Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hydro­thermal reaction of 3CdSO4·8H2O and phenanthroline (phen) in aqueous methanol resulted in the title mononuclear cadmium compound, [Cd(SO4)(C12H8N2)(H2O)3]. The coord­ination geometry around the CdII atom is distorted octahedral, in which one of the sulfate O atoms and an aqua ligand occupy the axial positions. Intermolecular O—H...O hydrogen bonds lead to the formation of a two-dimensional layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007360/ob6230sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007360/ob6230Isup2.hkl
Contains datablock I

CCDC reference: 214557

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.043
  • wR factor = 0.109
  • Data-to-parameter ratio = 11.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
PLAT_726 Alert A H...A Calc 1.92768, Rep 1.97000, Dev. 0.04 Ang. H7A -O3 1.555 1.455
Amber Alert Alert Level B:
ABSTM_02 Alert B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.416 0.939 Tmin' and Tmax expected: 0.563 0.939 RR' = 0.739 Please check that your absorption correction is appropriate. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.05 From the CIF: _reflns_number_total 2500 Count of symmetry unique reflns 1604 Completeness (_total/calc) 155.86% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 896 Fraction of Friedel pairs measured 0.559 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
1 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The design and synthesis of novel inorganic-organic hybrid coordination complexes have attracted the attention of many chemists in recently several years owing to their potential application, such as selective guest absorption (Gardner et al., 1995), gas storage (Li et al., 1999), and heterogeneous catalysis (Dong et al., 2000). In the past years, cadmium complexes have been synthesized and characterized (Harvey et al., 2000). In this paper, we report the structure of the title compound, (I), which is a new cadmium coordination compound.

The Cd atom is six-coordinated by two N atoms from phenanthroline, three O atoms from water molecules and one O atom from sulfate ion (Fig. 1). The coordination geometry of the CdII atom can be regarded as distorted octahedral (Table 1), in which sulfate atom O1 and water atom O7 occupy the axial positions, while the equatorial plane is formed by N1, N2, O5 and O6. Through O—H···O hydrogen bonds, the crystal structure extends into a two-dimensional framework (Fig. 2).

Experimental top

A mixture of 3CdSO4·8H2O (0.2 mmol, 0.15 g), 1,10-phenanthroline (0.2 mmol, 0.04 g) and H2O-EtOH (2:1 v/v, 15 ml) was sealed in a 25 ml Teflon-lined stainless-steel reactor and heated to 453 K for 72 h. After cooling, colorless crystals of the title compound, (I), were obtained (yield 68%).

Refinement top

One of the each water H atoms (H5C, H6C and H7B) was refined isotropically; the other H atoms were fixed. The positions of the H atoms bonded to C atoms were generated geometrically (C—H = 0.96 Å), assigned isotropic displacement parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 50% displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The two-dimensional structure of (I) formed through hydrogen bonding.
Triaqua(1,10-phenanthroline)sulfatocadmium(II) top
Crystal data top
[Cd(SO4)(C12H8N2)(H2O)3]Dx = 1.889 Mg m3
Mr = 442.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 104 reflections
a = 8.1620 (5) Åθ = 2.1–25.1°
b = 9.7458 (6) ŵ = 1.57 mm1
c = 19.5727 (11) ÅT = 293 K
V = 1556.91 (16) Å3Block, light yellow
Z = 40.36 × 0.18 × 0.04 mm
F(000) = 880
Data collection top
Siemens SMART CCD area-detector
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube2357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.416, Tmax = 0.939k = 118
5071 measured reflectionsl = 2023
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0555P)2 + 5.0252P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.73 e Å3
2500 reflectionsΔρmin = 1.22 e Å3
221 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 896 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (5)
Crystal data top
[Cd(SO4)(C12H8N2)(H2O)3]V = 1556.91 (16) Å3
Mr = 442.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1620 (5) ŵ = 1.57 mm1
b = 9.7458 (6) ÅT = 293 K
c = 19.5727 (11) Å0.36 × 0.18 × 0.04 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2500 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2357 reflections with I > 2σ(I)
Tmin = 0.416, Tmax = 0.939Rint = 0.046
5071 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.73 e Å3
S = 1.07Δρmin = 1.22 e Å3
2500 reflectionsAbsolute structure: Flack (1983), 896 Friedel pairs
221 parametersAbsolute structure parameter: 0.05 (5)
0 restraints
Special details top

Experimental. empirical from equivalent reflections (XEMP in SHELXTL; Siemens,1994)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.36113 (6)0.54794 (5)0.81690 (3)0.0327 (2)
S0.7552 (2)0.58389 (17)0.76612 (11)0.0355 (5)
O10.6020 (7)0.6548 (5)0.7864 (3)0.0392 (13)
O20.7229 (8)0.4940 (7)0.7093 (4)0.0621 (18)
O30.8113 (8)0.5021 (7)0.8243 (4)0.0660 (19)
O40.8751 (7)0.6885 (5)0.7491 (3)0.0473 (14)
O50.2055 (8)0.7136 (6)0.7694 (4)0.0561 (18)
H5A0.10990.68780.76770.084*
O60.3990 (8)0.4356 (6)0.7147 (3)0.0426 (13)
H6A0.49540.44150.70320.064*
O70.1244 (8)0.4217 (6)0.8295 (4)0.0483 (15)
H7A0.04480.47260.82600.072*
H7B0.106 (11)0.367 (9)0.804 (4)0.03 (3)*
C10.5097 (13)0.2640 (10)0.8823 (5)0.054 (2)
H1A0.51250.23520.83700.064*
C20.5570 (15)0.1699 (11)0.9334 (6)0.069 (3)
H2B0.59200.08200.92220.082*
C30.5497 (16)0.2122 (12)0.9997 (6)0.071 (3)
H3B0.57870.15181.03440.086*
C40.4999 (13)0.3439 (11)1.0159 (5)0.054 (2)
C50.4935 (16)0.3981 (13)1.0855 (5)0.070 (3)
H5B0.52260.34121.12170.084*
C60.4478 (14)0.5246 (15)1.0985 (5)0.074 (3)
H6B0.44460.55511.14350.089*
C70.4028 (11)0.6167 (11)1.0444 (4)0.054 (2)
C80.3594 (15)0.7531 (11)1.0562 (5)0.070 (3)
H8A0.35690.78681.10060.084*
C90.3206 (16)0.8371 (11)1.0028 (6)0.073 (3)
H9A0.29510.92891.01030.088*
C100.3200 (13)0.7824 (10)0.9364 (5)0.057 (2)
H10A0.28970.83880.90020.068*
C110.4041 (10)0.5697 (9)0.9764 (4)0.0384 (18)
C120.4526 (9)0.4327 (9)0.9622 (4)0.0381 (18)
N10.4621 (9)0.3894 (7)0.8952 (3)0.0367 (15)
N20.3610 (10)0.6535 (6)0.9235 (3)0.0422 (15)
H5C0.194 (18)0.805 (15)0.769 (7)0.11 (5)*
H6C0.379 (16)0.346 (13)0.717 (6)0.09 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0334 (3)0.0319 (3)0.0329 (3)0.0004 (2)0.0001 (2)0.0030 (2)
S0.0299 (9)0.0283 (9)0.0482 (11)0.0016 (8)0.0067 (8)0.0046 (8)
O10.033 (3)0.026 (2)0.058 (3)0.001 (2)0.004 (3)0.006 (2)
O20.053 (4)0.069 (4)0.065 (4)0.010 (3)0.007 (3)0.036 (3)
O30.051 (4)0.064 (4)0.083 (5)0.014 (3)0.000 (4)0.032 (4)
O40.032 (3)0.039 (3)0.071 (4)0.002 (3)0.006 (3)0.007 (3)
O50.041 (4)0.037 (3)0.091 (5)0.001 (3)0.015 (3)0.019 (3)
O60.049 (3)0.036 (3)0.043 (3)0.008 (3)0.001 (3)0.003 (3)
O70.035 (3)0.036 (3)0.074 (4)0.003 (3)0.003 (3)0.002 (3)
C10.058 (6)0.054 (5)0.049 (5)0.014 (5)0.003 (5)0.001 (4)
C20.078 (8)0.053 (6)0.075 (7)0.021 (6)0.011 (6)0.011 (5)
C30.078 (8)0.067 (7)0.069 (7)0.013 (6)0.018 (6)0.023 (6)
C40.051 (6)0.067 (6)0.044 (5)0.001 (5)0.009 (4)0.016 (5)
C50.080 (8)0.087 (8)0.042 (5)0.006 (7)0.007 (6)0.017 (6)
C60.072 (7)0.117 (10)0.033 (4)0.005 (8)0.005 (4)0.004 (6)
C70.044 (5)0.080 (6)0.038 (4)0.004 (5)0.000 (4)0.015 (5)
C80.070 (7)0.083 (7)0.055 (6)0.002 (7)0.001 (6)0.037 (6)
C90.088 (9)0.059 (6)0.073 (7)0.004 (6)0.014 (6)0.036 (6)
C100.054 (6)0.054 (5)0.062 (6)0.007 (4)0.002 (5)0.007 (5)
C110.032 (4)0.052 (5)0.031 (3)0.005 (4)0.002 (3)0.006 (4)
C120.034 (4)0.050 (5)0.030 (3)0.005 (4)0.007 (3)0.002 (4)
N10.041 (4)0.034 (3)0.035 (3)0.005 (3)0.008 (3)0.002 (3)
N20.043 (4)0.040 (3)0.043 (3)0.006 (4)0.000 (4)0.008 (3)
Geometric parameters (Å, º) top
Cd—O52.255 (6)C2—H2B0.9300
Cd—O62.301 (5)C3—C41.384 (16)
Cd—O12.303 (5)C3—H3B0.9300
Cd—O72.303 (6)C4—C121.415 (12)
Cd—N22.325 (6)C4—C51.461 (15)
Cd—N12.327 (6)C5—C61.313 (17)
S—O21.440 (6)C5—H5B0.9300
S—O41.452 (6)C6—C71.436 (15)
S—O31.464 (7)C6—H6B0.9300
S—O11.483 (6)C7—C81.395 (14)
O5—H5A0.8200C7—C111.406 (11)
O5—H5C0.89 (14)C8—C91.365 (16)
O6—H6A0.8200C8—H8A0.9300
O6—H6C0.89 (13)C9—C101.405 (14)
O7—H7A0.8200C9—H9A0.9300
O7—H7B0.75 (9)C10—N21.325 (11)
C1—N11.307 (12)C10—H10A0.9300
C1—C21.410 (14)C11—N21.366 (10)
C1—H1A0.9300C11—C121.419 (12)
C2—C31.363 (16)C12—N11.381 (10)
O5—Cd—O693.3 (3)C2—C3—C4120.8 (9)
O5—Cd—O192.9 (2)C2—C3—H3B119.6
O6—Cd—O182.8 (2)C4—C3—H3B119.6
O5—Cd—O787.3 (2)C3—C4—C12118.5 (9)
O6—Cd—O787.2 (2)C3—C4—C5124.1 (9)
O1—Cd—O7170.0 (2)C12—C4—C5117.5 (9)
O5—Cd—N293.0 (3)C6—C5—C4122.0 (10)
O6—Cd—N2171.9 (3)C6—C5—H5B119.0
O1—Cd—N291.9 (2)C4—C5—H5B119.0
O7—Cd—N298.1 (3)C5—C6—C7121.1 (9)
O5—Cd—N1161.2 (3)C5—C6—H6B119.5
O6—Cd—N1102.1 (2)C7—C6—H6B119.5
O1—Cd—N199.7 (2)C8—C7—C11118.0 (9)
O7—Cd—N182.7 (2)C8—C7—C6122.5 (9)
N2—Cd—N172.7 (2)C11—C7—C6119.5 (10)
O2—S—O4111.9 (4)C9—C8—C7120.3 (9)
O2—S—O3109.1 (4)C9—C8—H8A119.9
O4—S—O3110.5 (4)C7—C8—H8A119.9
O2—S—O1109.6 (4)C8—C9—C10118.8 (9)
O4—S—O1107.6 (3)C8—C9—H9A120.6
O3—S—O1108.0 (4)C10—C9—H9A120.6
S—O1—Cd125.3 (3)N2—C10—C9122.4 (10)
Cd—O5—H5A109.5N2—C10—H10A118.8
Cd—O5—H5C140 (9)C9—C10—H10A118.8
H5A—O5—H5C101.8N2—C11—C7121.4 (8)
Cd—O6—H6A109.5N2—C11—C12119.0 (6)
Cd—O6—H6C114 (8)C7—C11—C12119.6 (8)
H6A—O6—H6C104.8N1—C12—C4120.2 (8)
Cd—O7—H7A109.5N1—C12—C11119.3 (7)
Cd—O7—H7B119 (7)C4—C12—C11120.4 (7)
H7A—O7—H7B103.0C1—N1—C12119.1 (7)
N1—C1—C2123.6 (9)C1—N1—Cd126.8 (6)
N1—C1—H1A118.2C12—N1—Cd113.7 (5)
C2—C1—H1A118.2C10—N2—C11119.2 (7)
C3—C2—C1117.8 (10)C10—N2—Cd126.2 (6)
C3—C2—H2B121.1C11—N2—Cd114.6 (5)
C1—C2—H2B121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.821.952.736 (6)160
O5—H5C···O2ii0.89 (14)2.01 (10)2.825 (6)151 (4)
O6—H6A···O20.821.932.706 (6)158
O6—H6C···O1iii0.89 (13)1.87 (10)2.737 (6)164 (4)
O7—H7A···O3i0.821.972.674 (7)151
O7—H7B···O4iii0.75 (9)2.03 (10)2.744 (6)161 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cd(SO4)(C12H8N2)(H2O)3]
Mr442.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.1620 (5), 9.7458 (6), 19.5727 (11)
V3)1556.91 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.36 × 0.18 × 0.04
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.416, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
5071, 2500, 2357
Rint0.046
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.07
No. of reflections2500
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 1.22
Absolute structureFlack (1983), 896 Friedel pairs
Absolute structure parameter0.05 (5)

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Cd—O52.255 (6)Cd—O72.303 (6)
Cd—O62.301 (5)Cd—N22.325 (6)
Cd—O12.303 (5)Cd—N12.327 (6)
O5—Cd—O693.3 (3)O1—Cd—N291.9 (2)
O5—Cd—O192.9 (2)O7—Cd—N298.1 (3)
O6—Cd—O182.8 (2)O5—Cd—N1161.2 (3)
O5—Cd—O787.3 (2)O6—Cd—N1102.1 (2)
O6—Cd—O787.2 (2)O1—Cd—N199.7 (2)
O1—Cd—O7170.0 (2)O7—Cd—N182.7 (2)
O5—Cd—N293.0 (3)N2—Cd—N172.7 (2)
O6—Cd—N2171.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.821.952.736 (6)160
O5—H5C···O2ii0.89 (14)2.01 (10)2.825 (6)151 (4)
O6—H6A···O20.821.932.706 (6)158
O6—H6C···O1iii0.89 (13)1.87 (10)2.737 (6)164 (4)
O7—H7A···O3i0.821.972.674 (7)151
O7—H7B···O4iii0.75 (9)2.03 (10)2.744 (6)161 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds