Buy article online - an online subscription or single-article purchase is required to access this article.
The title compound, [Cu(C
7H
5O
3)
2(C
7H
6N
2)
2]
n, is a one-dimensional polymeric complex bridged by salicylate anions. The Cu
II atom is surrounded by three salicylate and two benzimidazole ligands, with a tetragonally elongated octahedral coordination geometry. The Cu-O bond distances in the axial directions are 2.6092 (16) and 2.6834 (17) Å.
-
stacking interactions exist between the benzimidazole rings of neighboring polymeric complex chains.
Supporting information
CCDC reference: 263024
An ethanol solution (5 ml) of benzimidazole (0.24 g, 2 mmol) was mixed with an aqueous solution (8 ml) containing salicylic acid (0.28 g, 2 mmol), Na2CO3 (0.10 g, 1 mmol) and CuCl2·2H2O (0.17 g, 1 mmol). The mixture was refluxed for 4 h and filtered. Blue single crystals of (I) were obtained from the filtrate after 3 d.
H atoms on aromatic rings were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement in a riding model, with Uiso(H) values of 1.2Ueq(carrier atom). H atoms of hydroxy groups were located in difference Fourier maps and refined as riding in their as-found positions relative to the O atoms, with fixed isotropic displacement parameters of 0.05 Å2. The large anisotropy in the displacement parameters of atoms O6 and C24 may imply that the non-bridged sali ligand is disordered.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).
catena-Poly[[bis(benzimidazole)(salicylato-
κO)copper(II)]- µ-salicylato-O,
O':
O'']
top
Crystal data top
[Cu(C7H5O3)2(C7H6N2)2] | F(000) = 1180 |
Mr = 574.04 | Dx = 1.538 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 13793 reflections |
a = 7.3032 (9) Å | θ = 2.0–24.0° |
b = 14.0380 (12) Å | µ = 0.93 mm−1 |
c = 24.1952 (18) Å | T = 295 K |
β = 91.812 (4)° | Platelet, blue |
V = 2479.3 (4) Å3 | 0.32 × 0.22 × 0.08 mm |
Z = 4 | |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 4320 independent reflections |
Radiation source: fine-focus sealed tube | 3426 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.0°, θmin = 1.7° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −16→16 |
Tmin = 0.740, Tmax = 0.925 | l = −28→28 |
18148 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0382P)2 + 1.4329P] where P = (Fo2 + 2Fc2)/3 |
4320 reflections | (Δ/σ)max = 0.001 |
352 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Crystal data top
[Cu(C7H5O3)2(C7H6N2)2] | V = 2479.3 (4) Å3 |
Mr = 574.04 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.3032 (9) Å | µ = 0.93 mm−1 |
b = 14.0380 (12) Å | T = 295 K |
c = 24.1952 (18) Å | 0.32 × 0.22 × 0.08 mm |
β = 91.812 (4)° | |
Data collection top
Rigaku R-AXIS RAPID diffractometer | 4320 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3426 reflections with I > 2σ(I) |
Tmin = 0.740, Tmax = 0.925 | Rint = 0.031 |
18148 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.28 e Å−3 |
4320 reflections | Δρmin = −0.31 e Å−3 |
352 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu | 0.49565 (4) | 0.21655 (2) | 0.250261 (12) | 0.03035 (10) | |
O1 | 0.6207 (2) | 0.16477 (12) | 0.31890 (6) | 0.0325 (4) | |
O2 | 0.8491 (2) | 0.19458 (13) | 0.26335 (7) | 0.0388 (4) | |
O3 | 1.1837 (2) | 0.17869 (13) | 0.30168 (7) | 0.0394 (4) | |
H3 | 1.0867 | 0.1989 | 0.2802 | 0.050* | |
O4 | 0.4135 (2) | 0.26405 (13) | 0.17731 (7) | 0.0410 (4) | |
O5 | 0.1259 (3) | 0.28394 (15) | 0.20165 (8) | 0.0530 (5) | |
O6 | −0.1256 (3) | 0.3192 (2) | 0.12855 (13) | 0.0955 (9) | |
H6 | −0.0660 | 0.3031 | 0.1610 | 0.050* | |
N31 | 0.4673 (3) | −0.07259 (16) | 0.22141 (9) | 0.0452 (6) | |
H31 | 0.4457 | −0.1289 | 0.2336 | 0.054* | |
N33 | 0.4931 (3) | 0.08398 (15) | 0.22048 (8) | 0.0349 (5) | |
N41 | 0.5212 (3) | 0.50478 (16) | 0.27998 (9) | 0.0420 (5) | |
H41 | 0.5402 | 0.5614 | 0.2678 | 0.050* | |
N43 | 0.4996 (3) | 0.34802 (14) | 0.28054 (8) | 0.0331 (5) | |
C1 | 0.7884 (3) | 0.16193 (16) | 0.30773 (9) | 0.0285 (5) | |
C2 | 0.2460 (4) | 0.27998 (17) | 0.16642 (10) | 0.0347 (6) | |
C11 | 0.9198 (3) | 0.11529 (17) | 0.34758 (9) | 0.0289 (5) | |
C12 | 1.1095 (3) | 0.12609 (16) | 0.34239 (9) | 0.0301 (5) | |
C13 | 1.2298 (3) | 0.08195 (19) | 0.38008 (10) | 0.0390 (6) | |
H13 | 1.3555 | 0.0907 | 0.3775 | 0.047* | |
C14 | 1.1627 (4) | 0.0254 (2) | 0.42109 (11) | 0.0471 (7) | |
H14 | 1.2435 | −0.0038 | 0.4463 | 0.057* | |
C15 | 0.9768 (4) | 0.0115 (2) | 0.42537 (11) | 0.0513 (7) | |
H15 | 0.9327 | −0.0282 | 0.4527 | 0.062* | |
C16 | 0.8572 (4) | 0.0566 (2) | 0.38917 (10) | 0.0404 (6) | |
H16 | 0.7318 | 0.0477 | 0.3925 | 0.048* | |
C21 | 0.1901 (4) | 0.29381 (18) | 0.10707 (11) | 0.0419 (6) | |
C22 | 0.0074 (5) | 0.3131 (2) | 0.09180 (15) | 0.0642 (9) | |
C23 | −0.0400 (7) | 0.3254 (3) | 0.0361 (2) | 0.0959 (15) | |
H23 | −0.1608 | 0.3388 | 0.0255 | 0.115* | |
C24 | 0.0879 (9) | 0.3180 (3) | −0.00300 (18) | 0.1025 (18) | |
H24 | 0.0536 | 0.3270 | −0.0400 | 0.123* | |
C25 | 0.2663 (7) | 0.2976 (3) | 0.01085 (13) | 0.0844 (13) | |
H25 | 0.3524 | 0.2913 | −0.0164 | 0.101* | |
C26 | 0.3168 (5) | 0.2864 (2) | 0.06603 (11) | 0.0590 (9) | |
H26 | 0.4386 | 0.2736 | 0.0757 | 0.071* | |
C32 | 0.4502 (4) | 0.00860 (19) | 0.24930 (11) | 0.0412 (6) | |
H32 | 0.4117 | 0.0115 | 0.2855 | 0.049* | |
C34 | 0.6029 (3) | 0.0958 (2) | 0.12218 (11) | 0.0439 (7) | |
H34 | 0.6187 | 0.1616 | 0.1216 | 0.053* | |
C35 | 0.6384 (4) | 0.0400 (2) | 0.07688 (12) | 0.0549 (8) | |
H35 | 0.6755 | 0.0691 | 0.0446 | 0.066* | |
C36 | 0.6204 (4) | −0.0590 (2) | 0.07795 (13) | 0.0576 (8) | |
H36 | 0.6458 | −0.0938 | 0.0464 | 0.069* | |
C37 | 0.5665 (4) | −0.1063 (2) | 0.12417 (12) | 0.0515 (7) | |
H37 | 0.5574 | −0.1723 | 0.1252 | 0.062* | |
C38 | 0.5260 (3) | −0.04988 (19) | 0.16937 (11) | 0.0397 (6) | |
C39 | 0.5420 (3) | 0.04869 (18) | 0.16892 (10) | 0.0350 (6) | |
C42 | 0.5371 (3) | 0.42397 (19) | 0.25137 (11) | 0.0400 (6) | |
H42 | 0.5712 | 0.4218 | 0.2147 | 0.048* | |
C44 | 0.4115 (4) | 0.3345 (2) | 0.38109 (10) | 0.0413 (6) | |
H44 | 0.4052 | 0.2683 | 0.3824 | 0.050* | |
C45 | 0.3755 (4) | 0.3894 (2) | 0.42652 (12) | 0.0509 (7) | |
H45 | 0.3460 | 0.3594 | 0.4593 | 0.061* | |
C46 | 0.3818 (4) | 0.4884 (2) | 0.42507 (12) | 0.0534 (8) | |
H46 | 0.3532 | 0.5228 | 0.4565 | 0.064* | |
C47 | 0.4292 (4) | 0.5361 (2) | 0.37842 (12) | 0.0491 (7) | |
H47 | 0.4349 | 0.6023 | 0.3774 | 0.059* | |
C48 | 0.4685 (3) | 0.48120 (18) | 0.33261 (11) | 0.0371 (6) | |
C49 | 0.4578 (3) | 0.38193 (17) | 0.33303 (10) | 0.0318 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu | 0.03097 (16) | 0.03057 (16) | 0.02933 (16) | 0.00464 (13) | −0.00213 (12) | 0.00162 (13) |
O1 | 0.0268 (8) | 0.0375 (10) | 0.0333 (9) | 0.0055 (7) | 0.0016 (7) | 0.0018 (7) |
O2 | 0.0322 (9) | 0.0491 (11) | 0.0351 (9) | 0.0047 (8) | 0.0012 (8) | 0.0126 (8) |
O3 | 0.0280 (9) | 0.0451 (11) | 0.0450 (10) | −0.0025 (8) | −0.0005 (8) | 0.0109 (8) |
O4 | 0.0454 (11) | 0.0459 (11) | 0.0314 (9) | 0.0117 (8) | −0.0026 (8) | 0.0026 (8) |
O5 | 0.0486 (11) | 0.0657 (15) | 0.0453 (11) | 0.0022 (10) | 0.0090 (10) | 0.0037 (10) |
O6 | 0.0495 (14) | 0.121 (2) | 0.115 (2) | 0.0024 (15) | −0.0219 (16) | 0.0344 (19) |
N31 | 0.0534 (14) | 0.0325 (13) | 0.0496 (14) | −0.0081 (10) | −0.0008 (11) | 0.0032 (11) |
N33 | 0.0360 (11) | 0.0350 (12) | 0.0337 (11) | −0.0013 (9) | 0.0006 (9) | −0.0005 (9) |
N41 | 0.0504 (13) | 0.0291 (12) | 0.0464 (13) | −0.0022 (10) | −0.0005 (11) | 0.0083 (10) |
N43 | 0.0357 (11) | 0.0303 (11) | 0.0329 (11) | 0.0013 (9) | −0.0015 (9) | 0.0046 (9) |
C1 | 0.0314 (12) | 0.0252 (13) | 0.0288 (12) | 0.0031 (9) | 0.0005 (10) | −0.0021 (10) |
C2 | 0.0448 (15) | 0.0253 (13) | 0.0340 (13) | −0.0003 (11) | −0.0014 (12) | 0.0020 (10) |
C11 | 0.0311 (12) | 0.0297 (13) | 0.0257 (12) | 0.0035 (10) | −0.0004 (10) | −0.0023 (9) |
C12 | 0.0330 (12) | 0.0280 (13) | 0.0291 (12) | 0.0012 (10) | −0.0005 (10) | −0.0016 (10) |
C13 | 0.0329 (13) | 0.0393 (15) | 0.0442 (15) | 0.0039 (11) | −0.0076 (12) | 0.0004 (12) |
C14 | 0.0499 (16) | 0.0489 (18) | 0.0417 (15) | 0.0084 (13) | −0.0115 (13) | 0.0086 (13) |
C15 | 0.0544 (17) | 0.059 (2) | 0.0401 (15) | −0.0002 (15) | 0.0000 (14) | 0.0203 (14) |
C16 | 0.0357 (13) | 0.0490 (17) | 0.0365 (14) | 0.0005 (12) | 0.0024 (12) | 0.0067 (12) |
C21 | 0.0588 (17) | 0.0281 (14) | 0.0379 (15) | −0.0007 (12) | −0.0111 (14) | 0.0032 (11) |
C22 | 0.067 (2) | 0.051 (2) | 0.073 (2) | −0.0118 (16) | −0.030 (2) | 0.0125 (17) |
C23 | 0.105 (3) | 0.084 (3) | 0.094 (3) | −0.021 (3) | −0.065 (3) | 0.027 (3) |
C24 | 0.177 (5) | 0.070 (3) | 0.056 (2) | −0.027 (3) | −0.060 (3) | 0.010 (2) |
C25 | 0.161 (4) | 0.058 (2) | 0.0344 (17) | 0.007 (2) | −0.002 (2) | 0.0002 (16) |
C26 | 0.097 (2) | 0.0452 (18) | 0.0348 (16) | 0.0126 (17) | −0.0038 (17) | 0.0020 (13) |
C32 | 0.0443 (15) | 0.0410 (16) | 0.0382 (14) | −0.0043 (11) | 0.0001 (13) | 0.0016 (12) |
C34 | 0.0410 (15) | 0.0444 (17) | 0.0465 (16) | 0.0061 (12) | 0.0044 (13) | 0.0023 (13) |
C35 | 0.0546 (18) | 0.065 (2) | 0.0453 (17) | 0.0084 (15) | 0.0111 (14) | 0.0032 (15) |
C36 | 0.0583 (18) | 0.062 (2) | 0.0523 (19) | 0.0097 (16) | 0.0025 (15) | −0.0184 (16) |
C37 | 0.0559 (18) | 0.0405 (17) | 0.0578 (19) | 0.0031 (13) | −0.0034 (15) | −0.0124 (14) |
C38 | 0.0360 (13) | 0.0387 (16) | 0.0441 (15) | −0.0026 (11) | −0.0023 (12) | −0.0032 (12) |
C39 | 0.0298 (12) | 0.0372 (15) | 0.0379 (14) | 0.0025 (10) | −0.0008 (11) | −0.0010 (11) |
C42 | 0.0413 (15) | 0.0426 (16) | 0.0360 (14) | 0.0005 (11) | 0.0007 (12) | 0.0061 (13) |
C44 | 0.0481 (15) | 0.0364 (16) | 0.0397 (15) | −0.0011 (12) | 0.0050 (12) | 0.0047 (12) |
C45 | 0.0580 (18) | 0.056 (2) | 0.0397 (16) | −0.0013 (14) | 0.0107 (14) | 0.0002 (13) |
C46 | 0.0568 (18) | 0.056 (2) | 0.0476 (17) | 0.0055 (15) | 0.0065 (15) | −0.0138 (15) |
C47 | 0.0499 (17) | 0.0360 (16) | 0.0613 (19) | 0.0063 (13) | −0.0028 (15) | −0.0110 (14) |
C48 | 0.0342 (13) | 0.0328 (14) | 0.0441 (15) | 0.0026 (11) | −0.0042 (12) | 0.0025 (11) |
C49 | 0.0274 (12) | 0.0322 (14) | 0.0356 (13) | 0.0017 (10) | −0.0041 (11) | 0.0012 (10) |
Geometric parameters (Å, º) top
Cu—O1 | 2.0061 (15) | C15—H15 | 0.9300 |
Cu—O2 | 2.6092 (16) | C16—H16 | 0.9300 |
Cu—O3i | 2.6834 (17) | C21—C26 | 1.383 (4) |
Cu—O4 | 1.9629 (16) | C21—C22 | 1.399 (4) |
Cu—N33 | 1.996 (2) | C22—C23 | 1.393 (5) |
Cu—N43 | 1.985 (2) | C23—C24 | 1.353 (7) |
O1—C1 | 1.263 (3) | C23—H23 | 0.9300 |
O2—C1 | 1.261 (3) | C24—C25 | 1.366 (6) |
O3—C12 | 1.357 (3) | C24—H24 | 0.9300 |
O3—H3 | 0.9103 | C25—C26 | 1.383 (4) |
O4—C2 | 1.263 (3) | C25—H25 | 0.9300 |
O5—C2 | 1.243 (3) | C26—H26 | 0.9300 |
O6—C22 | 1.340 (4) | C32—H32 | 0.9300 |
O6—H6 | 0.9126 | C34—C35 | 1.379 (4) |
N31—C32 | 1.332 (3) | C34—C39 | 1.395 (4) |
N31—C38 | 1.380 (3) | C34—H34 | 0.9300 |
N31—H31 | 0.8600 | C35—C36 | 1.396 (4) |
N33—C32 | 1.311 (3) | C35—H35 | 0.9300 |
N33—C39 | 1.399 (3) | C36—C37 | 1.369 (4) |
N41—C42 | 1.336 (3) | C36—H36 | 0.9300 |
N41—C48 | 1.382 (3) | C37—C38 | 1.389 (4) |
N41—H41 | 0.8600 | C37—H37 | 0.9300 |
N43—C42 | 1.312 (3) | C38—C39 | 1.389 (4) |
N43—C49 | 1.399 (3) | C42—H42 | 0.9300 |
C1—C11 | 1.490 (3) | C44—C45 | 1.375 (4) |
C2—C21 | 1.493 (3) | C44—C49 | 1.391 (3) |
C11—C16 | 1.389 (3) | C44—H44 | 0.9300 |
C11—C12 | 1.403 (3) | C45—C46 | 1.390 (4) |
C12—C13 | 1.391 (3) | C45—H45 | 0.9300 |
C13—C14 | 1.373 (4) | C46—C47 | 1.367 (4) |
C13—H13 | 0.9300 | C46—H46 | 0.9300 |
C14—C15 | 1.379 (4) | C47—C48 | 1.387 (4) |
C14—H14 | 0.9300 | C47—H47 | 0.9300 |
C15—C16 | 1.372 (4) | C48—C49 | 1.396 (3) |
| | | |
O4—Cu—N43 | 90.94 (8) | C22—C21—C2 | 120.6 (3) |
O4—Cu—N33 | 89.60 (8) | O6—C22—C23 | 118.2 (4) |
N43—Cu—N33 | 179.44 (8) | O6—C22—C21 | 122.8 (3) |
O4—Cu—O1 | 170.28 (7) | C23—C22—C21 | 119.0 (4) |
N43—Cu—O1 | 91.74 (7) | C24—C23—C22 | 120.7 (4) |
N33—Cu—O1 | 87.70 (8) | C24—C23—H23 | 119.6 |
O2—Cu—O1 | 55.52 (6) | C22—C23—H23 | 119.6 |
O2—Cu—O3i | 140.50 (5) | C23—C24—C25 | 121.3 (4) |
O2—Cu—O4 | 114.98 (7) | C23—C24—H24 | 119.4 |
O2—Cu—N31 | 87.04 (5) | C25—C24—H24 | 119.4 |
O2—Cu—N41 | 93.20 (5) | C24—C25—C26 | 119.0 (4) |
O3i—Cu—O1 | 85.15 (6) | C24—C25—H25 | 120.5 |
O3i—Cu—O4 | 104.15 (6) | C26—C25—H25 | 120.5 |
O3i—Cu—N31 | 81.06 (5) | C21—C26—C25 | 121.4 (4) |
O3i—Cu—N41 | 98.53 (5) | C21—C26—H26 | 119.3 |
C1—O1—Cu | 104.68 (14) | C25—C26—H26 | 119.3 |
C2—O4—Cu | 120.94 (16) | N33—C32—N31 | 113.2 (2) |
Cuii—O3—C12 | 143.93 (14) | N33—C32—H32 | 123.4 |
C12—O3—H3 | 105.3 | N31—C32—H32 | 123.4 |
C22—O6—H6 | 102.7 | C35—C34—C39 | 116.6 (3) |
C32—N31—C38 | 107.5 (2) | C35—C34—H34 | 121.7 |
C32—N31—H31 | 126.2 | C39—C34—H34 | 121.7 |
C38—N31—H31 | 126.2 | C34—C35—C36 | 122.1 (3) |
C32—N33—C39 | 105.1 (2) | C34—C35—H35 | 119.0 |
C32—N33—Cu | 124.09 (18) | C36—C35—H35 | 119.0 |
C39—N33—Cu | 130.72 (17) | C37—C36—C35 | 121.8 (3) |
C42—N41—C48 | 107.8 (2) | C37—C36—H36 | 119.1 |
C42—N41—H41 | 126.1 | C35—C36—H36 | 119.1 |
C48—N41—H41 | 126.1 | C36—C37—C38 | 116.2 (3) |
C42—N43—C49 | 105.5 (2) | C36—C37—H37 | 121.9 |
C42—N43—Cu | 123.90 (18) | C38—C37—H37 | 121.9 |
C49—N43—Cu | 130.55 (16) | N31—C38—C39 | 105.4 (2) |
O2—C1—O1 | 122.7 (2) | N31—C38—C37 | 131.8 (3) |
O2—C1—C11 | 118.3 (2) | C39—C38—C37 | 122.8 (3) |
O1—C1—C11 | 119.0 (2) | C38—C39—C34 | 120.5 (2) |
O5—C2—O4 | 124.4 (2) | C38—C39—N33 | 108.8 (2) |
O5—C2—C21 | 118.4 (2) | C34—C39—N33 | 130.7 (2) |
O4—C2—C21 | 117.2 (2) | N43—C42—N41 | 112.8 (2) |
C16—C11—C12 | 118.5 (2) | N43—C42—H42 | 123.6 |
C16—C11—C1 | 120.6 (2) | N41—C42—H42 | 123.6 |
C12—C11—C1 | 120.8 (2) | C45—C44—C49 | 117.2 (3) |
O3—C12—C13 | 117.4 (2) | C45—C44—H44 | 121.4 |
O3—C12—C11 | 122.8 (2) | C49—C44—H44 | 121.4 |
C13—C12—C11 | 119.9 (2) | C44—C45—C46 | 122.2 (3) |
C14—C13—C12 | 119.9 (2) | C44—C45—H45 | 118.9 |
C14—C13—H13 | 120.0 | C46—C45—H45 | 118.9 |
C12—C13—H13 | 120.0 | C47—C46—C45 | 121.3 (3) |
C13—C14—C15 | 120.7 (2) | C47—C46—H46 | 119.3 |
C13—C14—H14 | 119.6 | C45—C46—H46 | 119.3 |
C15—C14—H14 | 119.6 | C46—C47—C48 | 116.9 (3) |
C16—C15—C14 | 119.7 (3) | C46—C47—H47 | 121.6 |
C16—C15—H15 | 120.1 | C48—C47—H47 | 121.6 |
C14—C15—H15 | 120.1 | N41—C48—C47 | 132.3 (3) |
C15—C16—C11 | 121.2 (2) | N41—C48—C49 | 105.3 (2) |
C15—C16—H16 | 119.4 | C47—C48—C49 | 122.4 (3) |
C11—C16—H16 | 119.4 | C44—C49—C48 | 120.0 (2) |
C26—C21—C22 | 118.6 (3) | C44—C49—N43 | 131.4 (2) |
C26—C21—C2 | 120.8 (3) | C48—C49—N43 | 108.6 (2) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.91 | 1.77 | 2.596 (2) | 149 |
O3—H3···O5ii | 0.91 | 2.27 | 2.856 (3) | 122 |
O6—H6···O5 | 0.91 | 1.71 | 2.558 (3) | 153 |
N31—H31···O5iii | 0.86 | 2.07 | 2.840 (3) | 149 |
N41—H41···O2iv | 0.86 | 2.18 | 3.026 (3) | 167 |
C34—H34···O4 | 0.93 | 2.50 | 3.064 (3) | 119 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | [Cu(C7H5O3)2(C7H6N2)2] |
Mr | 574.04 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 7.3032 (9), 14.0380 (12), 24.1952 (18) |
β (°) | 91.812 (4) |
V (Å3) | 2479.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.93 |
Crystal size (mm) | 0.32 × 0.22 × 0.08 |
|
Data collection |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.740, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18148, 4320, 3426 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.084, 1.05 |
No. of reflections | 4320 |
No. of parameters | 352 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Selected geometric parameters (Å, º) topCu—O1 | 2.0061 (15) | Cu—O4 | 1.9629 (16) |
Cu—O2 | 2.6092 (16) | Cu—N33 | 1.996 (2) |
Cu—O3i | 2.6834 (17) | Cu—N43 | 1.985 (2) |
| | | |
O2—Cu—O3i | 140.50 (5) | O3i—Cu—N41 | 98.53 (5) |
O3i—Cu—O1 | 85.15 (6) | C1—O1—Cu | 104.68 (14) |
O3i—Cu—O4 | 104.15 (6) | C2—O4—Cu | 120.94 (16) |
O3i—Cu—N31 | 81.06 (5) | Cuii—O3—C12 | 143.93 (14) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2 | 0.91 | 1.77 | 2.596 (2) | 149 |
O3—H3···O5ii | 0.91 | 2.27 | 2.856 (3) | 122 |
O6—H6···O5 | 0.91 | 1.71 | 2.558 (3) | 153 |
N31—H31···O5iii | 0.86 | 2.07 | 2.840 (3) | 149 |
N41—H41···O2iv | 0.86 | 2.18 | 3.026 (3) | 167 |
C34—H34···O4 | 0.93 | 2.50 | 3.064 (3) | 119 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, y+1/2, −z+1/2. |
Geometric parameters (° and Å) for selected carboxyl groups in CuII complexes topCarboxylate | | Cu—O1—C1 | Cu—O1 | Cu···O2 |
Salicylate1,a | | 127.4 (2) | 1.981 (2) | 3.233 (2) |
Hydroxybenzoate1,b | | 126.4 (1) | 1.956 (2) | 3.199 (2) |
Nitrobenzoate1,c | | 127.0 (2) | 1.959 (2) | 3.279 (2) |
Chlorofluorobenzoate1,d | | 126.9 (4) | 2.019 (3) | 3.141 (3) |
Benzenetetracarboxylate1,e | | 121.5 (2) | 1.994 (2) | 3.110 (2) |
Terephthalate2,f | | 106.0 (5) | 2.006 (8) | 2.657 (8) |
Phthalate2,g | | 104.9 (2) | 1.981 (2) | 2.632 (2) |
Aminomethylbenzoate2,h | | 104.8 (2) | 1.954 (3) | 2.572 (3) |
Methylbenzoate2,i | | 104.54 (13) | 1.9435 (14) | 2.5923 (19) |
Salicylate2,j | | 104.68 (14) | 2.0061 (15) | 2.6092 (16) |
Notes: (1) chelate coordination mode; (2) monodentate coordination mode. References: (a) Hoang et al., 1992; (b) Hökelek et al., 1998; (c) Hökelek et al., 1997; (d) Hoang et al., 1995; (e) Chen et al., 1996; (f) Cano et al., 1997; (g) Bakalbassis & Terzis, 1994; (h) Boudreau & Haendler, 1986; (i) Xu & Xu, 2004; (j) this work. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.
As π–π stacking between aromatic rings is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989), metal complexes incorporating aromatic ligands, such as phenanthroline, benzimidazole and bithiazole, have attracted our attention. A series of metal complexes with the benzimidazole (bzim) ligand have been prepared in our laboratory, and their structures have shown the existence of π–π stacking between the bzim rings (Chen et al., 2003). As a part of our ongoing investigations into π–π stacking, we report here the structure of the title compound, (I), [Cu(bzim)2(sali)2]n. A search of the Cambridge Structural Database (November 2003 update; Allen, 2002) indicated that no [M(bzim)2(sali)2]n compound has been reported before.
The structure of a fragment of (I) is illustrated in Fig. 1. The repeat unit of the polymeric complex includes one CuII atom, two salicylate (sali) anions and two bzim molecules. N atoms of the bzim ligands and carboxyl O atoms (O1 and O4) from two sali ligands form the equatorial coordination plane around the Cu atom, with bond distances of 1.9629 (16)–2.0061 (15) Å (Table 1).
The distances between the Cu atom and the other two carboxyl O atoms (O2 and O5) are appreciably different, and both are much longer than those in the equatorial plane. The Cu—O2 distance is longer than the average Cu—O distance in the equatorial plane [1.982 (2) Å] by 0.627 (3) Å, but the smaller Cu—O1—C1 angle [104.68 (14)°] suggests a bonding interaction between atoms Cu and O2 (as discussed below). On the other hand, the Cu···O5 distance [3.061 (2) Å] and the larger Cu—O4—C2 angle [120.94 (16)°] suggest no bonding interaction between atoms Cu and O5.
A comparison of the geometric parameters for carboxyl groups in some CuII complexes is listed in Table 3. The Cu—O1—C1 angles in these complexes fall into two distinct ranges, viz. either larger than 120° or close to 105°. The bond angle of 120° indicates normal sp2 hybridization for atom O1 and corresponds to the long Cu···O2 distance in the complexes, suggesting a monodentate coordinate mode for the carboxyl group. Conversely, the smaller Cu—O1—C1 angle of 105° implies the existence of a bonding interaction between the Cu atom and the other O atom (O2) of the carboxyl group, suggesting a chelate coordination mode. A similar situation was also found in carboxylate–MnII complexes, in which the Mn—O—C angles of 120 and 95° correspond to the monodentate and chelate modes of the carboxyl group, respectively (Liu et al., 2004). Thus the metal—O—C angle may be an additional criterion of the coordination mode for the carboxyl group in transition metal complexes. According to this criterion, the two sali ligands in (I) coordinate to the Cu atom in different modes.
The C1-containing sali group also plays the role of bridging ligand in (I); hydroxy atom O3 coordinates to the Cu atom of the neighboring repeat unit to form a polymeric complex chain along the crystallographic a axis (Figs. 1 and 2). The Cu—O3i distance [symmetry code: (i) x − 1, y, z] is appreciably longer than the Cu—O2 distance (Table 1). The large Cu—O3i—C12i bond angle [143.93 (14)°], besides the Jahn–Teller effect, is a possible reason for the longer Cu—O3i bond. Thus each CuII atom is surrounded by three sali and two bzim ligands in a distorted octahedral coordination geometry.
The C2-containg sali group is not a bridging ligand. Carboxyl O5 atom is hydrogen bonded to the O3i hydroxy group of an adjacent sali ligand, resulting in there being a longer distance between atom O6 and the neighboring complex unit, the nearest distance between atom O6 and the non-H atoms of the neighboring complex unit being 3.684 (3) Å (O6···O4i; Fig. 1).
The packing of the polymeric chains is illustrated in Fig. 2. Neighboring polymeric chains are linked to one another via hydrogen bonds (Table 2) between the bzim and carboxyl groups. The nearly parallel arrangement of the bzim rings from neighboring polymeric chains is also shown in Fig. 2, a partial overlapping between the bzim rings being observed (Fig. 3). The dihedral angle between the bzim groups containing atoms N33 and N43ii is 7.64 (5)°, aso is the angle between the bzim groups containing atoms N33 and N43iii [symmetry codes: (ii) 1/2 − x, y − 1/2, 1/2 − z; (iii) 3/2 − x, y − 1/2, 1/2 − z]. The distances of atoms N31 and C38 from the mean plane of the N43ii-containing bzim group are 3.344 (2) and 3.436 (3) Å, respectively; the distances of atoms C36 and C38 from the mean plane of the N43iii-containing bzim grop are 3.467 (3) and 3.537 (3) Å, respectively. These distances are significantly shorter than that between uncoordinated parallel bzim rings in the MnII–bzim complex [3.600 (6) Å; Chen et al., 2003] and clearly suggest the existence of π–π stacking of bzim rings between polymeric complex chains in (I).