Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
We prepared a 3d–4f heterobimetallic CuEu–organic framework NBU-8 with a density of 1921 kg m−3 belonging to the family of dense packing materials (dense metal–organic frameworks or MOFs). This MOF material was prepared from 4-(py­rimi­din-5-yl)ben­zoic acid (HPBA) with a bifunctional ligand site as a tripodal ligand and Cu2+ and Eu3+ as the metal centres; the mol­ecular formula is Cu3Eu2(PBA)6(NO3)6·H2O. This material is a very promising di­methyl­for­m­amide (DMF) mol­ecular chemical sensor. Systematic high-pressure studies of NBU-8 were carried out by powder X-ray diffraction, high-pressure X-ray diffraction and mol­ecular dynamics simulation. The high-pressure experiment shows that the (006) diffraction peak of the crystal structure moves toward a low angle with increasing pressure, accompanied by the phenomenon that the d-spacing increases, and as the pressure increases, the (10\overline{2}) diffraction peak moves to a higher angle, the amplitude of the d-spacing is significantly reduced and finally merges with the (006) diffraction peak into one peak. The amplitude of the d-spacing is significantly reduced, indicating that NBU-8 com­presses and deforms along the a-axis direction when subjected to uniform pressure. This is caused by tilting of the ligands to become more vertical along the c direction, leading to its expansion. This allows greater contraction along the a direction. We also carried out a Rietveld structure refinement and a Birch–Murnaghan solid-state equation fitting for the high-pressure experimental results. We calculated the bulk modulus of the material to be 45.68 GPa, which is consistent with the calculated results. The framework is among the most rigid MOFs reported to date, exceeding that of Cu–BTC. Mol­ecular dynamics simulations estimated that the mechanical energy absorbed by the system when pressurized to 5.128 GPa was 249.261 kcal mol−1. The present work will provide fresh ideas for the study of mechanical energy in other materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962400010X/oc3022sup1.cif
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322962400010X/oc3022sup2.pdf
Additional figures

CCDC reference: 1561729

Computing details top

(I) top
Crystal data top
C66H44Cu3Eu2N18O31Dx = 1.921 Mg m3
Mr = 2079.73Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 4858 reflections
a = 14.0021 (3) Åθ = 2.9–26.1°
c = 63.523 (3) ŵ = 2.70 mm1
V = 10785.7 (5) Å3T = 296 K
Z = 6Brick, blue
F(000) = 61620.25 × 0.23 × 0.20 mm
Data collection top
CCD area detector
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan
Sheldrick, G. M.. SADABS
h = 1714
Tmin = 0.659, Tmax = 0.745k = 1717
21300 measured reflectionsl = 7865
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0569P)2 + 20.0828P]
where P = (Fo2 + 2Fc2)/3
2373 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 2.15 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu11.00000.00000.075327 (4)0.02052 (13)
Cu11.00000.37628 (4)0.25000.02130 (17)
N10.9450 (2)0.2460 (2)0.22993 (4)0.0241 (6)
N20.8518 (3)0.0527 (3)0.22484 (5)0.0469 (10)
N30.8745 (3)0.2084 (3)0.05255 (6)0.0338 (8)
C11.0971 (3)0.2270 (3)0.11008 (5)0.0216 (7)
C21.0514 (3)0.2191 (3)0.13157 (5)0.0221 (7)
C30.9584 (3)0.1229 (3)0.13794 (5)0.0286 (8)
H3A0.91970.06700.12820.034*
C40.9224 (3)0.1088 (3)0.15859 (6)0.0294 (8)
H4A0.86040.04320.16260.035*
C50.9774 (3)0.1907 (3)0.17335 (5)0.0229 (7)
C61.0691 (3)0.2882 (3)0.16693 (6)0.0348 (9)
H6A1.10620.34480.17660.042*
C71.1062 (3)0.3027 (3)0.14626 (5)0.0306 (8)
H7A1.16780.36860.14220.037*
C80.9432 (3)0.1740 (3)0.19581 (5)0.0248 (7)
C90.8809 (4)0.0704 (3)0.20466 (6)0.0412 (11)
H9A0.85790.00940.19600.049*
C100.8846 (4)0.1413 (3)0.23663 (6)0.0357 (10)
H10A0.86420.13040.25070.043*
C110.9723 (3)0.2605 (3)0.20960 (5)0.0245 (7)
H11A1.01270.33210.20450.029*
O11.0467 (2)0.1468 (2)0.09779 (4)0.0377 (7)
O21.1875 (2)0.3124 (2)0.10583 (4)0.0259 (5)
O30.9371 (2)0.1995 (2)0.06795 (4)0.0350 (6)
O40.8741 (2)0.1208 (2)0.04757 (4)0.0383 (7)
O50.8196 (3)0.2949 (3)0.04348 (6)0.0617 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02541 (15)0.02541 (15)0.01072 (18)0.01271 (8)0.0000.000
Cu10.0318 (3)0.0254 (2)0.0088 (3)0.01592 (17)0.0010 (2)0.00049 (11)
N10.0315 (16)0.0256 (15)0.0143 (13)0.0136 (13)0.0033 (12)0.0008 (11)
N20.073 (3)0.0261 (18)0.0212 (16)0.0094 (19)0.0104 (17)0.0038 (14)
N30.0319 (17)0.033 (2)0.0339 (19)0.0141 (16)0.0010 (15)0.0067 (15)
C10.0302 (19)0.0273 (19)0.0127 (16)0.0185 (16)0.0000 (14)0.0006 (14)
C20.0290 (18)0.0288 (18)0.0134 (15)0.0181 (16)0.0001 (13)0.0012 (13)
C30.031 (2)0.031 (2)0.0163 (17)0.0094 (16)0.0001 (14)0.0081 (15)
C40.0299 (19)0.0263 (18)0.0197 (18)0.0048 (16)0.0045 (15)0.0020 (14)
C50.0323 (19)0.0267 (18)0.0124 (16)0.0168 (15)0.0043 (13)0.0014 (13)
C60.048 (2)0.0265 (19)0.0164 (17)0.0088 (18)0.0051 (16)0.0063 (15)
C70.041 (2)0.0232 (19)0.0169 (17)0.0077 (17)0.0060 (15)0.0027 (14)
C80.0332 (19)0.0274 (19)0.0143 (16)0.0155 (16)0.0045 (14)0.0022 (13)
C90.066 (3)0.024 (2)0.0220 (19)0.014 (2)0.004 (2)0.0040 (16)
C100.049 (2)0.028 (2)0.0202 (19)0.0114 (19)0.0094 (17)0.0039 (15)
C110.0295 (19)0.0256 (18)0.0158 (16)0.0118 (16)0.0035 (14)0.0015 (14)
O10.0471 (17)0.0382 (17)0.0201 (14)0.0155 (14)0.0028 (12)0.0103 (12)
O20.0280 (13)0.0335 (14)0.0146 (12)0.0141 (12)0.0031 (10)0.0006 (10)
O30.0389 (16)0.0338 (15)0.0338 (15)0.0194 (13)0.0063 (13)0.0001 (12)
O40.0457 (17)0.0376 (16)0.0345 (15)0.0230 (14)0.0144 (13)0.0074 (12)
O50.059 (2)0.041 (2)0.077 (3)0.0188 (18)0.026 (2)0.0295 (18)
Geometric parameters (Å, º) top
Eu1—O1i2.312 (3)N3—O41.270 (4)
Eu1—O1ii2.312 (3)N3—O31.277 (4)
Eu1—O12.312 (3)C1—O11.256 (4)
Eu1—O4i2.469 (3)C1—O21.261 (5)
Eu1—O4ii2.469 (3)C1—C21.488 (5)
Eu1—O42.469 (3)C2—C31.386 (5)
Eu1—O32.518 (3)C2—C71.390 (5)
Eu1—O3ii2.518 (3)C3—C41.384 (5)
Eu1—O3i2.518 (3)C3—H3A0.9300
Eu1—N3i2.927 (3)C4—C51.380 (5)
Eu1—N32.927 (3)C4—H4A0.9300
Eu1—N3ii2.927 (3)C5—C61.388 (5)
Cu1—O2iii1.945 (2)C5—C81.486 (4)
Cu1—O2iv1.945 (2)C6—C71.389 (5)
Cu1—N12.035 (3)C6—H6A0.9300
Cu1—N1v2.035 (3)C7—H7A0.9300
Cu1—O3vi2.580 (3)C8—C111.380 (5)
Cu1—O3vii2.580 (3)C8—C91.384 (5)
N1—C111.334 (4)C9—H9A0.9300
N1—C101.343 (5)C10—H10A0.9300
N2—C101.319 (5)C11—H11A0.9300
N2—C91.330 (5)O2—Cu1viii1.945 (2)
N3—O51.208 (4)
O1i—Eu1—O1ii85.90 (11)N3i—Eu1—N3ii97.68 (9)
O1i—Eu1—O185.90 (11)N3—Eu1—N3ii97.68 (9)
O1ii—Eu1—O185.90 (11)O2iii—Cu1—O2iv96.56 (15)
O1i—Eu1—O4i146.86 (10)O2iii—Cu1—N1166.84 (11)
O1ii—Eu1—O4i124.99 (9)O2iv—Cu1—N188.14 (11)
O1—Eu1—O4i84.92 (10)O2iii—Cu1—N1v88.14 (11)
O1i—Eu1—O4ii84.92 (10)O2iv—Cu1—N1v166.84 (11)
O1ii—Eu1—O4ii146.86 (10)N1—Cu1—N1v89.98 (16)
O1—Eu1—O4ii124.99 (9)O2iii—Cu1—O3vi100.65 (10)
O4i—Eu1—O4ii74.64 (11)O2iv—Cu1—O3vi82.50 (10)
O1i—Eu1—O4125.00 (9)N1—Cu1—O3vi92.13 (10)
O1ii—Eu1—O484.92 (11)N1v—Cu1—O3vi84.56 (10)
O1—Eu1—O4146.86 (10)O2iii—Cu1—O3vii82.50 (10)
O4i—Eu1—O474.64 (11)O2iv—Cu1—O3vii100.65 (10)
O4ii—Eu1—O474.64 (11)N1—Cu1—O3vii84.56 (10)
O1i—Eu1—O374.13 (9)N1v—Cu1—O3vii92.13 (10)
O1ii—Eu1—O374.35 (10)O3vi—Cu1—O3vii175.33 (13)
O1—Eu1—O3152.61 (10)C11—N1—C10116.7 (3)
O4i—Eu1—O3121.91 (10)C11—N1—Cu1121.3 (2)
O4ii—Eu1—O372.51 (9)C10—N1—Cu1122.0 (2)
O4—Eu1—O351.18 (9)C10—N2—C9116.2 (3)
O1i—Eu1—O3ii74.35 (10)O5—N3—O4122.8 (4)
O1ii—Eu1—O3ii152.62 (10)O5—N3—O3121.6 (4)
O1—Eu1—O3ii74.13 (9)O4—N3—O3115.6 (3)
O4i—Eu1—O3ii72.51 (9)O5—N3—Eu1177.8 (3)
O4ii—Eu1—O3ii51.18 (9)O4—N3—Eu156.68 (17)
O4—Eu1—O3ii121.90 (10)O3—N3—Eu158.92 (18)
O3—Eu1—O3ii116.62 (4)O1—C1—O2124.3 (3)
O1i—Eu1—O3i152.62 (10)O1—C1—C2118.4 (3)
O1ii—Eu1—O3i74.13 (9)O2—C1—C2117.2 (3)
O1—Eu1—O3i74.35 (10)C3—C2—C7118.5 (3)
O4i—Eu1—O3i51.18 (9)C3—C2—C1120.0 (3)
O4ii—Eu1—O3i121.91 (10)C7—C2—C1121.2 (3)
O4—Eu1—O3i72.51 (9)C4—C3—C2120.9 (3)
O3—Eu1—O3i116.62 (4)C4—C3—H3A119.5
O3ii—Eu1—O3i116.61 (4)C2—C3—H3A119.5
O1i—Eu1—N3i162.42 (10)C5—C4—C3120.9 (3)
O1ii—Eu1—N3i99.78 (10)C5—C4—H4A119.6
O1—Eu1—N3i78.00 (11)C3—C4—H4A119.6
O4i—Eu1—N3i25.45 (9)C4—C5—C6118.4 (3)
O4ii—Eu1—N3i98.49 (10)C4—C5—C8121.3 (3)
O4—Eu1—N3i72.33 (9)C6—C5—C8120.2 (3)
O3—Eu1—N3i123.38 (9)C5—C6—C7121.0 (3)
O3ii—Eu1—N3i94.27 (10)C5—C6—H6A119.5
O3i—Eu1—N3i25.74 (9)C7—C6—H6A119.5
O1i—Eu1—N399.78 (10)C6—C7—C2120.2 (3)
O1ii—Eu1—N378.00 (11)C6—C7—H7A119.9
O1—Eu1—N3162.42 (10)C2—C7—H7A119.9
O4i—Eu1—N398.49 (10)C11—C8—C9114.6 (3)
O4ii—Eu1—N372.33 (9)C11—C8—C5122.7 (3)
O4—Eu1—N325.45 (9)C9—C8—C5122.6 (3)
O3—Eu1—N325.74 (9)N2—C9—C8124.1 (4)
O3ii—Eu1—N3123.38 (9)N2—C9—H9A118.0
O3i—Eu1—N394.27 (10)C8—C9—H9A118.0
N3i—Eu1—N397.68 (9)N2—C10—N1125.4 (4)
O1i—Eu1—N3ii77.99 (11)N2—C10—H10A117.3
O1ii—Eu1—N3ii162.42 (10)N1—C10—H10A117.3
O1—Eu1—N3ii99.78 (10)N1—C11—C8123.0 (3)
O4i—Eu1—N3ii72.33 (9)N1—C11—H11A118.5
O4ii—Eu1—N3ii25.45 (9)C8—C11—H11A118.5
O4—Eu1—N3ii98.49 (10)C1—O1—Eu1164.0 (3)
O3—Eu1—N3ii94.28 (10)C1—O2—Cu1viii128.1 (2)
O3ii—Eu1—N3ii25.74 (9)N3—O3—Eu195.3 (2)
O3i—Eu1—N3ii123.38 (9)N3—O4—Eu197.9 (2)
Symmetry codes: (i) x+y+2, x+1, z; (ii) y+1, xy1, z; (iii) y+4/3, x+5/3, z+1/6; (iv) y+2/3, x+y+4/3, z+1/3; (v) x+2, x+y+1, z+1/2; (vi) x+y+7/3, y+2/3, z+1/6; (vii) xy1/3, x2/3, z+1/3; (viii) xy+2/3, x2/3, z+1/3.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds