Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Zn(C5H2N2O4)(C12H8N2)(H2O)2]·2H2O, the Zn atom is coordinated by N and O atoms from the orotate (2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidine-4-carboxyl­ate) ligand, two N atoms from 1,10-phenanthroline and two aqua O atoms in a distorted octahedral geometry. The presence of intermolecular N—H...O and O—H...O hydrogen bonds and π–π-stacking interactions between the phenanthroline ligands results in a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803012819/ob6249sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803012819/ob6249Isup2.hkl
Contains datablock I

CCDC reference: 217373

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.066
  • wR factor = 0.166
  • Data-to-parameter ratio = 10.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSTM_02 Alert C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.593 0.850 Tmin' and Tmax expected: 0.698 0.850 RR' = 0.850 Please check that your absorption correction is appropriate. SHFSU_01 Alert C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.055 Additional refinement cycles may be required. PLAT_354 Alert C Short O-H Bond (0.82A) O8 - H8C = 0.70 Ang. PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C1 - C2 = 1.53 Ang. PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 3 O5 -ZN -O1 -C1 -14.90 1.40 1.555 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

Orotic acid (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid; vitamin B13; H3dtpc) is an important pyrimidine derivative as the effective precursor in the biosynthesis of pyrimidine base of nucleic acids in living organisms, and so it occupies a unique role in bioinorganic and pharmaceutical studies (Leberman et al., 1955). Aside from the biological interest, orotic acid is also a good organic building block in coordination chemistry. Its ketonic and enolic tautomers, along with its asymmetric geometry, make it to be a versatile multidentate organic ligand (Karipdes et al., 1986). It contains a potential hydrogen-bond acceptor and hydrogen-bond donor, and can display different hydrogen-bonding interactions in supramolecular complexes (Xu et al., 2000). Many complexes of orotate ligand have been reported in the past decade (Hambley et al., 1995). The structure of the title compound, (I), has been determined in order to study further the coordination chemistry of the orotic acid.

The title complex is mononuclear, as shown in Fig. l. The central ZnII atom is coordinated by two water molecules, two N atoms from 1,10-phenanthroline, and by N and carboxylate O atoms from the orotate ligand, forming a distorted octahedral coordination geometry. The Zn—O6 and Zn—N3 bond lengths are significantly longer than the corresponding distances (Zn—O5 and Zn—N4), suggesting that N3—Zn—O6 is the axial direction of the d10 Jahn–Teller distortion. Atom N3 of the phenanthroline ligand and water atom O6 occupy the axial positions with the N3—Zn—O6 angle being 167.46 (19)°, while the equatorial plane is formed by atom N1 and carboxylate atom O1 of the orotate ligand, a water molecule (O5) and an N atom (N4), with the angles N1—Zn—N4 and O5—Zn—O1 being 166.67 (18) and 171.39 (18)°, respectively.

There are intermolecular N—H···O and O—H···O hydrogen-bonding interactions (Table 2), which result in a two-dimensional layer structure (Fig. 2). A three-dimensional structure (Fig. 3) is finally formed by face-to-face ππ-stacking interactions between the 1,10-phenanthroline ligands of neighboring layers, with distances between the aromatic rings ranging from 3.20 to 3.60 Å.

Experimental top

A mixture of orotic acid (0.3 mmol, 0.052 g) and Zn(CH3COO)2·2H2O (0.3 mmol, 0.066 g) in 30 ml of EtOH-water (1:3 v/v) was heated with stirring, the pH of the reaction solution was adjusted to 6 using a dilute solution of NH3·H2O. After evaporating the solution for two weeks, colorless block-like crystals of (I) were isolated by filtration (yield, 65%).

Refinement top

The H atoms of the water molecules (free and coordinated) were located from difference electron-density maps and refined isotropically. The O—H bond lengths are in the range 0.70 (7)–01.04 (11) Å. The H atoms of C—H and N—H groups were placed in calculated positions and were allowed to ride on their respective parent C atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title compound (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Two-dimensional structure of (I), showing the hydrogen-bonding interactions.
[Figure 3] Fig. 3. The three-dimensional structure of (I) formed through ππ-stacking and hydrogen-bonding interactions.
Diaqua(2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylato-κN3)(1,10- phenanthroline)zinc(II) dihydrate top
Crystal data top
[Zn(C5H2N2O4)(C12H8N2)(H2O)2]·2H2OF(000) = 484
Mr = 471.72Dx = 1.655 Mg m3
Triclinic, P1Melting point: not measured K
a = 7.9351 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1874 (8) ÅCell parameters from 2440 reflections
c = 12.6841 (10) Åθ = 1.6–25.1°
α = 91.834 (2)°µ = 1.35 mm1
β = 94.264 (2)°T = 293 K
γ = 111.915 (1)°Block, colorless
V = 946.65 (13) Å30.26 × 0.20 × 0.12 mm
Z = 2
Data collection top
Siemens CCD area-detector
diffractometer
3303 independent reflections
Radiation source: fine-focus sealed tube2680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 59
Tmin = 0.593, Tmax = 0.850k = 1211
4875 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0626P)2 + 4.4071P]
where P = (Fo2 + 2Fc2)/3
3303 reflections(Δ/σ)max = 0.055
303 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Zn(C5H2N2O4)(C12H8N2)(H2O)2]·2H2Oγ = 111.915 (1)°
Mr = 471.72V = 946.65 (13) Å3
Triclinic, P1Z = 2
a = 7.9351 (6) ÅMo Kα radiation
b = 10.1874 (8) ŵ = 1.35 mm1
c = 12.6841 (10) ÅT = 293 K
α = 91.834 (2)°0.26 × 0.20 × 0.12 mm
β = 94.264 (2)°
Data collection top
Siemens CCD area-detector
diffractometer
3303 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2680 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.850Rint = 0.040
4875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.73 e Å3
3303 reflectionsΔρmin = 0.80 e Å3
303 parameters
Special details top

Experimental. empirical from equivalent reflections (XEMP in SHELXTL; Siemens,1994)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.32324 (9)0.21650 (7)0.26949 (6)0.0317 (2)
O10.5194 (5)0.1362 (4)0.3062 (3)0.0357 (10)
O20.8075 (6)0.1972 (4)0.3424 (4)0.0399 (11)
O30.9297 (6)0.6982 (5)0.4624 (4)0.0464 (12)
O40.3755 (6)0.5488 (5)0.3340 (4)0.0427 (11)
O50.1475 (7)0.3258 (5)0.2432 (4)0.0386 (11)
O60.1640 (7)0.1179 (5)0.4107 (4)0.0373 (11)
O70.3003 (9)0.7889 (7)0.3779 (6)0.0682 (18)
O80.3453 (9)0.0914 (6)0.5807 (4)0.0489 (13)
N10.5197 (6)0.3929 (5)0.3323 (4)0.0291 (11)
N20.6549 (6)0.6195 (5)0.3959 (4)0.0325 (11)
H2A0.64660.70150.40810.039*
N30.4592 (7)0.2757 (5)0.1055 (4)0.0352 (12)
N40.1784 (7)0.0371 (5)0.1839 (4)0.0342 (12)
C10.6680 (8)0.2238 (6)0.3328 (5)0.0311 (13)
C20.6728 (8)0.3719 (6)0.3556 (4)0.0279 (12)
C30.8166 (8)0.4666 (6)0.3974 (5)0.0339 (14)
H3A0.91930.44420.41090.041*
C40.8119 (8)0.6014 (7)0.4210 (5)0.0338 (14)
C50.5108 (8)0.5197 (6)0.3533 (5)0.0310 (13)
C60.5972 (10)0.3906 (8)0.0691 (6)0.0497 (18)
H6A0.64190.46530.11510.060*
C70.6820 (12)0.4092 (9)0.0336 (6)0.060 (2)
H7A0.78210.49430.05640.072*
C80.6193 (11)0.3041 (9)0.1000 (6)0.058 (2)
H8A0.67640.31480.17000.070*
C90.4694 (10)0.1788 (8)0.0658 (5)0.0437 (16)
C100.3950 (12)0.0629 (9)0.1293 (6)0.057 (2)
H10A0.44790.06830.19980.069*
C110.2522 (12)0.0544 (9)0.0932 (6)0.056 (2)
H11A0.20400.12910.13860.067*
C120.1707 (10)0.0679 (8)0.0148 (5)0.0436 (16)
C130.0229 (11)0.1875 (8)0.0577 (6)0.055 (2)
H13A0.03340.26390.01500.066*
C140.0388 (10)0.1932 (8)0.1598 (7)0.055 (2)
H14A0.13760.27500.18990.066*
C150.0415 (9)0.0795 (7)0.2225 (6)0.0462 (17)
H15A0.00360.08640.29480.055*
C160.2434 (8)0.0420 (7)0.0802 (5)0.0335 (14)
C170.3939 (9)0.1699 (7)0.0401 (5)0.0363 (14)
H5A0.046 (10)0.282 (7)0.284 (6)0.04 (2)*
H5B0.205 (10)0.400 (8)0.273 (6)0.05 (2)*
H6B0.120 (12)0.160 (9)0.438 (7)0.07 (3)*
H6C0.228 (13)0.096 (10)0.461 (8)0.09 (3)*
H7B0.309 (13)0.705 (11)0.379 (7)0.08 (3)*
H7C0.210 (13)0.771 (10)0.409 (7)0.08 (3)*
H8B0.477 (15)0.099 (10)0.593 (8)0.10 (3)*
H8C0.300 (10)0.022 (7)0.603 (5)0.03 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0298 (4)0.0335 (4)0.0307 (4)0.0100 (3)0.0032 (3)0.0103 (3)
O10.033 (2)0.029 (2)0.045 (3)0.0093 (18)0.0070 (19)0.0118 (19)
O20.031 (2)0.035 (2)0.055 (3)0.0129 (19)0.005 (2)0.012 (2)
O30.036 (2)0.043 (3)0.061 (3)0.012 (2)0.014 (2)0.024 (2)
O40.038 (2)0.037 (2)0.057 (3)0.017 (2)0.011 (2)0.013 (2)
O50.029 (2)0.040 (3)0.043 (3)0.008 (2)0.003 (2)0.003 (2)
O60.039 (3)0.043 (3)0.031 (2)0.018 (2)0.006 (2)0.004 (2)
O70.049 (4)0.051 (4)0.104 (5)0.024 (3)0.019 (3)0.003 (3)
O80.060 (4)0.036 (3)0.056 (3)0.023 (3)0.007 (3)0.000 (3)
N10.028 (3)0.029 (3)0.031 (3)0.012 (2)0.006 (2)0.007 (2)
N20.029 (3)0.030 (3)0.038 (3)0.009 (2)0.000 (2)0.011 (2)
N30.037 (3)0.039 (3)0.027 (3)0.012 (2)0.001 (2)0.006 (2)
N40.036 (3)0.038 (3)0.031 (3)0.015 (2)0.009 (2)0.010 (2)
C10.028 (3)0.030 (3)0.035 (3)0.010 (3)0.000 (3)0.005 (3)
C20.031 (3)0.029 (3)0.023 (3)0.010 (2)0.001 (2)0.005 (2)
C30.031 (3)0.035 (3)0.041 (4)0.016 (3)0.007 (3)0.011 (3)
C40.032 (3)0.037 (3)0.031 (3)0.011 (3)0.002 (3)0.013 (3)
C50.029 (3)0.033 (3)0.031 (3)0.011 (3)0.003 (2)0.004 (3)
C60.047 (4)0.050 (4)0.041 (4)0.007 (3)0.004 (3)0.002 (3)
C70.067 (5)0.054 (5)0.048 (4)0.015 (4)0.015 (4)0.009 (4)
C80.068 (5)0.078 (6)0.036 (4)0.042 (5)0.014 (4)0.011 (4)
C90.055 (4)0.060 (4)0.027 (3)0.034 (4)0.001 (3)0.007 (3)
C100.080 (6)0.082 (6)0.031 (4)0.054 (5)0.010 (4)0.018 (4)
C110.075 (5)0.073 (5)0.035 (4)0.041 (5)0.023 (4)0.037 (4)
C120.049 (4)0.052 (4)0.044 (4)0.032 (3)0.013 (3)0.023 (3)
C130.062 (5)0.045 (4)0.061 (5)0.019 (4)0.022 (4)0.030 (4)
C140.049 (4)0.043 (4)0.068 (5)0.008 (3)0.013 (4)0.016 (4)
C150.039 (4)0.042 (4)0.048 (4)0.005 (3)0.002 (3)0.007 (3)
C160.038 (3)0.045 (4)0.031 (3)0.028 (3)0.009 (3)0.013 (3)
C170.040 (3)0.045 (4)0.032 (3)0.024 (3)0.007 (3)0.004 (3)
Geometric parameters (Å, º) top
Zn—O12.084 (4)N4—C161.370 (8)
Zn—O62.101 (5)C1—C21.533 (8)
Zn—N12.116 (5)C2—C31.347 (8)
Zn—O52.122 (5)C3—C41.428 (8)
Zn—N42.140 (5)C3—H3A0.9500
Zn—N32.226 (5)C6—C71.393 (10)
O1—C11.263 (7)C6—H6A0.9500
O2—C11.247 (7)C7—C81.352 (11)
O3—C41.241 (7)C7—H7A0.9500
O4—C51.253 (7)C8—C91.410 (11)
O5—H5B0.84 (8)C8—H8A0.9500
O5—H5A0.88 (8)C9—C171.416 (9)
O6—H6C0.92 (10)C9—C101.416 (10)
O6—H6B0.73 (9)C10—C111.341 (11)
O7—H7C0.75 (10)C10—H10A0.9500
O7—H7B0.89 (10)C11—C121.450 (10)
O8—H8C0.70 (7)C11—H11A0.9500
O8—H8B1.04 (11)C12—C161.387 (9)
N1—C51.354 (7)C12—C131.397 (11)
N1—C21.361 (7)C13—C141.342 (11)
N2—C51.375 (7)C13—H13A0.9500
N2—C41.382 (8)C14—C151.401 (10)
N2—H2A0.8800C14—H14A0.9500
N3—C61.310 (8)C15—H15A0.9500
N3—C171.350 (8)C16—C171.445 (9)
N4—C151.324 (8)
O1—Zn—O690.1 (2)C4—C3—H3A120.6
O1—Zn—N178.07 (16)O3—C4—N2119.1 (6)
O6—Zn—N199.13 (19)O3—C4—C3126.8 (6)
O1—Zn—O5171.39 (18)N2—C4—C3114.1 (5)
O6—Zn—O590.4 (2)O4—C5—N1121.7 (5)
N1—Zn—O593.37 (19)O4—C5—N2119.4 (5)
O1—Zn—N493.25 (17)N1—C5—N2118.9 (5)
O6—Zn—N490.89 (19)N3—C6—C7123.5 (7)
N1—Zn—N4166.67 (18)N3—C6—H6A118.2
O5—Zn—N495.33 (19)C7—C6—H6A118.2
O1—Zn—N389.30 (18)C8—C7—C6118.9 (7)
O6—Zn—N3167.46 (19)C8—C7—H7A120.6
N1—Zn—N393.00 (18)C6—C7—H7A120.6
O5—Zn—N392.01 (19)C7—C8—C9120.2 (7)
N4—Zn—N376.64 (19)C7—C8—H8A119.9
C1—O1—Zn116.9 (4)C9—C8—H8A119.9
Zn—O5—H5B97 (5)C8—C9—C17116.5 (6)
Zn—O5—H5A107 (5)C8—C9—C10124.3 (7)
H5B—O5—H5A106 (7)C17—C9—C10119.2 (7)
Zn—O6—H6C114 (6)C11—C10—C9122.1 (7)
Zn—O6—H6B115 (7)C11—C10—H10A119.0
H6C—O6—H6B104 (9)C9—C10—H10A119.0
H7C—O7—H7B101 (9)C10—C11—C12120.5 (6)
H8C—O8—H8B97 (8)C10—C11—H11A119.7
C5—N1—C2117.2 (5)C12—C11—H11A119.7
C5—N1—Zn128.8 (4)C16—C12—C13117.6 (6)
C2—N1—Zn114.1 (4)C16—C12—C11118.9 (7)
C5—N2—C4125.4 (5)C13—C12—C11123.4 (6)
C5—N2—H2A117.3C14—C13—C12119.3 (6)
C4—N2—H2A117.3C14—C13—H13A120.3
C6—N3—C17118.5 (6)C12—C13—H13A120.3
C6—N3—Zn129.1 (5)C13—C14—C15120.5 (7)
C17—N3—Zn112.2 (4)C13—C14—H14A119.7
C15—N4—C16117.5 (5)C15—C14—H14A119.7
C15—N4—Zn126.8 (4)N4—C15—C14121.9 (7)
C16—N4—Zn115.5 (4)N4—C15—H15A119.0
O2—C1—O1124.6 (5)C14—C15—H15A119.0
O2—C1—C2118.9 (5)N4—C16—C12123.0 (6)
O1—C1—C2116.5 (5)N4—C16—C17116.5 (5)
C3—C2—N1125.7 (5)C12—C16—C17120.4 (6)
C3—C2—C1120.8 (5)N3—C17—C9122.4 (6)
N1—C2—C1113.5 (5)N3—C17—C16118.8 (5)
C2—C3—C4118.7 (6)C9—C17—C16118.8 (6)
C2—C3—H3A120.6
O6—Zn—O1—C1108.5 (4)C5—N2—C4—O3177.6 (6)
N1—Zn—O1—C19.2 (4)C5—N2—C4—C30.9 (9)
O5—Zn—O1—C114.9 (14)C2—C3—C4—O3177.6 (6)
N4—Zn—O1—C1160.6 (4)C2—C3—C4—N20.8 (8)
N3—Zn—O1—C184.0 (4)C2—N1—C5—O4179.7 (5)
O1—Zn—N1—C5173.8 (5)Zn—N1—C5—O41.6 (9)
O6—Zn—N1—C585.7 (5)C2—N1—C5—N20.4 (8)
O5—Zn—N1—C55.3 (5)Zn—N1—C5—N2179.1 (4)
N4—Zn—N1—C5136.0 (8)C4—N2—C5—O4179.9 (6)
N3—Zn—N1—C597.5 (5)C4—N2—C5—N10.8 (9)
O1—Zn—N1—C24.9 (4)C17—N3—C6—C70.7 (11)
O6—Zn—N1—C293.1 (4)Zn—N3—C6—C7173.4 (6)
O5—Zn—N1—C2176.0 (4)N3—C6—C7—C80.3 (13)
N4—Zn—N1—C245.3 (10)C6—C7—C8—C90.7 (12)
N3—Zn—N1—C283.8 (4)C7—C8—C9—C171.1 (11)
O1—Zn—N3—C685.2 (6)C7—C8—C9—C10179.6 (8)
O6—Zn—N3—C6172.7 (9)C8—C9—C10—C11179.9 (7)
N1—Zn—N3—C67.2 (6)C17—C9—C10—C111.5 (11)
O5—Zn—N3—C686.3 (6)C9—C10—C11—C121.6 (12)
N4—Zn—N3—C6178.7 (6)C10—C11—C12—C160.3 (11)
O1—Zn—N3—C1789.3 (4)C10—C11—C12—C13179.5 (7)
O6—Zn—N3—C171.8 (12)C16—C12—C13—C142.0 (11)
N1—Zn—N3—C17167.3 (4)C11—C12—C13—C14177.2 (7)
O5—Zn—N3—C1799.2 (4)C12—C13—C14—C151.3 (12)
N4—Zn—N3—C174.2 (4)C16—N4—C15—C141.7 (10)
O1—Zn—N4—C1591.3 (6)Zn—N4—C15—C14177.4 (5)
O6—Zn—N4—C151.1 (6)C13—C14—C15—N40.6 (12)
N1—Zn—N4—C15140.1 (8)C15—N4—C16—C120.9 (9)
O5—Zn—N4—C1589.4 (6)Zn—N4—C16—C12177.1 (5)
N3—Zn—N4—C15179.8 (6)C15—N4—C16—C17179.5 (6)
O1—Zn—N4—C1684.5 (4)Zn—N4—C16—C173.3 (7)
O6—Zn—N4—C16174.7 (4)C13—C12—C16—N41.0 (10)
N1—Zn—N4—C1635.7 (11)C11—C12—C16—N4178.3 (6)
O5—Zn—N4—C1694.8 (4)C13—C12—C16—C17178.7 (6)
N3—Zn—N4—C164.0 (4)C11—C12—C16—C172.1 (9)
Zn—O1—C1—O2169.3 (5)C6—N3—C17—C90.3 (10)
Zn—O1—C1—C211.5 (7)Zn—N3—C17—C9174.8 (5)
C5—N1—C2—C30.3 (9)C6—N3—C17—C16179.1 (6)
Zn—N1—C2—C3179.2 (5)Zn—N3—C17—C164.0 (7)
C5—N1—C2—C1178.0 (5)C8—C9—C17—N30.6 (10)
Zn—N1—C2—C10.9 (6)C10—C9—C17—N3179.2 (6)
O2—C1—C2—C37.8 (9)C8—C9—C17—C16178.2 (6)
O1—C1—C2—C3171.5 (6)C10—C9—C17—C160.3 (9)
O2—C1—C2—N1173.8 (5)N4—C16—C17—N30.7 (8)
O1—C1—C2—N17.0 (8)C12—C16—C17—N3179.0 (6)
N1—C2—C3—C40.5 (9)N4—C16—C17—C9178.2 (5)
C1—C2—C3—C4177.7 (5)C12—C16—C17—C92.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O8i0.882.102.971 (5)172
O5—H5A···O2ii0.88 (8)1.85 (8)2.708 (7)166 (7)
O5—H5B···O40.84 (8)1.85 (8)2.678 (7)167 (9)
O6—H6B···O3i0.73 (10)2.08 (9)2.776 (7)162 (10)
O6—H6C···O80.92 (11)1.85 (11)2.741 (9)164 (9)
O7—H7B···O40.89 (10)1.94 (11)2.789 (9)160 (10)
O7—H7C···O3ii0.75 (10)2.11 (10)2.844 (9)166 (8)
O8—H8B···O7i1.04 (13)1.79 (12)2.715 (10)146 (8)
O8—H8C···O2iii0.70 (7)2.14 (7)2.836 (7)171 (9)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H2N2O4)(C12H8N2)(H2O)2]·2H2O
Mr471.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9351 (6), 10.1874 (8), 12.6841 (10)
α, β, γ (°)91.834 (2), 94.264 (2), 111.915 (1)
V3)946.65 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.26 × 0.20 × 0.12
Data collection
DiffractometerSiemens CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.593, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
4875, 3303, 2680
Rint0.040
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.166, 1.12
No. of reflections3303
No. of parameters303
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.80

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1994), SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Zn—O12.084 (4)Zn—O52.122 (5)
Zn—O62.101 (5)Zn—N42.140 (5)
Zn—N12.116 (5)Zn—N32.226 (5)
O1—Zn—O690.1 (2)N1—Zn—N4166.67 (18)
O1—Zn—N178.07 (16)O5—Zn—N495.33 (19)
O6—Zn—N199.13 (19)O1—Zn—N389.30 (18)
O1—Zn—O5171.39 (18)O6—Zn—N3167.46 (19)
O6—Zn—O590.4 (2)N1—Zn—N393.00 (18)
N1—Zn—O593.37 (19)O5—Zn—N392.01 (19)
O1—Zn—N493.25 (17)N4—Zn—N376.64 (19)
O6—Zn—N490.89 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O8i0.882.102.971 (5)172
O5—H5A···O2ii0.88 (8)1.85 (8)2.708 (7)166 (7)
O5—H5B···O40.84 (8)1.85 (8)2.678 (7)167 (9)
O6—H6B···O3i0.73 (10)2.08 (9)2.776 (7)162 (10)
O6—H6C···O80.92 (11)1.85 (11)2.741 (9)164 (9)
O7—H7B···O40.89 (10)1.94 (11)2.789 (9)160 (10)
O7—H7C···O3ii0.75 (10)2.11 (10)2.844 (9)166 (8)
O8—H8B···O7i1.04 (13)1.79 (12)2.715 (10)146 (8)
O8—H8C···O2iii0.70 (7)2.14 (7)2.836 (7)171 (9)
Symmetry codes: (i) x1, y1, z+1; (ii) x+1, y, z; (iii) x1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds