Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The complex cation in [4,5-di­hydro-4,4,5,5-tetra­methyl-2-(2-pyridyl-κN)­imidazol-1-oxyl 3-oxide-κO3](nitrato-κ2O,O′)(N,N,N′,N′-tetra­methyl-1,2-ethanedi­am­ine-κ2N,N′)­nickel(II) hexafluorophosphate dichloromethane solvate, [Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2, is the first example of a nitro­nyl nitro­xide complex of a transition metal ion having d electrons in which nitrate is coordinated as a bidentate ligand. Owing to the smaller steric requirement of NO3, the Ni—­O(nitro­xide) bond length [2.014 (2) Å] is remarkably shorter than that in the corresponding ­β-­diketonate complexes [2.052 (4)–2.056 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013725/oa1122sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013725/oa1122Isup2.hkl
Contains datablock I

CCDC reference: 175069

Comment top

During the last two decades, there have been a large number of investigations of the magneto/structural chemistry of transition metal complexes bearing nitronyl nitroxide radicals. Initially, most of the complexes contained 1,1,1,5,5,5-hexafluoropentane-2,4-dionate (hfac) or a halide as a ligand because of the weak Lewis basicity of the nitroxide-O donor (Caneschi et al., 1991). However, other types of nitronyl nitroxide complexes have recently been reported, such as those in which nitroxides are bound to carboxylate-bridged dinuclear metal centres (Handa et al., 1998; Conge et al., 1994) and those having oxalate (Oshio et al., 2000) or cis-1,2-dicyano-1,2-ethylenedithiolate (Sutter et al., 1996) as a ligand. The N-heteroaromatic derivatives of nitronyl nitroxides have also been used advantageously to construct various types of transition metal–nitroxide complexes, because the auxiliary N-heteroaromatic donor group can make the nitroxide-O atom bind to a poorly electrophilic metal centre through the chelate effect (Luneau et al., 1993). Such nitronyl nitroxides also opened up the syntheses of transition metal complexes having various kinds of co-ligands. In fact, using the 2-pyridyl derivative 4,5-dihydro-4,4,5,5-tetramethyl-2-(2-pyridyl)imidazol-1-oxyl 3-oxide (NIT2py), we have recently succeeded in preparing and characterizing novel NiII–nitronyl nitroxide complexes containing both N,N,N',N'-tetramethyl-1,2-ethanediamine (tmen) and various kinds of β-diketonate ligands (Yoshida et al., 1999). We report here another intriguing NiII–nitronyl nitroxide complex containing nitrate instead of β-diketonate, i.e. [Ni(NO3)(tmen)(NIT2py)]PF6.CH2Cl2, (I). This is the first nitronyl nitroxide complex of the late transition metal ions containing nitrate as a ligand, although there has been a recent report concerning lanthanide(III)–nitronyl nitroxide complexes having three nitrate ligands, [Ln(NO3)3(NITtrz)2] (Ln = Y, La or Gd; NITtrz = 4,5-dihydro-4,4,5,5-tetramethyl-2-(4,5-dimethyl-1,2,4-triazol-3-yl)imidazol-1- oxyl 3-oxide) (Sutter et al., 1998). [Please check that dihydroimidazol is appropriate in this case]

Compound (I) was prepared from [Ni(NO3)2(tmen)], NIT2py and KPF6, and was recrystallized from CH2Cl2/Et2O, affording dark-green crystals. The X-ray analysis confirmed that the nitrate acts as a bidentate ligand in the complex cation of (I) (Fig. 1). The nitronyl nitroxide, NIT2py, coordinates to the NiII ion via the pyridyl-N and nitroxide-O atoms to form a six-membered chelate ring. As in the other NiII–NIT2py complexes (Luneau et al., 1993; Yoshida et al., 1999), the coordinated N—O bond [N1—O1 = 1.296 (3)Å] is longer by ca 0.02Å than the uncoordinated N—O bond [N2—O2 = 1.276 (4)Å]. The diamine, tmen, also chelates to NiII forming a five-membered chelate ring, with a typical gauche conformation, and the coordination geometry around the NiII atom is a distorted octahedron. The geometrical structure of the complex cation is assigned as a mer (cis, trans) N3O3 configuration, similar to the corresponding pentane-2,4-dionate (acac), 1-phenylbutane-1,3-dionate (bzac) and 1,1,1-trifluoro-4-phenylbutane-2,4-dionate (tfbzac) complexes, i.e. [Ni(acac, bzac or tfbzac)(tmen)(NIT2py)]PF6 (Yoshida et al., 1999). Also, the conformations of the NIT2py and tmen chelate rings in (I) are similar to those in the above-mentioned β-diketonate complexes; for the complex cation having a Λ absolute configuration around the NiII centre, δ(lel) and λ(ob) conformations are observed for NIT2py and tmen, respectively.

The structure of the coordinated nitrate moiety is not anomalous, although the Ni—O3 and Ni—O4 bond lengths [2.129 (2) and 2.125 (3)Å, respectively] are slightly shorter than those in the related NiII–NO3 complexes; for example, in [Ni(NO3)(acac)(1,2-dipiperidinoethane)] [2.168 (3) and 2.161 (3)Å; Fukuda et al., 1989] and [Ni(NO3)(N,N'-dipropyl-1,2-ethanediamine)2]NO3 [2.149 (2) and 2.152 (3)Å; Laskar et al., 1998]. As indicated by the small O3—Ni—O4 bite angle of 61.0 (1)°, nitrate is sterically more compact than the β-diketonates, which have bite angles in the range 90.54 (8)–92.0 (2)° (Yoshida et al., 1999). Such a compactness of the NO3- ligand results in noticeable deviations in the structural parameters of the nitrate complex from those of the β-diketonate complexes (Yoshida et al., 1999), as mentioned below.

While the Ni—N4 bond length in (I) [2.154 (3)Å] is comparable to that of the corresponding β-diketonate complexes [2.144 (6)–2.170 (6)Å], the Ni—N5 bond [2.100 (3)Å] is much shorter than that of the β-diketonate complexes [2.168 (6)–2.171 (6)Å]. This seems to result from a reduction of the steric congestion around the NiII centre by coordination of NO3- instead of β-diketonate. The wider N5—Ni—O3 bond angle of 105.2 (1)° in (I) compared with similar angles in the β-diketonate complexes [91.6 (2)–93.5 (2)°] is indicative of such a reduction. The O1—Ni—O4 and O1—Ni—N5 angles of 99.3 (1) and 94.8 (1)° in (I) are also wider compared with those of the β-diketonate complexes [87.7 (2)–88.5 (1) and 87.0 (2)–88.8 (2)°, respectively]. Therefore, the reduction of steric congestion would also result in the shortening of the Ni—O1 bond of the NIT2py coordination. In fact, while the Ni—N3 bond length of 2.134 (4)Å is almost the same as that of the β-diketonate complexes [2.123 (5)–2.144 (5)Å], the Ni—O1 bond length of 2.014 (2)Å is shorter than that of the β-diketonate complexes [2.052 (4)–2.056 (2)Å]. The Ni—O1—N1 angle in (I) [119.2 (2)°] is almost the same as that in the β-diketonate complexes [117.8 (2)–118.9 (3)°], but the dihedral angle between the nitronyl nitroxide mean plane and the plane of the pyridyl ring of (I) [32.7 (1)°] is a little larger than the corresponding angle of the β-diketonate complexes (23.2–28.7°).

There are no remarkable intermolecular contacts between the nitronyl nitroxide moieties, the shortest intermolecular distance between them being 4.267 (5)Å for O2···N2i [symmetry code: (i) 1-x, 1-y, 2-z].

The temperature dependence of the magnetic susceptibility of compound (I) was analysed by a similar method to that used for the analysis of the β-diketonate complexes, and the best-fit parameters obtained are g = 2.24, J = -111.1 cm-1 and θ = -0.649 K. Although the Ni—O(nitroxide) bond is shorter, as mentioned above, the magnetic interaction parameter is nearly equal to the those found in the β-diketonate complexes, viz. -149.0 cm-1 for the acac, -110.1 cm-1 for the bzac and -99.8 cm-1 for the tfbzac complexes (Yoshida et al., 1999).

Related literature top

For related literature, see: Caneschi et al. (1991); Conge et al. (1994); Fukuda et al. (1989); Handa et al. (1998); Laskar et al. (1998); Luneau et al. (1993); Oshio et al. (2000); Sutter et al. (1996, 1998); Yoshida et al. (1999).

Experimental top

A mixture of [Ni(NO3)2(tmen)] (0.47 mmol) and NIT2py (0.51 mmol) in CH2Cl2 (30 ml) was stirred at room temperature for 30 min, and then evaporated to dryness under reduced pressure. The residue was dissolved in CH3OH (50 ml) and solid KPF6 (0.49 mmol) was added to the solution, giving dark-green precipitate. The precipitate was filtered off and extracted with CH2Cl2. The extract was evaporated, again, to dryness, and the residue was recrystallized from CH2Cl2/Et2O giving dark-green crystals of compound (I) (yield: 64%). Analysis found: C 32.62, H 4.80, N 12.04%; calculated for C19H34Cl2F6N6NiO5P: C 32.55, H 4.89, N 11.99%.

Refinement top

H-atom parameters were constrained; C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Rigaku, 1985); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1970); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view of the complex cation in (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 40% probability level.
[4,5-Dihydro-4,4,5,5-tetramethyl-2-(2-pyridyl-κN)imidazol-1-oxyl 3-oxide-κO3](nitrato-κ2O,O')(N,N,N',N'-tetramethyl-1,2-ethanediamine- κ2N,N')nickel(II) hexafluorophophate dichloromethane solvate top
Crystal data top
[Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2F(000) = 1444
Mr = 701.08Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 8.6307 (18) ÅCell parameters from 25 reflections
b = 26.690 (6) Åθ = 14.7–15.0°
c = 13.119 (2) ŵ = 0.97 mm1
β = 102.305 (15)°T = 296 K
V = 2952.6 (10) Å3Prism, dark green
Z = 40.26 × 0.22 × 0.10 mm
Data collection top
Rigaku AFC-7R
diffractometer
3922 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.039
Graphite monochromatorθmax = 30.0°, θmin = 2.5°
ω–2θ scansh = 012
Absorption correction: integration
(Coppens et al., 1965)
k = 370
Tmin = 0.802, Tmax = 0.881l = 1818
9114 measured reflections3 standard reflections every 150 reflections
8605 independent reflections intensity decay: 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
8605 reflections(Δ/σ)max = 0.017
369 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2V = 2952.6 (10) Å3
Mr = 701.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6307 (18) ŵ = 0.97 mm1
b = 26.690 (6) ÅT = 296 K
c = 13.119 (2) Å0.26 × 0.22 × 0.10 mm
β = 102.305 (15)°
Data collection top
Rigaku AFC-7R
diffractometer
3922 reflections with I > 2σ(I)
Absorption correction: integration
(Coppens et al., 1965)
Rint = 0.039
Tmin = 0.802, Tmax = 0.8813 standard reflections every 150 reflections
9114 measured reflections intensity decay: 0.4%
8605 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.00Δρmax = 0.75 e Å3
8605 reflectionsΔρmin = 0.62 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.41129 (5)0.410130 (15)0.66249 (3)0.03195 (11)
Cl10.6878 (2)0.70824 (5)0.74479 (10)0.0886 (4)
Cl20.89180 (19)0.62099 (6)0.77924 (13)0.0982 (5)
P0.14341 (16)0.73457 (5)0.09915 (10)0.0674 (4)
F10.1098 (4)0.79279 (12)0.1031 (3)0.1081 (11)
F20.3162 (5)0.74151 (18)0.1505 (4)0.174 (2)
F30.0941 (6)0.72666 (16)0.2033 (3)0.160 (2)
F40.1807 (6)0.74055 (15)0.0121 (3)0.1473 (17)
F50.0333 (5)0.72698 (16)0.0408 (4)0.1541 (18)
F60.1799 (5)0.67706 (12)0.0953 (3)0.1212 (13)
O10.4495 (3)0.36687 (8)0.79122 (16)0.0394 (5)
O20.7405 (4)0.46434 (12)1.0546 (2)0.0701 (9)
O30.3417 (3)0.47299 (9)0.56337 (19)0.0471 (6)
O40.2691 (3)0.46675 (9)0.71039 (19)0.0457 (6)
O50.1911 (4)0.53047 (11)0.6093 (3)0.0810 (10)
N10.5019 (3)0.38735 (10)0.88158 (19)0.0327 (6)
N20.6435 (4)0.43159 (12)1.0072 (2)0.0457 (7)
N30.6205 (3)0.45047 (10)0.7323 (2)0.0352 (6)
N40.2051 (3)0.36722 (11)0.5914 (2)0.0399 (7)
N50.5331 (3)0.36274 (10)0.5786 (2)0.0391 (6)
N60.2643 (4)0.49164 (11)0.6277 (3)0.0491 (8)
C10.6182 (4)0.42088 (12)0.9043 (2)0.0358 (7)
C20.4257 (4)0.37535 (13)0.9721 (3)0.0388 (7)
C30.5479 (4)0.39892 (14)1.0646 (3)0.0444 (8)
C40.2654 (5)0.40188 (17)0.9493 (3)0.0610 (11)
H4A0.28140.43740.94550.075*
H4B0.21040.39481.00400.075*
H4C0.20340.39020.88400.075*
C50.4050 (6)0.31903 (14)0.9780 (3)0.0589 (11)
H5A0.36880.31081.04030.073*
H5B0.50460.30280.97930.073*
H5C0.32840.30790.91810.073*
C60.4795 (6)0.43214 (19)1.1380 (4)0.0762 (14)
H6A0.56430.44591.18990.095*
H6B0.41110.41261.17140.095*
H6C0.42000.45891.09910.095*
C70.6658 (6)0.36214 (19)1.1267 (4)0.0728 (14)
H7A0.61040.33821.16030.089*
H7B0.74110.38001.17840.089*
H7C0.72050.34501.08050.089*
C80.7016 (4)0.44415 (12)0.8315 (2)0.0350 (7)
C90.8576 (4)0.46030 (15)0.8645 (3)0.0481 (9)
H90.91250.45420.93240.059*
C100.9295 (5)0.48525 (15)0.7958 (3)0.0534 (10)
H101.03370.49630.81670.063*
C110.8467 (4)0.49380 (14)0.6966 (3)0.0488 (9)
H110.89270.51120.64920.060*
C120.6926 (4)0.47600 (13)0.6680 (3)0.0426 (8)
H120.63650.48210.60040.052*
C130.2621 (5)0.33203 (16)0.5203 (4)0.0640 (12)
H13A0.25230.34760.45240.077*
H13B0.19650.30220.51160.077*
C140.4305 (5)0.31769 (14)0.5617 (4)0.0606 (11)
H14A0.43930.29990.62710.074*
H14B0.46570.29550.51270.074*
C150.0731 (5)0.39703 (16)0.5283 (3)0.0615 (11)
H15A0.03040.41900.57330.075*
H15B0.00850.37480.49320.075*
H15C0.11240.41650.47760.075*
C160.1372 (5)0.33916 (17)0.6686 (3)0.0598 (11)
H16A0.09710.36230.71270.075*
H16B0.21800.31870.71040.075*
H16C0.05230.31820.63290.075*
C170.5530 (6)0.38405 (17)0.4787 (3)0.0645 (12)
H17A0.62870.41090.49170.077*
H17B0.45300.39660.44080.077*
H17C0.59030.35850.43830.077*
C180.6906 (5)0.34657 (17)0.6376 (4)0.0646 (12)
H18A0.68270.33650.70660.082*
H18B0.76420.37390.64220.082*
H18C0.72730.31890.60250.082*
C190.8837 (7)0.6864 (2)0.7862 (4)0.0911 (17)
H19A0.94970.70090.74260.108*
H19B0.92510.69710.85740.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0309 (2)0.03157 (19)0.03237 (19)0.00208 (19)0.00456 (14)0.00162 (18)
Cl10.1133 (12)0.0825 (9)0.0734 (8)0.0056 (8)0.0277 (8)0.0089 (7)
Cl20.0929 (11)0.0907 (10)0.1147 (12)0.0056 (8)0.0306 (9)0.0051 (9)
P0.0641 (8)0.0749 (8)0.0668 (7)0.0291 (6)0.0214 (6)0.0230 (6)
F10.124 (3)0.078 (2)0.120 (3)0.033 (2)0.023 (2)0.0144 (19)
F20.073 (3)0.164 (4)0.258 (6)0.014 (3)0.022 (3)0.003 (4)
F30.235 (5)0.157 (4)0.124 (3)0.113 (4)0.120 (3)0.064 (3)
F40.242 (5)0.120 (3)0.102 (3)0.045 (3)0.085 (3)0.042 (2)
F50.097 (3)0.129 (3)0.211 (5)0.012 (3)0.023 (3)0.035 (3)
F60.165 (4)0.081 (2)0.129 (3)0.056 (2)0.056 (3)0.033 (2)
O10.0483 (14)0.0348 (12)0.0321 (11)0.0095 (11)0.0022 (10)0.0012 (9)
O20.080 (2)0.080 (2)0.0486 (16)0.0380 (17)0.0088 (15)0.0193 (15)
O30.0457 (15)0.0488 (15)0.0465 (14)0.0007 (12)0.0093 (12)0.0142 (12)
O40.0493 (15)0.0428 (13)0.0476 (14)0.0029 (11)0.0164 (12)0.0018 (11)
O50.069 (2)0.0481 (17)0.127 (3)0.0233 (16)0.024 (2)0.0252 (18)
N10.0332 (14)0.0317 (13)0.0320 (13)0.0013 (11)0.0043 (11)0.0011 (11)
N20.0452 (17)0.0511 (17)0.0384 (15)0.0122 (15)0.0035 (13)0.0060 (13)
N30.0332 (14)0.0340 (14)0.0388 (15)0.0046 (11)0.0085 (12)0.0028 (12)
N40.0306 (14)0.0433 (16)0.0434 (16)0.0055 (12)0.0028 (12)0.0031 (13)
N50.0398 (16)0.0391 (15)0.0394 (15)0.0017 (13)0.0106 (12)0.0015 (12)
N60.0380 (17)0.0390 (17)0.067 (2)0.0002 (14)0.0043 (16)0.0057 (15)
C10.0345 (17)0.0346 (17)0.0379 (16)0.0038 (13)0.0072 (14)0.0010 (13)
C20.0424 (19)0.0405 (18)0.0363 (17)0.0024 (15)0.0146 (15)0.0011 (14)
C30.049 (2)0.051 (2)0.0344 (17)0.0002 (16)0.0103 (15)0.0004 (15)
C40.047 (2)0.081 (3)0.058 (2)0.002 (2)0.0170 (19)0.007 (2)
C50.088 (3)0.044 (2)0.048 (2)0.018 (2)0.023 (2)0.0007 (17)
C60.073 (3)0.094 (4)0.065 (3)0.010 (3)0.024 (2)0.036 (3)
C70.064 (3)0.085 (3)0.060 (3)0.005 (3)0.007 (2)0.022 (2)
C80.0342 (17)0.0338 (16)0.0366 (17)0.0017 (14)0.0063 (13)0.0018 (13)
C90.0366 (19)0.056 (2)0.050 (2)0.0051 (17)0.0053 (16)0.0013 (18)
C100.034 (2)0.058 (2)0.067 (3)0.0100 (18)0.0097 (18)0.006 (2)
C110.044 (2)0.047 (2)0.058 (2)0.0149 (17)0.0153 (18)0.0060 (18)
C120.041 (2)0.044 (2)0.0427 (19)0.0058 (16)0.0087 (15)0.0066 (16)
C130.055 (3)0.063 (3)0.072 (3)0.018 (2)0.011 (2)0.030 (2)
C140.061 (3)0.040 (2)0.086 (3)0.0011 (19)0.025 (2)0.016 (2)
C150.042 (2)0.060 (3)0.071 (3)0.0073 (19)0.0140 (19)0.008 (2)
C160.045 (2)0.070 (3)0.062 (3)0.021 (2)0.0075 (19)0.009 (2)
C170.083 (3)0.062 (3)0.054 (2)0.008 (2)0.028 (2)0.002 (2)
C180.052 (3)0.066 (3)0.073 (3)0.024 (2)0.006 (2)0.008 (2)
C190.091 (4)0.093 (4)0.088 (4)0.037 (3)0.016 (3)0.010 (3)
Geometric parameters (Å, º) top
Ni—O12.014 (2)C4—H4B0.9600
Ni—O32.129 (2)C4—H4C0.9600
Ni—O42.125 (2)C5—H5A0.9600
Ni—N32.134 (3)C5—H5B0.9600
Ni—N42.154 (3)C5—H5C0.9600
Ni—N52.100 (3)C6—H6A0.9600
Cl1—C191.761 (6)C6—H6B0.9600
Cl2—C191.750 (6)C6—H6C0.9600
P—F21.512 (4)C7—H7A0.9600
P—F31.530 (3)C7—H7B0.9600
P—F51.567 (4)C7—H7C0.9600
P—F41.569 (4)C8—C91.392 (5)
P—F61.570 (3)C9—C101.370 (5)
P—F11.584 (3)C9—H90.9300
O1—N11.296 (3)C10—C111.364 (5)
O2—N21.276 (4)C10—H100.9300
O3—N61.283 (4)C11—C121.387 (5)
O4—N61.265 (4)C11—H110.9300
O5—N61.211 (4)C12—H120.9300
N1—C11.330 (4)C13—C141.490 (6)
N1—C21.509 (4)C13—H13A0.9700
N2—C11.351 (4)C13—H13B0.9700
N2—C31.508 (5)C14—H14A0.9700
N3—C121.337 (4)C14—H14B0.9700
N3—C81.351 (4)C15—H15A0.9600
N4—C161.478 (5)C15—H15B0.9600
N4—C131.480 (5)C15—H15C0.9600
N4—C151.488 (5)C16—H16A0.9600
N5—C171.472 (5)C16—H16B0.9600
N5—C181.479 (5)C16—H16C0.9600
N5—C141.481 (5)C17—H17A0.9600
C1—C81.452 (4)C17—H17B0.9600
C2—C51.518 (5)C17—H17C0.9600
C2—C41.526 (5)C18—H18A0.9600
C2—C31.561 (5)C18—H18B0.9600
C3—C61.518 (5)C18—H18C0.9600
C3—C71.520 (6)C19—H19A0.9700
C4—H4A0.9600C19—H19B0.9700
O2···N2i4.267 (5)N2···N2i4.394 (6)
O2···O2i4.513 (6)
O1—Ni—O3159.76 (10)H4B—C4—H4C109.5
O1—Ni—O499.29 (10)C2—C5—H5A109.5
O1—Ni—N387.55 (9)C2—C5—H5B109.5
O1—Ni—N491.76 (10)H5A—C5—H5B109.5
O1—Ni—N594.79 (10)C2—C5—H5C109.5
O3—Ni—O460.96 (10)H5A—C5—H5C109.5
O3—Ni—N388.11 (10)H5B—C5—H5C109.5
O3—Ni—N493.16 (10)C3—C6—H6A109.5
O4—Ni—N390.19 (11)C3—C6—H6B109.5
O4—Ni—N491.74 (11)H6A—C6—H6B109.5
N3—Ni—N4178.03 (11)C3—C6—H6C109.5
N5—Ni—O3105.19 (11)H6A—C6—H6C109.5
N5—Ni—O4165.63 (10)H6B—C6—H6C109.5
N5—Ni—N393.25 (11)C3—C7—H7A109.5
N5—Ni—N484.97 (11)C3—C7—H7B109.5
F2—P—F393.1 (3)H7A—C7—H7B109.5
F2—P—F5177.3 (3)C3—C7—H7C109.5
F3—P—F589.5 (3)H7A—C7—H7C109.5
F2—P—F491.4 (3)H7B—C7—H7C109.5
F3—P—F4175.3 (3)N3—C8—C9122.0 (3)
F5—P—F486.0 (3)N3—C8—C1117.3 (3)
F2—P—F687.0 (2)C9—C8—C1120.7 (3)
F3—P—F689.4 (2)C10—C9—C8119.3 (3)
F5—P—F692.2 (2)C10—C9—H9120.4
F4—P—F689.3 (2)C8—C9—H9120.4
F2—P—F192.0 (2)C11—C10—C9119.4 (4)
F3—P—F191.0 (2)C11—C10—H10120.3
F5—P—F188.7 (2)C9—C10—H10120.3
F4—P—F190.3 (2)C10—C11—C12118.6 (3)
F6—P—F1179.0 (2)C10—C11—H11120.7
N1—O1—Ni119.20 (18)C12—C11—H11120.7
N6—O3—Ni91.28 (19)N3—C12—C11123.6 (3)
N6—O4—Ni92.0 (2)N3—C12—H12118.2
O1—N1—C1126.0 (3)C11—C12—H12118.2
O1—N1—C2120.3 (2)N4—C13—C14111.3 (3)
C1—N1—C2113.7 (3)N4—C13—H13A109.4
O2—N2—C1125.5 (3)C14—C13—H13A109.4
O2—N2—C3121.6 (3)N4—C13—H13B109.4
C1—N2—C3112.8 (3)C14—C13—H13B109.4
C12—N3—C8117.1 (3)H13A—C13—H13B108.0
C12—N3—Ni116.9 (2)N5—C14—C13110.6 (3)
C8—N3—Ni124.6 (2)N5—C14—H14A109.5
C16—N4—C13110.1 (3)C13—C14—H14A109.5
C16—N4—C15106.5 (3)N5—C14—H14B109.5
C13—N4—C15107.8 (3)C13—C14—H14B109.5
C16—N4—Ni112.6 (2)H14A—C14—H14B108.1
C13—N4—Ni104.8 (2)N4—C15—H15A109.5
C15—N4—Ni114.8 (2)N4—C15—H15B109.5
C17—N5—C18108.1 (3)H15A—C15—H15B109.5
C17—N5—C14111.1 (3)N4—C15—H15C109.5
C18—N5—C14107.1 (3)H15A—C15—H15C109.5
C17—N5—Ni113.6 (2)H15B—C15—H15C109.5
C18—N5—Ni114.1 (2)N4—C16—H16A109.5
C14—N5—Ni102.6 (2)N4—C16—H16B109.5
O5—N6—O4122.8 (4)H16A—C16—H16B109.5
O5—N6—O3121.5 (3)N4—C16—H16C109.5
O4—N6—O3115.7 (3)H16A—C16—H16C109.5
N1—C1—N2108.6 (3)H16B—C16—H16C109.5
N1—C1—C8126.6 (3)N5—C17—H17A109.5
N2—C1—C8124.7 (3)N5—C17—H17B109.5
N1—C2—C5109.0 (3)H17A—C17—H17B109.5
N1—C2—C4106.1 (3)N5—C17—H17C109.5
C5—C2—C4111.0 (3)H17A—C17—H17C109.5
N1—C2—C3101.0 (3)H17B—C17—H17C109.5
C5—C2—C3115.3 (3)N5—C18—H18A109.5
C4—C2—C3113.6 (3)N5—C18—H18B109.5
N2—C3—C6107.9 (3)H18A—C18—H18B109.5
N2—C3—C7105.4 (3)N5—C18—H18C109.5
C6—C3—C7110.1 (4)H18A—C18—H18C109.5
N2—C3—C2101.3 (3)H18B—C18—H18C109.5
C6—C3—C2116.0 (3)Cl2—C19—Cl1111.2 (3)
C7—C3—C2114.9 (3)Cl2—C19—H19A109.4
C2—C4—H4A109.5Cl1—C19—H19A109.4
C2—C4—H4B109.5Cl2—C19—H19B109.4
H4A—C4—H4B109.5Cl1—C19—H19B109.4
C2—C4—H4C109.5H19A—C19—H19B108.0
H4A—C4—H4C109.5
N5—Ni—O1—N1131.5 (2)Ni—O3—N6—O5178.4 (3)
O4—Ni—O1—N151.3 (2)Ni—O3—N6—O41.1 (3)
O3—Ni—O1—N139.3 (4)O1—N1—C1—N2177.2 (3)
N3—Ni—O1—N138.5 (2)C2—N1—C1—N25.2 (4)
N4—Ni—O1—N1143.4 (2)O1—N1—C1—C85.0 (5)
O1—Ni—O3—N614.3 (4)C2—N1—C1—C8172.6 (3)
N5—Ni—O3—N6175.19 (19)O2—N2—C1—N1175.9 (3)
O4—Ni—O3—N60.69 (18)C3—N2—C1—N16.3 (4)
N3—Ni—O3—N691.96 (19)O2—N2—C1—C81.9 (6)
N4—Ni—O3—N689.5 (2)C3—N2—C1—C8175.9 (3)
O1—Ni—O4—N6175.98 (19)O1—N1—C2—C547.0 (4)
N5—Ni—O4—N615.5 (5)C1—N1—C2—C5135.3 (3)
O3—Ni—O4—N60.70 (18)O1—N1—C2—C472.6 (4)
N3—Ni—O4—N688.43 (19)C1—N1—C2—C4105.1 (3)
N4—Ni—O4—N691.9 (2)O1—N1—C2—C3168.7 (3)
Ni—O1—N1—C144.4 (4)C1—N1—C2—C313.5 (4)
Ni—O1—N1—C2133.0 (2)O2—N2—C3—C645.6 (5)
O1—Ni—N3—C12157.8 (3)C1—N2—C3—C6136.5 (3)
N5—Ni—N3—C1263.2 (3)O2—N2—C3—C772.0 (4)
O4—Ni—N3—C12102.9 (2)C1—N2—C3—C7105.9 (4)
O3—Ni—N3—C1241.9 (3)O2—N2—C3—C2167.9 (3)
O1—Ni—N3—C88.2 (3)C1—N2—C3—C214.2 (4)
N5—Ni—N3—C8102.9 (3)N1—C2—C3—N215.1 (3)
O4—Ni—N3—C891.1 (3)C5—C2—C3—N2132.4 (3)
O3—Ni—N3—C8152.0 (3)C4—C2—C3—N298.0 (3)
O1—Ni—N4—C1621.4 (3)N1—C2—C3—C6131.6 (4)
N5—Ni—N4—C16116.0 (3)C5—C2—C3—C6111.1 (4)
O4—Ni—N4—C1678.0 (3)C4—C2—C3—C618.5 (5)
O3—Ni—N4—C16139.0 (3)N1—C2—C3—C798.0 (4)
O1—Ni—N4—C1398.3 (3)C5—C2—C3—C719.3 (5)
N5—Ni—N4—C133.7 (3)C4—C2—C3—C7148.9 (4)
O4—Ni—N4—C13162.3 (3)C12—N3—C8—C94.3 (5)
O3—Ni—N4—C13101.3 (3)Ni—N3—C8—C9161.7 (3)
O1—Ni—N4—C15143.5 (3)C12—N3—C8—C1174.0 (3)
N5—Ni—N4—C15121.8 (3)Ni—N3—C8—C120.0 (4)
O4—Ni—N4—C1544.2 (3)N1—C1—C8—N330.1 (5)
O3—Ni—N4—C1516.8 (3)N2—C1—C8—N3147.4 (3)
O1—Ni—N5—C17172.5 (3)N1—C1—C8—C9151.6 (4)
O4—Ni—N5—C1718.9 (6)N2—C1—C8—C931.0 (5)
O3—Ni—N5—C174.2 (3)N3—C8—C9—C102.8 (6)
N3—Ni—N5—C1784.7 (3)C1—C8—C9—C10175.5 (3)
N4—Ni—N5—C1796.1 (3)C8—C9—C10—C110.1 (6)
O1—Ni—N5—C1848.0 (3)C9—C10—C11—C121.2 (6)
O4—Ni—N5—C18143.4 (4)C8—N3—C12—C113.2 (5)
O3—Ni—N5—C18128.7 (3)Ni—N3—C12—C11163.9 (3)
N3—Ni—N5—C1839.8 (3)C10—C11—C12—N30.5 (6)
N4—Ni—N5—C18139.3 (3)C16—N4—C13—C1489.6 (4)
O1—Ni—N5—C1467.5 (2)C15—N4—C13—C14154.6 (4)
O4—Ni—N5—C14101.1 (5)Ni—N4—C13—C1431.8 (4)
O3—Ni—N5—C14115.8 (2)C17—N5—C14—C1372.7 (4)
N3—Ni—N5—C14155.3 (2)C18—N5—C14—C13169.5 (4)
N4—Ni—N5—C1423.9 (2)Ni—N5—C14—C1349.1 (4)
Ni—O4—N6—O5178.4 (3)N4—C13—C14—N557.5 (5)
Ni—O4—N6—O31.1 (3)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni(NO3)(C6H16N2)(C12H16N3O2)]PF6·CH2Cl2
Mr701.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.6307 (18), 26.690 (6), 13.119 (2)
β (°) 102.305 (15)
V3)2952.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.26 × 0.22 × 0.10
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionIntegration
(Coppens et al., 1965)
Tmin, Tmax0.802, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
9114, 8605, 3922
Rint0.039
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.154, 1.00
No. of reflections8605
No. of parameters369
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.62

Computer programs: MSC/AFC Diffractometer Control Software (Rigaku, 1985), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation and Rigaku, 2000), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1970), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—O12.014 (2)O1—N11.296 (3)
Ni—O32.129 (2)O2—N21.276 (4)
Ni—O42.125 (2)O3—N61.283 (4)
Ni—N32.134 (3)O4—N61.265 (4)
Ni—N42.154 (3)O5—N61.211 (4)
Ni—N52.100 (3)
O1—Ni—O3159.76 (10)N5—Ni—N484.97 (11)
O1—Ni—O499.29 (10)N1—O1—Ni119.20 (18)
O1—Ni—N387.55 (9)N6—O3—Ni91.28 (19)
O1—Ni—N594.79 (10)N6—O4—Ni92.0 (2)
O3—Ni—O460.96 (10)O5—N6—O4122.8 (4)
N3—Ni—N4178.03 (11)O5—N6—O3121.5 (3)
N5—Ni—O3105.19 (11)O4—N6—O3115.7 (3)
N1—C1—C8—N330.1 (5)N4—C13—C14—N557.5 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds