254 (4)
O61.3804 (2)0.47949 (7)0.68340 (6)0.0260 (3)
H220.62170.19190.67540.037*
H230.33690.09970.64480.044*
H240.23830.06270.53510.042*
H250.42260.11830.45630.049*
H260.71030.21010.48700.044*
H27A0.90100.28000.65210.032*
H27B1.02690.26180.59020.032*
H40.61620.56840.49360.027*
H420.53810.60710.62090.046*
H430.48600.65250.72240.052*
H440.69900.75560.76720.040*
H450.96310.81330.70960.049*
H461.01420.76810.60790.044*
H47A0.71440.68480.50140.029*
H47B0.98450.65970.53300.029*
H51.14820.57940.61490.026*
H621.58170.38230.84860.033*
H631.90770.41810.93060.039*
H642.19930.49860.90570.039*
H652.16640.54360.79830.039*
H661.84180.50760.71620.034*
H67A1.53240.37920.69240.031*
H67B1.34540.39300.74130.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0233 (8)0.0220 (9)0.0196 (8)0.0025 (6)0.0022 (6)0.0002 (7)
C20.0234 (9)0.0219 (11)0.0183 (9)0.0022 (8)0.0041 (7)0.0021 (8)
C210.0251 (9)0.0222 (11)0.0240 (10)0.0016 (8)0.0020 (7)0.0013 (8)
C220.0343 (10)0.0342 (13)0.0235 (10)0.0032 (9)0.0038 (8)0.0020 (9)
C230.0379 (11)0.0399 (14)0.0318 (12)0.0094 (10)0.0074 (9)0.0095 (10)
C240.0341 (11)0.0298 (13)0.0368 (12)0.0104 (9)0.0027 (9)0.0053 (10)
C250.0557 (13)0.0395 (14)0.0258 (11)0.0172 (11)0.0047 (9)0.0061 (10)
C260.0477 (12)0.0355 (13)0.0299 (11)0.0157 (10)0.0132 (9)0.0014 (10)
C270.0309 (10)0.0222 (11)0.0254 (10)0.0002 (8)0.0003 (8)0.0041 (8)
O20.0276 (6)0.0174 (7)0.0279 (7)0.0024 (5)0.0024 (5)0.0011 (6)
N30.0233 (7)0.0193 (9)0.0205 (8)0.0029 (6)0.0018 (6)0.0007 (7)
N40.0256 (8)0.0197 (9)0.0182 (8)0.0026 (6)0.0033 (6)0.0008 (6)
C40.0235 (9)0.0238 (11)0.0156 (9)0.0010 (8)0.0056 (7)0.0009 (8)
C410.0212 (8)0.0214 (11)0.0245 (10)0.0021 (7)0.0023 (7)0.0010 (8)
C420.0360 (11)0.0393 (14)0.0446 (13)0.0150 (9)0.0175 (9)0.0167 (11)
C430.0460 (12)0.0454 (15)0.0452 (13)0.0160 (10)0.0270 (10)0.0144 (11)
C440.0412 (11)0.0328 (13)0.0266 (11)0.0013 (9)0.0101 (9)0.0066 (9)
C450.0507 (13)0.0357 (14)0.0376 (13)0.0175 (10)0.0124 (10)0.0142 (10)
C460.0460 (12)0.0350 (13)0.0332 (12)0.0182 (10)0.0163 (9)0.0051 (10)
C470.0285 (9)0.0208 (11)0.0221 (10)0.0014 (8)0.0030 (7)0.0004 (8)
C50.0229 (9)0.0204 (11)0.0219 (9)0.0029 (7)0.0044 (7)0.0008 (8)
C60.0215 (9)0.0263 (11)0.0174 (9)0.0024 (8)0.0026 (7)0.0010 (8)
C610.0231 (9)0.0209 (11)0.0244 (10)0.0052 (8)0.0015 (7)0.0029 (8)
C620.0287 (10)0.0261 (12)0.0278 (11)0.0029 (8)0.0029 (8)0.0025 (8)
C630.0376 (11)0.0278 (12)0.0269 (11)0.0082 (9)0.0040 (8)0.0005 (9)
C640.0263 (10)0.0318 (13)0.0353 (12)0.0056 (9)0.0068 (8)0.0055 (9)
C650.0252 (10)0.0354 (13)0.0372 (12)0.0023 (8)0.0062 (8)0.0062 (10)
C660.0258 (9)0.0330 (12)0.0258 (10)0.0024 (8)0.0052 (8)0.0019 (9)
C670.0272 (10)0.0226 (11)0.0245 (10)0.0015 (8)0.0002 (7)0.0025 (8)
O60.0241 (6)0.0248 (8)0.0254 (7)0.0035 (5)0.0048 (5)0.0023 (6)
Geometric parameters (Å, º) top
N1—C21.335 (2)C41—C421.379 (3)
C2—N31.316 (2)C41—C471.522 (3)
N3—C41.353 (2)C42—C431.384 (3)
C4—C51.400 (2)C42—H420.95
C5—C61.374 (2)C43—C441.371 (3)
C6—N11.336 (2)C43—H430.95
C2—O21.352 (2)C44—C451.368 (3)
O2—C271.441 (2)C44—H440.95
C4—N41.345 (2)C45—C461.384 (3)
N4—C471.445 (2)C45—H450.95
C6—O61.357 (2)C46—H460.95
O6—C671.442 (2)C47—H47A0.99
C21—C221.382 (3)C47—H47B0.99
C21—C261.389 (3)C5—H50.95
C21—C271.496 (3)C61—C661.384 (3)
C22—C231.380 (3)C61—C621.390 (2)
C22—H220.95C61—C671.506 (2)
C23—C241.376 (3)C62—C631.389 (3)
C23—H230.95C62—H620.95
C24—C251.372 (3)C63—C641.376 (3)
C24—H240.95C63—H630.95
C25—C261.384 (3)C64—C651.388 (3)
C25—H250.95C64—H640.95
C26—H260.95C65—C661.386 (3)
C27—H27A0.99C65—H650.95
C27—H27B0.99C66—H660.95
N4—H40.88C67—H67A0.99
C41—C461.376 (3)C67—H67B0.99
C2—N1—C6112.86 (15)C45—C44—H44120.3
N3—C2—N1129.39 (17)C43—C44—H44120.3
N3—C2—O2112.48 (14)C44—C45—C46120.15 (19)
N1—C2—O2118.12 (15)C44—C45—H45119.9
C22—C21—C26118.08 (17)C46—C45—H45119.9
C22—C21—C27121.15 (17)C41—C46—C45121.32 (18)
C26—C21—C27120.72 (17)C41—C46—H46119.3
C23—C22—C21121.34 (18)C45—C46—H46119.3
C23—C22—H22119.3N4—C47—C41114.11 (15)
C21—C22—H22119.3N4—C47—H47A108.7
C24—C23—C22119.65 (18)C41—C47—H47A108.7
C24—C23—H23120.2N4—C47—H47B108.7
C22—C23—H23120.2C41—C47—H47B108.7
C25—C24—C23120.18 (19)H47A—C47—H47B107.6
C25—C24—H24119.9C6—C5—C4116.01 (16)
C23—C24—H24119.9C6—C5—H5122.0
C24—C25—C26119.96 (19)C4—C5—H5122.0
C24—C25—H25120.0N1—C6—O6118.59 (15)
C26—C25—H25120.0N1—C6—C5125.02 (16)
C25—C26—C21120.78 (18)O6—C6—C5116.35 (16)
C25—C26—H26119.6C66—C61—C62119.21 (16)
C21—C26—H26119.6C66—C61—C67121.00 (16)
O2—C27—C21106.25 (14)C62—C61—C67119.79 (16)
O2—C27—H27A110.5C63—C62—C61120.31 (18)
C21—C27—H27A110.5C63—C62—H62119.8
O2—C27—H27B110.5C61—C62—H62119.8
C21—C27—H27B110.5C64—C63—C62120.12 (18)
H27A—C27—H27B108.7C64—C63—H63119.9
C2—O2—C27118.07 (13)C62—C63—H63119.9
C2—N3—C4115.86 (15)C63—C64—C65119.90 (17)
C4—N4—C47122.92 (14)C63—C64—H64120.0
C4—N4—H4118.5C65—C64—H64120.0
C47—N4—H4118.5C66—C65—C64119.96 (19)
N4—C4—N3116.32 (15)C66—C65—H65120.0
N4—C4—C5122.84 (16)C64—C65—H65120.0
N3—C4—C5120.85 (16)C61—C66—C65120.51 (18)
C46—C41—C42117.86 (17)C61—C66—H66119.7
C46—C41—C47121.11 (16)C65—C66—H66119.7
C42—C41—C47121.02 (16)O6—C67—C61107.27 (14)
C41—C42—C43120.99 (19)O6—C67—H67A110.3
C41—C42—H42119.5C61—C67—H67A110.3
C43—C42—H42119.5O6—C67—H67B110.3
C44—C43—C42120.35 (19)C61—C67—H67B110.3
C44—C43—H43119.8H67A—C67—H67B108.5
C42—C43—H43119.8C6—O6—C67116.91 (13)
C45—C44—C43119.32 (18)
C6—N1—C2—N30.2 (3)C42—C43—C44—C450.0 (3)
C6—N1—C2—O2179.01 (14)C43—C44—C45—C460.1 (3)
C26—C21—C22—C230.2 (3)C42—C41—C46—C451.3 (3)
C27—C21—C22—C23177.32 (18)C47—C41—C46—C45180.00 (19)
C21—C22—C23—C240.0 (3)C44—C45—C46—C410.5 (3)
C22—C23—C24—C250.1 (3)C46—C41—C47—N4158.68 (17)
C23—C24—C25—C260.3 (3)N4—C4—C5—C6179.18 (16)
C24—C25—C26—C210.5 (3)N3—C4—C5—C61.2 (2)
C22—C21—C26—C250.5 (3)C2—N1—C6—O6177.68 (14)
C27—C21—C26—C25177.08 (19)C2—N1—C6—C50.1 (2)
C26—C21—C27—O263.4 (2)C4—C5—C6—N10.5 (3)
N3—C2—O2—C27179.54 (14)C4—C5—C6—O6178.24 (14)
N1—C2—O2—C271.4 (2)C66—C61—C62—C630.6 (3)
C2—O2—C27—C21174.90 (15)C67—C61—C62—C63178.28 (17)
O2—C27—C21—C22114.06 (18)C61—C62—C63—C640.3 (3)
N1—C2—N3—C40.9 (3)C62—C63—C64—C650.0 (3)
O2—C2—N3—C4179.79 (14)C63—C64—C65—C660.1 (3)
C47—N4—C4—N3172.32 (14)C62—C61—C66—C650.5 (3)
C5—C4—N4—C477.3 (2)C67—C61—C66—C65178.38 (17)
C4—N4—C47—C4165.7 (2)C64—C65—C66—C610.1 (3)
N4—C47—C41—C4220.0 (2)C66—C61—C67—O644.9 (2)
C2—N3—C4—N4178.97 (15)N1—C6—O6—C673.6 (2)
C2—N3—C4—C51.4 (2)C6—O6—C67—C61172.75 (14)
C46—C41—C42—C431.4 (3)O6—C67—C61—C62136.29 (16)
C47—C41—C42—C43179.89 (19)C5—C6—O6—C67174.31 (15)
C41—C42—C43—C440.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.882.152.980 (2)157
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC6H9N3OC19H19N3OC25H23N3O2
Mr139.16305.38397.46
Crystal system, space groupOrthorhombic, PnmaMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)8.1442 (17), 6.5456 (11), 12.285 (2)5.8932 (2), 18.2849 (7), 15.1175 (7)5.6056 (2), 18.2446 (5), 20.6480 (8)
α, β, γ (°)90, 90, 9090, 98.704 (2), 9090, 100.965 (1), 90
V3)654.9 (2)1610.25 (11)2073.16 (12)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.080.08
Crystal size (mm)0.25 × 0.20 × 0.020.26 × 0.18 × 0.100.50 × 0.30 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.970, 0.9920.950, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7372, 797, 468 12340, 3667, 2371 16019, 4691, 2822
Rint0.0990.0930.076
(sin θ/λ)max1)0.6480.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 0.98 0.050, 0.125, 1.00 0.054, 0.131, 0.96
No. of reflections79736674691
No. of parameters61209271
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.240.21, 0.280.23, 0.31

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) for (I) top
N1—C21.354 (2)C4—C51.388 (3)
C2—N31.346 (2)C5—C61.382 (3)
N3—C41.327 (3)C6—N11.338 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.882.263.136 (2)175
N2—H2···N3ii0.882.343.212 (2)172
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
N1—C21.3447 (19)C2—N21.3501 (19)
C2—N31.3493 (18)N2—C271.450 (2)
N3—C41.3223 (19)C4—O41.3505 (18)
C4—C51.384 (2)O4—C471.4398 (19)
C5—C61.377 (2)C6—C611.494 (2)
C6—N11.3486 (19)
N1—C2—N2—C27179.97 (12)N3—C4—O4—C473.38 (19)
C2—N2—C27—C2180.49 (17)C4—O4—C47—C41172.35 (12)
N2—C27—C21—C2260.71 (18)O4—C47—C41—C42154.41 (13)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.163.039 (2)176
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (III) top
N1—C21.335 (2)C2—O21.352 (2)
C2—N31.316 (2)O2—C271.441 (2)
N3—C41.353 (2)C4—N41.345 (2)
C4—C51.400 (2)N4—C471.445 (2)
C5—C61.374 (2)C6—O61.357 (2)
C6—N11.336 (2)O6—C671.442 (2)
N1—C2—O2—C271.4 (2)N4—C47—C41—C4220.0 (2)
C2—O2—C27—C21174.90 (15)N1—C6—O6—C673.6 (2)
O2—C27—C21—C22114.06 (18)C6—O6—C67—C61172.75 (14)
C5—C4—N4—C477.3 (2)O6—C67—C61—C62136.29 (16)
C4—N4—C47—C4165.7 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N3i0.882.152.980 (2)157
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds